
Sold to
vpicone@gmail.com

WOW! eBook
www.wowebook.org

Fullstack React
The Complete Guide to ReactJS and Friends

Written by Anthony Accomazzo, Ari Lerner, Nate Murray, Clay Allsopp, David
Guttman, and Tyler McGinnis

Technical Advisor: Sophia Shoemaker

© 2017 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out
of the use of the information or programs container herein.

Typeset using Leanpub.

Published in San Francisco, California by Fullstack.io.

FULLSTACK.ioWOW! eBook
www.wowebook.org

Contents

Book Revision . 1
Bug Reports . 1
Chat With The Community! . 1
Be notified of updates via Twitter . 1
We’d love to hear from you! . 1

Foreword . 2

How to Get the Most Out of This Book . 1
Overview . 1
Running Code Examples . 2

Project setups . 2
Code Blocks and Context . 3

Code Block Numbering . 3
Getting Help . 3
Emailing Us . 4

Technical Support Response Time . 5
Get excited . 5

Part I . 6

Your first React Web Application . 7
Building Product Hunt . 7
Setting up your development environment . 7

Code editor . 7
Node.js and npm . 7
Install Git . 8
Browser . 8

Special instruction for Windows users . 8
Ensure IIS is installed . 8

JavaScript ES6/ES7 . 8
Getting started . 9

Sample Code . 9

WOW! eBook
www.wowebook.org

CONTENTS

Previewing the application . 9
Prepare the app . 11

What’s a component? . 15
Our first component . 16
JSX . 18
The developer console . 19
Babel . 21
ReactDOM.render() . 23

Building Product . 25
Making Product data-driven . 27

The data model . 28
Using props . 28
Rendering multiple products . 32

React the vote (your app’s first interaction) . 37
Propagating the event . 37
Binding custom component methods . 39
Using state . 42
Setting state with this.setState() . 44

Updating state and immutability . 46
Refactoring with the Babel plugin transform-class-properties 51

Babel plugins and presets . 51
Property initializers . 52
Refactoring Product . 53
Refactoring ProductList . 54

Congratulations! . 56

Components . 57
A time-logging app . 57
Getting started . 58

Previewing the app . 58
Prepare the app . 58

Breaking the app into components . 62
The steps for building React apps from scratch . 69
Step 2: Build a static version of the app . 71

TimersDashboard . 71
EditableTimer . 73
TimerForm . 74
ToggleableTimerForm . 75
Timer . 76
Render the app . 77
Try it out . 78

Step 3: Determine what should be stateful . 79
State criteria . 79

WOW! eBook
www.wowebook.org

CONTENTS

Applying the criteria . 80
Step 4: Determine in which component each piece of state should live 81

The list of timers and properties of each timer . 82
Whether or not the edit form of a timer is open . 82
Visibility of the create form . 82

Step 5: Hard-code initial states . 83
Adding state to TimersDashboard . 83
Receiving props in EditableTimerList . 84
Props vs. state . 85
Adding state to EditableTimer . 85
Timer remains stateless . 86
Adding state to ToggleableTimerForm . 86
Adding state to TimerForm . 88

Step 6: Add inverse data flow . 91
TimerForm . 92
ToggleableTimerForm . 93
TimersDashboard . 95

Updating timers . 97
Adding editability to Timer . 97
Updating EditableTimer . 98
Updating EditableTimerList . 100
Defining onEditFormSubmit() in TimersDashboard 100

Deleting timers . 103
Adding the event handler to Timer . 103
Routing through EditableTimer . 104
Routing through EditableTimerList . 104
Implementing the delete function in TimersDashboard 105

Adding timing functionality . 106
Adding a forceUpdate() interval to Timer . 107
Try it out . 108

Add start and stop functionality . 108
Add timer action events to Timer . 108
Create TimerActionButton . 109
Run the events through EditableTimer and EditableTimerList 110
Try it out . 113

Methodology review . 114

Components & Servers . 116
Introduction . 116

Preparation . 116
server.js . 116
The Server API . 117

text/html endpoint . 118

WOW! eBook
www.wowebook.org

CONTENTS

JSON endpoints . 118
Playing with the API . 119
Loading state from the server . 122

Try it out . 125
client . 125

Fetch . 126
Sending starts and stops to the server . 129
Sending creates, updates, and deletes to the server . 131

Give it a spin . 133
Next up . 133

JSX and the Virtual DOM . 134
React Uses a Virtual DOM . 134
Why Not Modify the Actual DOM? . 134
What is a Virtual DOM? . 134
Virtual DOM Pieces . 135
ReactElement . 136

Experimenting with ReactElement . 136
Rendering Our ReactElement . 138
Adding Text (with children) . 140
ReactDOM.render() . 141

JSX . 142
JSX Creates Elements . 142
JSX Attribute Expressions . 144
JSX Conditional Child Expressions . 144
JSX Boolean Attributes . 145
JSX Comments . 145
JSX Spread Syntax . 145
JSX Gotchas . 146
JSX Summary . 149

References . 150

Advanced Component Configuration with props, state, and children 151
Intro . 151
How to use this chapter . 152
ReactComponent . 152

Creating ReactComponents - createClass or ES6 Classes 152
render() Returns a ReactElement Tree . 153
Getting Data into render() . 154

props are the parameters . 155
PropTypes . 156
Default props with getDefaultProps() . 158
context . 158

WOW! eBook
www.wowebook.org

CONTENTS

state . 163
Using state: Building a Custom Radio Button . 164
Stateful components . 169
State updates that depend on the current state . 171
Thinking About State . 173

Stateless Components . 174
Switching to Stateless . 175
Stateless Encourages Reuse . 177

Talking to Children Components with props.children 177
React.Children.map() & React.Children.forEach() 180
React.Children.toArray() . 181

Summary . 182
References . 182

Forms . 183
Forms 101 . 183

Preparation . 183
The Basic Button . 184
Events and Event Handlers . 186
Back to the Button . 187

Text Input . 189
Accessing User Input With refs . 189
Using User Input . 191
Uncontrolled vs. Controlled Components . 194
Accessing User Input With state . 195
Multiple Fields . 197
On Validation . 202
Adding Validation to Our App . 202
Creating the Field Component . 206
Using our new Field Component . 210

Remote Data . 215
Building the Custom Component . 215
Adding CourseSelect . 221
Separation of View and State . 224

Async Persistence . 224
Redux . 231

Form Component . 236
Connect the Store . 240

Form Modules . 242
formsy-react . 242
react-input-enhancements . 242
tcomb-form . 243
winterfell . 243

WOW! eBook
www.wowebook.org

CONTENTS

react-redux-form . 243

Using Webpack with Create React App . 244
JavaScript modules . 244
Create React App . 246

Exploring Create React App . 247
public/index.html . 248
package.json . 249
src/ . 251
index.js . 253
Booting the app . 255

Webpack basics . 256
Making modifications to the sample app . 262

Hot reloading . 262
Auto-reloading . 263

Creating a production build . 264
Ejecting . 267

Buckle up . 268
Using Create React App with an API server . 270

The completed app . 270
How the app is organized . 274
The server . 275
Client . 276
Concurrently . 277
Using the Webpack development proxy . 280

Webpack at large . 282
When to use Webpack/Create React App . 283

Unit Testing . 284
Writing tests without a framework . 284

Preparing Modash . 285
Writing the first spec . 288
The assertEqual() function . 290

What is Jest? . 294
Using Jest . 294

expect() . 295
The first Jest test for Modash . 297
The other truncate() spec . 299
The rest of the specs . 300

Testing strategies for React applications . 302
Integration vs Unit Testing . 302
Shallow rendering . 303
Enzyme . 303

WOW! eBook
www.wowebook.org

CONTENTS

Testing a basic React component with Enzyme . 304
Setup . 304
The App component . 305
The first spec for App . 309
More assertions for App . 313
Using beforeEach . 316
Simulating a change . 319
Clearing the input field . 323
Simulating a form submission . 325

Writing tests for the food lookup app . 332
FoodSearch . 334
Exploring FoodSearch . 336

Writing FoodSearch.test.js . 340
In initial state . 342
A user has typed a value into the search field . 344
Mocking with Jest . 348
Mocking Client . 351
The API returns results . 357
The user clicks on a food item . 362
The API returns empty result set . 366

Further reading . 370

Routing . 373
What’s in a URL? . 373

React Router’s core components . 375
Building the components of react-router . 376

The completed app . 376
Building Route . 378
Building Link . 385
Building Router . 390
Building Redirect . 395
Using react-router . 399
More Route . 400
Using Switch . 405

Dynamic routing with React Router . 407
The completed app . 408
The server’s API . 411
Starting point of the app . 413
Using URL params . 419
Propagating pathnames as props . 426
Dynamic menu items with NavLink . 431

Supporting authenticated routes . 434
The Client library . 435

WOW! eBook
www.wowebook.org

CONTENTS

Implementing login . 436
PrivateRoute, a higher-order component . 442
Redirect state . 446

Recap . 448
Further Reading . 448

Part II . 449

Intro to Flux and Redux . 450
Why Flux? . 450

Flux is a Design Pattern . 450
Flux overview . 451

Flux implementations . 452
Redux . 452

Redux’s key ideas . 452
Building a counter . 453

Preparation . 453
Overview . 454
The counter’s actions . 455
Incrementing the counter . 456
Decrementing the counter . 457
Supporting additional parameters on actions . 459

Building the store . 460
Try it out . 464

The core of Redux . 465
Next up . 466

The beginnings of a chat app . 466
Previewing . 466
State . 468
Actions . 469

Building the reducer() . 469
Initializing state . 469
Handling the ADD_MESSAGE action . 470
Handling the DELETE_MESSAGE action . 473

Subscribing to the store . 475
createStore() in full . 477

Connecting Redux to React . 480
Using store.getState() . 480
Using store.subscribe() . 480
Using store.dispatch() . 481
The app’s components . 481

WOW! eBook
www.wowebook.org

CONTENTS

Preparing App.js . 482
The App component . 483
The MessageInput component . 484
The MessageView component . 486

Next up . 488

Intermediate Redux . 489
Preparation . 489

Using createStore() from the redux library . 490
Try it out . 491

Representing messages as objects in state . 491
Updating ADD_MESSAGE . 492
Updating DELETE_MESSAGE . 494
Updating the React components . 495

Introducing threads . 497
Supporting threads in initialState . 498
Supporting threads in the React components . 500
Modifying App . 501
Turning MessageView into Thread . 502
Try it out . 503

Adding the ThreadTabs component . 503
Updating App . 504
Creating ThreadTabs . 505
Try it out . 505

Supporting threads in the reducer . 506
Updating ADD_MESSAGE in the reducer . 506
Updating the MessageInput component . 512
Try it out . 513
Updating DELETE_MESSAGE in the reducer . 514
Try it out . 516

Adding the action OPEN_THREAD . 517
The action object . 517
Modifying the reducer . 517
Dispatching from ThreadTabs . 518
Try it out . 519

Breaking up the reducer function . 520
A new reducer() . 521
Updating threadsReducer() . 523
Try it out . 526

Adding messagesReducer() . 527
Modifying the ADD_MESSAGE action handler . 527
Creating messagesReducer() . 528
Modifying the DELETE_MESSAGE action handler . 529

WOW! eBook
www.wowebook.org

CONTENTS

Adding DELETE_MESSAGE to messagesReducer() . 532
Defining the initial state in the reducers . 533

Initial state in reducer() . 534
Adding initial state to activeThreadIdReducer() . 534
Adding initial state to threadsReducer() . 535
Try it out . 536

Using combineReducers() from redux . 536
Next up . 537

Using Presentational and Container Components with Redux 539
Presentational and container components . 539
Splitting up ThreadTabs . 541
Splitting up Thread . 546

Removing store from App . 552
Try it out . 553

Generating containers with react-redux . 553
The Provider component . 554
Wrapping App in Provider . 554
Using connect() to generate ThreadTabs . 555
Using connect() to generate ThreadDisplay . 559

Action creators . 564
Conclusion . 568

Asynchronicity and server communication . 568

Using GraphQL . 570
Your First GraphQL Query . 570
GraphQL Benefits . 572
GraphQL vs. REST . 573
GraphQL vs. SQL . 574
Relay and GraphQL Frameworks . 574
Chapter Preview . 576
Consuming GraphQL . 576
Exploring With GraphiQL . 576
GraphQL Syntax 101 . 580
Complex Types . 584

Unions . 584
Fragments . 585
Interfaces . 586

Exploring a Graph . 587
Graph Nodes . 590
Viewer . 591
Graph Connections and Edges . 592
Mutations . 596

WOW! eBook
www.wowebook.org

CONTENTS

Subscriptions . 597
GraphQL With JavaScript . 598
GraphQL With React . 599
Wrapping Up . 601

GraphQL Server . 602
Writing a GraphQL Server . 602
Special setup for Windows users . 602

Game Plan . 603
Express HTTP Server . 603
Adding First GraphQL Types . 606
Adding GraphiQL . 608
Introspection . 610
Mutation . 611
Rich Schemas and SQL . 614
Setting Up The Database . 615
Schema Design . 619
Object and Scalar Types . 621
Lists . 626
Performance: Look-Ahead Optimizations . 628
Lists Continued . 631

Connections . 634
Authentication . 641
Authorization . 643
Rich Mutations . 647
Relay and GraphQL . 650
Performance: N+1 Queries . 651

Summary . 655

Relay . 657
Introduction . 657

What We’re Going to Cover . 658
What We’re Building . 658
Guide to the Code Structure . 662

Relay is a Data Architecture . 663
Relay GraphQL Conventions . 664

Exploring Relay Conventions in GraphQL . 665
Fetching Objects By ID . 665
Walking Connections . 669
Changing Data with Mutations . 674
Relay GraphQL Queries Summary . 675

Adding Relay to Our App . 675
Quick Look at the Goal . 675

WOW! eBook
www.wowebook.org

CONTENTS

A Preview of the Author Page . 678
Containers, Queries, and Fragments . 679
Validating Our Relay Queries at Compile Time . 679
Setting Up Routing . 685
Adding Relay to Our Routes . 687
App Component . 688
AuthorQueries Component . 689
AuthorPage Component . 689
Try It Out . 691
AuthorPage with Styles . 693

BooksPage . 695
BooksPage Route . 695
BooksPage Component . 696
BooksPage render() . 698
BookItem . 699
BookItem Fragment . 701
Fragment Value Masking . 701
Improving the AuthorPage . 703

Changing Data With Mutations . 706
Building a Book’s Page . 707

Book Page Editing . 710
Mutations . 713

Defining a Mutation Object . 714
Inline Editing . 718

Conclusion . 720
Where to Go From Here . 721

React Native . 722
Init . 723
Routing . 724
<Navigator /> . 727

renderScene() . 729
configureScene() . 731

Web components vs. Native components . 734
<View /> . 735
<Text /> . 735
<Image /> . 735
<TextInput /> . 735
<TouchableHighlight />, <TouchableOpacity />, and <TouchableWithoutFeedback

/> . 735
<ActivityIndicator /> . 736
<WebView /> . 736
<ScrollView /> . 736

WOW! eBook
www.wowebook.org

CONTENTS

<ListView /> . 737
Styles . 745

StyleSheet . 746
Flexbox . 747

HTTP requests . 765
What is a promise . 766

Enter Promises . 768
Single-use guarantee . 770
Creating a promise . 770
Debugging with React Native . 772
Where to go from here . 773

Appendix A: PropTypes . 775
Validators . 776
string . 777
number . 777
boolean . 778
function . 779
object . 780
object shape . 780
multiple types . 781
instanceOf . 782
array . 783
array of type . 784
node . 785
element . 786
any type . 787
Optional & required props . 787
custom validator . 788

Appendix B: ES6 . 790
Prefer const and let over var . 790
Arrow functions . 790
Modules . 793
Object.assign() . 796
Template literals . 797
The spread operator (...) . 797
Enhanced object literals . 798
Default arguments . 798
Destructuring assignments . 799

Changelog . 802
Revision 32 - 2017-06-14 . 802

WOW! eBook
www.wowebook.org

CONTENTS

Revision 31 - 2017-05-18 . 802
Revision 30 - 2017-04-20 . 802
Revision 29 - 2017-04-13 . 802
Revision 28 - 2017-04-10 . 802
Revision 27 - 2017-03-16 . 802
Revision 26 - 2017-02-22 . 803
Revision 25 - 2017-02-17 . 803
Revision 24 - 2017-02-08 . 803
Revision 23 - 2017-02-06 . 803
Revision 22 - 2017-02-01 . 803
Revision 21 - 2017-01-27 . 803
Revision 20 - 2017-01-10 . 804
Revision 19 - 2016-12-20 . 804
Revision 18 - 2016-11-22 . 804
Revision 17 - 2016-11-04 . 804
Revision 16 - 2016-10-12 . 804
Revision 15 - 2016-10-05 . 804
Revision 14 - 2016-08-26 . 804
Revision 13 - 2016-08-02 . 804
Revision 12 - 2016-07-26 . 804
Revision 11 - 2016-07-08 . 805
Revision 10 - 2016-06-24 . 805
Revision 9 - 2016-06-21 . 805
Revision 8 - 2016-06-02 . 805
Revision 7 - 2016-05-13 . 805
Revision 6 - 2016-05-13 . 805
Revision 5 - 2016-04-25 . 805
Revision 4 - 2016-04-22 . 805
Revision 3 - 2016-04-08 . 805
Revision 2 - 2016-03-16 . 806
Revision 1 - 2016-02-14 . 806

WOW! eBook
www.wowebook.org

CONTENTS 1

Book Revision

Revision 32 - Supports React 15.5.4 (2017-06-14)

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: react@fullstack.io1.

Chat With The Community!

There’s an unofficial community chat room for this book using Gitter. If you’d like to hang out with
other people learning React, come join us on Gitter2!

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow @fullstackio3

We’d love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list of testimonials
on the website! Email us at: react@fullstack.io4.

1mailto:react@fullstack.io?Subject=Fullstack%20React%20book%20feedback
2https://gitter.im/fullstackreact/fullstackreact
3https://twitter.com/fullstackio
4mailto:react@fullstack.io?Subject=react%202%20testimonial

WOW! eBook
www.wowebook.org

mailto:react@fullstack.io?Subject=Fullstack%20React%20book%20feedback
https://gitter.im/fullstackreact/fullstackreact
https://twitter.com/fullstackio
mailto:react@fullstack.io?Subject=react%202%20testimonial
mailto:react@fullstack.io?Subject=Fullstack%20React%20book%20feedback
https://gitter.im/fullstackreact/fullstackreact
https://twitter.com/fullstackio
mailto:react@fullstack.io?Subject=react%202%20testimonial

Foreword
Web development is often seen as a crazy world where the way you develop software is by throwing
hacks on top of hacks. I believe that React breaks from this pattern and instead has been designed
from first principle which gives you a solid foundation to build on.

Christopher Chedeau - Front-end Engineer
at Facebook

A major source of bugs for front-end applications was
around synchronizing the data model with the DOM. It
is very hard to make sure that whenever data changes,
everything in the UI is updated with it.

React’s first innovation was to introduce a pure-
JavaScript representation of the DOM and implement
diffing in userland and then use events which send
simple commands: create, update, delete.

With React, by conceptually re-rendering everything
whenever anything changes, not only do you have
code that is safe by default, it is also less work as you
only need to write the creation path: updates are taken
care of for you.

Browsers have, for a long time, been incompatible in
various ways due to the large API surface area of what
they have to support to make the DOM work. Not only
does React provide a great way to solve browser differences, but it enables use cases that were never
before possible for a front-end library, such as server-side rendering and the ability to implement
rendering targets like native iOS, Android, and even hardware components.

But the most important thing about React and the main reason why you should read this book: not
only will you use it to make great applications for your users, it will also make you a better
developer. Libraries come and go all the time and React is likely going to be no exception. What
makes it special is that it teaches you concepts that can be reused throughout your entire career.

You will become better at JavaScript because React doesn’t come with a templating system.
Instead, React pushes you to use the full power of JavaScript to build your user interface.

You are going to practice using parts of functional programming with map and filter and also
encouraged to use the latest features of JavaScript (including ES6). By not abstracting away data
management, React will force you to think about how to architect your app and encourage you to
consider concepts like immutability.

I’m very proud that the community built around React is not afraid of “rethinking best practices.”
The community challenges the status quo in many areas. My advice to you is to read this excellent

WOW! eBook
www.wowebook.org

Foreword 3

book to learn and understand the fundamentals of React. Learning new concepts may feel strange
but “give it 5 minutes” and practice them until you feel comfortable.

Then, try to break the rules. There is no one best way to build software and React is no exception.
React actually embraces this fact by providing you with escape hatches when you want to do things
outside of the React-way.

Come up with crazy ideas and who knows, maybe you are going to invent the successor to React!

– Christopher Chedeau @vjeux5 Front-end Engineer at Facebook

5https://twitter.com/Vjeux

WOW! eBook
www.wowebook.org

https://twitter.com/Vjeux
https://twitter.com/Vjeux

How to Get the Most Out of This Book
Overview

This book aims to be the single most useful resource on learning React. By the time you’re done
reading this book, you (and your team) will have everything you need to build reliable, powerful
React apps.

React core is lean and powerful. After the first few chapters, you’ll have a solid understanding of
React’s fundamentals and will be able to build a wide array of rich, interactive web apps with the
framework.

But beyond React’s core, there are many tools in its ecosystem that you might find helpful for
building production apps. Things like client-side routing between pages, managing complex state,
and heavy API interaction at scale.

This book consists of two parts.

In Part I, we cover all the fundamentals with a progressive, example-driven approach. You’ll create
your first apps, learn how to write components, start handling user interaction, manage rich
forms, and even interact with servers.

We bookend the first part by exploring the inner workings of Create React App (Facebook’s tool
for running React apps), writing automated unit tests, and building a multi-page app that uses
client-side routing.

Part II of this book moves into more advanced concepts that you’ll see used in large, production
applications. These concepts explore strategies for data architecture, transport, and management:

Redux is a state management paradigm based on Facebook’s Flux architecture. Redux provides a
structure for large state trees and allows you to decouple user interaction in your app from state
changes.

GraphQL is a powerful, typed, REST API alternative where the client describes the data it needs.
We also cover how to write your own GraphQL servers for your own data.

Relay is the glue between GraphQL and React. Relay is a data-fetching library that makes it easy to
write flexible, performant apps without a lot of data-fetching code.

Finally, in the last chapter, we’ll talk about how to write native, cross-platform mobile apps using
React Native.

There are a few guidelines we want to give you in order to get the most out of this book.

First, know that you do not need to read this book linearly from cover-to-cover. However, we’ve
ordered the contents of the book in a way we feel fits the order you should learn the concepts. We

WOW! eBook
www.wowebook.org

How to Get the Most Out of This Book 2

encourage you to learn all the concepts in Part I of the book first before diving into concepts in Part
II.

Second, keep in mind this package is more than just a book - it’s a course complete with example
code for every chapter. Below, we’ll tell you:

• how to approach the code examples and
• how to get help if something goes wrong

Running Code Examples

This book comes with a library of runnable code examples. The code is available to download from
the same place where you purchased this book. If you purchased this book on Amazon, you should
have received an email with instructions.

If you have any trouble finding or downloading the code examples, email us at react@fullstack.io.

We use the program npm6 to run every example in this book. You can boot most apps with the
following two commands:

npm install

npm start

If you’re unfamiliar with npm, we cover how to get it installed in the Setting Up section in
the first chapter.

After running npm start, you will see some output on your screen that will tell you what URL to
open to view your app.

Some apps require a few more commands to setup. If you’re ever unclear on how to run a
particular sample app, checkout the README.md in that project’s directory. Every sample project
contains a README.md that will give you the instructions you need to run each app.

Project setups

The first two projects begin with a simple React setup that allows us to quickly write React
applications.

From there, with a couple exceptions, every project in this book was built using Create React App7.

Create React App is based onWebpack, a tool which helps process and bundle our various JavaScript,
CSS, HTML, and image files. We explore Create React App in-depth in the chapter “Using Webpack
with Create React App.” But, Create React App is not a requirement for using React. It’s simply a
wrapper around Webpack (and some other tooling) that makes it easy to get started.

6https://www.npmjs.com/
7https://github.com/facebookincubator/create-react-app

WOW! eBook
www.wowebook.org

https://www.npmjs.com/
https://github.com/facebookincubator/create-react-app
https://www.npmjs.com/
https://github.com/facebookincubator/create-react-app

How to Get the Most Out of This Book 3

Code Blocks and Context

Nearly every code block in this book is pulled from a runnable code example which you can find
in the sample code. For example, here is a code block pulled from the first chapter:

voting_app/public/js/app-2.js

class ProductList extends React.Component {

render() {

return (

<div className='ui unstackable items'>

<Product />

</div>

);

}

}

Notice that the header of this code block states the path to the file which contains this code: voting_-
app/public/js/app-2.js.

If you ever feel like you’re missing the context for a code example, open up the full code file using
your favorite text editor. This book is written with the expectation that you’ll also be looking
at the example code alongside the manuscript.

For example, we often need to import libraries to get our code to run. In the early chapters of the
book we show these import statements, because it’s not clear where the libraries are coming from
otherwise. However, the later chapters of the book aremore advanced and they focus on key concepts
instead of repeating boilerplate code that was covered earlier in the book. If at any point you’re
not clear on the context, open up the code example on disk.

Code Block Numbering

In this book, we sometimes build up a larger example in steps. If you see a file being loaded that has
a numeric suffix, that generally means we’re building up to something bigger.

For instance, above the code block has the filename: app-2.js. When you see the -N.js syntax that
means we’re building up to a final version of the file. You can jump into that file and see the state
of all the code at that particular stage.

Getting Help

While we’ve made every effort to be clear, precise, and accurate you may find that when you’re
writing your code you run into a problem.

Generally, there are three types of problems:

WOW! eBook
www.wowebook.org

How to Get the Most Out of This Book 4

• A “bug” in the book (e.g. how we describe something is wrong)
• A “bug” in our code
• A “bug” in your code

If you find an inaccuracy in how we describe something, or you feel a concept isn’t clear, email us!
We want to make sure that the book is both accurate and clear.

Similarly, if you’ve found a bug in our code we definitely want to hear about it.

If you’re having trouble getting your own app working (and it isn’t our example code), this case is
a bit harder for us to handle.

Your first line of defense, when getting help with your custom app, should be our unofficial
community chat room8. We (the authors) are there from time-to-time, but there are hundreds of
other readers there who may be able to help you faster than we can.

If you’re still stuck, we’d still love to hear from you, and here some tips for getting a clear, timely
response.

Emailing Us

If you’re emailing us asking for technical help, here’s what we’d like to know:

• What revision of the book are you referring to?
• What operating system are you on? (e.g. Mac OS X 10.8, Windows 95)
• Which chapter and which example project are you on?
• What were you trying to accomplish?
• What have you tried9 already?
• What output did you expect?
• What actually happened? (Including relevant log output.)

The absolute best way to get technical support is to send us a short, self-contained example of the
problem. Our preferred way to receive this would be for you to send us a Plunkr link by using this
URL10.

That URL contains a runnable, boilerplate React app. If you can copy and paste your code into that
project, reproduce your error, and send it to us you’ll greatly increase the likelihood of a prompt,
helpful response.

When you’vewritten down these things, email us at react@fullstack.io.We look forward to hearing
from you.

8https://gitter.im/fullstackreact/fullstackreact
9http://mattgemmell.com/what-have-you-tried/
10https://plnkr.co/edit/tpl:a3vkhunC1Na5BG6GY2Gf

WOW! eBook
www.wowebook.org

https://gitter.im/fullstackreact/fullstackreact
https://gitter.im/fullstackreact/fullstackreact
http://mattgemmell.com/what-have-you-tried/
https://plnkr.co/edit/tpl:a3vkhunC1Na5BG6GY2Gf
https://plnkr.co/edit/tpl:a3vkhunC1Na5BG6GY2Gf
https://gitter.im/fullstackreact/fullstackreact
http://mattgemmell.com/what-have-you-tried/
https://plnkr.co/edit/tpl:a3vkhunC1Na5BG6GY2Gf

How to Get the Most Out of This Book 5

Technical Support Response Time

We perform our free, technical support once per week.

If you need a faster response time, and help getting any of your team’s questions answered, then
you may consider our premium support option11.

Get excited

Writing web apps with React is fun. And by using this book, you’re going to learn how to build
real React apps fast. (And much faster than spending hours parsing out-dated blog posts.)

If you’ve written client-side JavaScript before, you’ll find React refreshingly intuitive. If this is your
first serious foray into the front-end, you’ll be blown away at how quickly you can create something
worth sharing.

So hold on tight - you’re about to become a React expert and have a lot of fun along the way. Let’s
dig in!

• Nate (@eigenjoy12) & Anthony

11mailto:react@fullstack.io?Subject=React%20Premium%20Support&Body=Hello%21%20I%27m%20interested%20in%20premium%20React%
20support%20for%20our%20team

12https://twitter.com/eigenjoy

WOW! eBook
www.wowebook.org

mailto:react@fullstack.io?Subject=React%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20React%20support%20for%20our%20team
https://twitter.com/eigenjoy
mailto:react@fullstack.io?Subject=React%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20React%20support%20for%20our%20team
mailto:react@fullstack.io?Subject=React%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20React%20support%20for%20our%20team
https://twitter.com/eigenjoy

Part I

WOW! eBook
www.wowebook.org

Your first React Web Application
Building Product Hunt

In this chapter, you’re going to get a crash course on React by building a simple voting application
inspired by Product Hunt13. You’ll become familiar with how React approaches front-end devel-
opment and all the fundamentals necessary to build an interactive React app from start to finish.
Thanks to React’s core simplicity, by the end of the chapter you’ll already be well on your way to
writing a variety of fast, dynamic interfaces.

We’ll focus on getting our React app up and running fast. We take a deeper look at concepts covered
in this section throughout the book.

Setting up your development environment

Code editor

As you’ll be writing code throughout this book, you’ll need to make sure you have a code editor
you’re comfortable working with. If you don’t already have a preferred editor, we recommend
installing Atom14 or Sublime Text15.

Node.js and npm

For all the projects in this book, we’ll need to make sure we have a working Node.js16 development
environment along with npm.

There are a couple different ways you can install Node.js so please refer to the Node.js website for
detailed information: https://nodejs.org/download/17

If you’re on a Mac, your best bet is to install Node.js directly from the Node.js website
instead of through another package manager (like Homebrew). Installing Node.js via
Homebrew is known to cause some issues.

The Node Package Manager (npm for short) is installed as a part of Node.js. To check if npm is
available as a part of our development environment, we can open a terminal window and type:

13http://producthunt.com
14http://atom.io
15https://www.sublimetext.com/
16http://nodejs.org
17https://nodejs.org/download/

WOW! eBook
www.wowebook.org

http://producthunt.com/
http://atom.io/
https://www.sublimetext.com/
http://nodejs.org/
https://nodejs.org/download/
http://producthunt.com/
http://atom.io/
https://www.sublimetext.com/
http://nodejs.org/
https://nodejs.org/download/

Your first React Web Application 8

$ npm -v

If a version number is not printed out and you receive an error, make sure to download a Node.js
installer that includes npm.

Install Git

The app in this chapter requires Git to install some third-party libraries.

If you don’t have Git installed, see these instructions18 for installing Git for your platform.

After installing Git, we recommend restarting your computer.

Browser

Last, we highly recommend using the Google Chrome Web Browser19 to develop React apps. We’ll
use the Chrome developer toolkit throughout this book. To follow along with our development and
debugging we recommend downloading it now.

Special instruction for Windows users

All the code in this book has been tested on Windows 10 with PowerShell.

Ensure IIS is installed

If you’re on a Windows machine and have yet to do any web development on it, you may need to
install IIS (Internet Information Services) in order to run web servers locally.

See this tutorial20 for installing IIS.

JavaScript ES6/ES7

JavaScript is the language of the web. It runs on many different browsers, like Google Chrome,
Firefox, Safari, Microsoft Edge, and Internet Explorer. Different browsers have different JavaScript
interpreters which execute JavaScript code.

Its widespread adoption as the internet’s client-side scripting language led to the formation of a
standards body which manages its specification. The specification is called ECMAScript or ES.

18https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
19https://www.google.com/chrome/
20http://www.howtogeek.com/112455/how-to-install-iis-8-on-windows-8/

WOW! eBook
www.wowebook.org

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.google.com/chrome/
http://www.howtogeek.com/112455/how-to-install-iis-8-on-windows-8/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.google.com/chrome/
http://www.howtogeek.com/112455/how-to-install-iis-8-on-windows-8/

Your first React Web Application 9

The 5th edition of the specification is called ES5. You can think of ES5 as a “version” of the JavaScript
programming language. Finalized in 2009, ES5 was adopted by all major browsers within a few years.

The 6th edition of JavaScript is referred to as ES6. Finalized in 2015, the latest versions of major
browsers are still finishing adding support for ES6 as of 2017. ES6 is a significant update. It contains
a whole host of new features for JavaScript, almost two dozen in total. JavaScript written in ES6 is
tangibly different than JavaScript written in ES5.

ES7, a much smaller update that builds on ES6, was ratified in June 2016. ES7 contains only two new
features.

As the future of JavaScript, we want to write our code in ES6/ES7 today. But we also want our
JavaScript to run on older browsers until they fade out of widespread use. We see later in this
chapter how we can enjoy the benefits of ES6/ES7 today while still supporting the vast majority of
the world’s browsers.

This book is written with JavaScript ES7. Because ES6 ratified a majority of these new features, we’ll
commonly refer to these new features as ES6 features.

We’ve included an appendix on the ES6 syntax that we use, “Appendix B: ES6.” We’ll often refer to
the appendix when encountering ES6 syntax for the first time, but if ever syntax seems unfamiliar
to you it’s worth checking Appendix B to see if it’s new ES6 JavaScript syntax.

ES6 is sometimes referred to as ES2015, the year of its finalization. ES7, in turn, is often
referred to as ES2016.

Getting started

Sample Code

All the code examples you find in each chapter are available in the code package that came with the
book. In that code package you’ll find completed versions of each app as well as boilerplates that we
will use to build those apps together. Each chapter provides detailed instruction on how to follow
along on your own.

While coding along with the book is not necessary, we highly recommend doing so. Playing around
with examples and sample code will help solidify and strengthen concepts.

Previewing the application

We’ll be building a basic React app that will allow us to touch on React’s most important concepts at
a high-level before diving into them in subsequent sections. Let’s begin by taking a look at a working
implementation of the app.

Open up the sample code folder that came with the book. Change to the voting_app/ directory in
the terminal:

WOW! eBook
www.wowebook.org

Your first React Web Application 10

$ cd voting_app/

If you’re not familiar with cd, it stands for “change directory.” If you’re on a Mac, do the
following to open terminal and change to the proper directory:

1. Open up /Applications/Utilities/Terminal.app.
2. Type cd, without hitting enter.
3. Tap the spacebar.
4. In the Finder, drag the voting_app/ folder on to your terminal window.
5. Hit Enter.

Your terminal is now in the proper directory.

Throughout the book, a code block starting with a $ signifies a command to be run in your
terminal.

First, we’ll need to use npm to install all our dependencies:

$ npm install

With our dependencies installed, we can boot the server using the npm start command

$ npm start

The boot process will print some text to the console:

Boot process output

In addition, your browser might automatically launch and open the app. If it doesn’t, you can view
the running application at the URL http://localhost:3000:

WOW! eBook
www.wowebook.org

Your first React Web Application 11

Completed version of the app

This demo app is a site like Product Hunt21 or Reddit22. These sites have lists of links that users can
vote on. Like those sites, in our app we can up-vote products. All products are sorted instantaneously
by number of votes.

The keyboard command to quit a running Node server is CTRL+C.

Prepare the app

In the terminal, run ls to see the project’s layout:

21http://producthunt.com
22http://reddit.com

WOW! eBook
www.wowebook.org

http://producthunt.com/
http://reddit.com/
http://producthunt.com/
http://reddit.com/

Your first React Web Application 12

$ ls

README.md

disable-browser-cache.js

nightwatch.json

node_modules/

package.json

public/

semantic.json

tests/

If you’re running on macOS or Linux, you can run ls -1p to format your output as we do
above.

Node apps contain a package.jsonwhich specifies the dependencies of the project.Whenwe ran npm
install, npm used our package.json to determine which dependencies to download and install. It
installed them to the folder node_modules/.

We explore the format of package.json in later chapters.

The code we’ll be working with is inside the folder public/. Look inside that folder:

$ ls public

favicon.ico

images/

index.html

js/

semantic/

style.css

vendor/

The general layout here is a common one for web apps. Inside public/ is index.html, the file that
we serve to browsers that request our website. As we’ll see shortly, index.html is the centerpiece of
our app. It loads in the rest of our app’s assets.

Let’s look inside public/js next:

WOW! eBook
www.wowebook.org

Your first React Web Application 13

$ ls public/js

app-1.js

app-2.js

app-3.js

app-4.js

app-5.js

app-6.js

app-7.js

app-8.js

app-9.js

app-complete.js

app.js

seed.js

Inside public/js is where we’ll put our app’s JavaScript. We’ll be writing our React app inside
app.js. app-complete.js is the completed version of the app that we’re working towards, which
we viewed a moment ago.

In addition, we’ve included each version of app.js as we build it up throughout this chapter (app-
1.js, app-2.js, etc). Each code block in this chapter will reference which app version you can find
it in. You can copy and paste longer code insertions from these app versions into your app.js.

All projects include a handy README.md that have instructions on how to run them.

To get started, we’ll ensure app-complete.js is no longer loaded in index.html. We’ll then have a
blank canvas to begin work inside app.js.

Open up public/index.html in your text editor. It should look like this:

voting_app/public/index.html

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>Project One</title>

<link rel="stylesheet" href="./semantic/dist/semantic.css" />

<link rel="stylesheet" href="./style.css" />

<script src="vendor/babel-standalone.js"></script>

<script src="vendor/react.js"></script>

<script src="vendor/react-dom.js"></script>

</head>

WOW! eBook
www.wowebook.org

Your first React Web Application 14

<body>

<div class="main ui text container">

<h1 class="ui dividing centered header">Popular Products</h1>

<div id="content"></div>

</div>

<script src="./js/seed.js"></script>

<script src="./js/app.js"></script>

<!-- Delete the script tag below to get started. -->

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app-complete.js"

></script>

</body>

</html>

We’ll go over all the dependencies being loaded under the <head> tag later. The heart of the HTML
document is these few lines here:

voting_app/public/index.html

<div class="main ui text container">

<h1 class="ui dividing centered header">Popular Products</h1>

<div id="content"></div>

</div>

For this project, we’re using Semantic UI23 for styling.

Semantic UI is a CSS framework, much like Twitter’s Bootstrap24. It provides us with a
grid system and some simple styling. You don’t need to know Semantic UI in order to use
this book. We’ll provide all the styling code that you need. At some point, you might want
to check out the docs Semantic UI docs25 to get familiar with the framework and explore
how you can use it in your own projects.

The class attributes here are just concerned with style and are safe to ignore. Stripping those away,
our core markup is succinct:

23http://semantic-ui.com/
24http://getbootstrap.com/
25http://semantic-ui.com/introduction/getting-started.html

WOW! eBook
www.wowebook.org

http://semantic-ui.com/
http://getbootstrap.com/
http://semantic-ui.com/introduction/getting-started.html
http://semantic-ui.com/
http://getbootstrap.com/
http://semantic-ui.com/introduction/getting-started.html

Your first React Web Application 15

<div>

<h1>Popular Products</h1>

<div id="content"></div>

</div>

We have a title for the page (h1) and a div with an id of content. This div is where we will
ultimately mount our React app. We’ll see shortly what that means.

The next few lines tell the browser what JavaScript to load. To start building our own application,
let’s remove the ./app-complete.js script tag completely:

<script src="./js/seed.js"></script>

<script src="./js/app.js"></script>

<!-- Delete the script tag below to get started. -->

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app-complete.js"

></script>

After we save our updated index.html and reload the web browser, we’ll see that our app has
disappeared.

What’s a component?

Building a React app is all about components. An individual React component can be thought of as a
UI component in an app. We can break apart the interface of our app into two classes of components:

WOW! eBook
www.wowebook.org

Your first React Web Application 16

The app’s components

We have a hierarchy of one parent component and many child components. We’ll call these
ProductList and Product, respectively:

1. ProductList: Contains a list of product components
2. Product: Displays a given product

Not only do React components map cleanly to UI components, but they are self-contained. The
markup, view logic, and often component-specific style is all housed in one place. This feature makes
React components reusable.

Furthermore, as we’ll see in this chapter and throughout this book, React’s paradigm for component
data flow and interactivity is rigidly defined. In React, when the inputs for a component change, the
framework simply re-renders that component. This gives us a robust UI consistency guarantee:

With a given set of inputs, the output (how the component looks on the page) will always be
the same.

Our first component

Let’s start off by building the ProductList component. We’ll write all our React code for the rest of
this chapter inside the file public/js/app.js. Let’s open app.js and insert the component:

WOW! eBook
www.wowebook.org

Your first React Web Application 17

voting_app/public/js/app-1.js

class ProductList extends React.Component {

render() {

return (

<div className='ui unstackable items'>

Hello, friend! I am a basic React component.

</div>

);

}

}

React components are ES6 classes that extend the class React.Component. We’re referencing the
React variable. index.html loads the React library for us so we’re able to reference it here:

voting_app/public/index.html

<script src="vendor/react.js"></script>

Our ProductList class has a single method, render(). render() is the only required method for
a React component. React uses the return value from this method to determine what to render to
the page.

While JavaScript is not a classical language, ES6 introduced a class declaration syntax. ES6
classes are syntactical sugar over JavaScript’s prototype-based inheritance model.

We cover the important details you need to know about classes with respect to building
React components. If you’d like to learnmore about ES6 classes, refer to the docs onMDN26.

There are two ways to declare React components:

(1) As ES6 classes (as above)

(2) Using the React.createClass() method

An example of using an ES6 class:

class HelloWorld extends React.Component {

render() { return(<p>Hello, world!</p>) }

}

The same component written using the createClass function from the React library:

26https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Your first React Web Application 18

const HelloWorld = React.createClass({

render() { return(<p>Hello, world!</p>) }

})

At the time of writing, both types of declarations are in widespread use. The differences between
them are minimal. We expose you to both declarations in this book.

If you have some familiarity with JavaScript, the return value may be surprising:

voting_app/public/js/app-1.js

return (

<div className='ui unstackable items'>

Hello, friend! I am a basic React component.

</div>

);

The syntax of the return value doesn’t look like traditional JavaScript. We’re using JSX (JavaScript
eXtension syntax), a syntax extension for JavaScript written by Facebook. Using JSX enables us to
write the markup for our component views in a familiar, HTML-like syntax. In the end, this JSX
code compiles to vanilla JavaScript. Although using JSX is not a necessity, we’ll use it in this book
as it pairs really well with React.

If you don’t have much familiarity with JavaScript, we recommend you follow along and
use JSX in your React code too. You’ll learn the boundaries between JSX and JavaScript
with experience.

JSX

React components ultimately render HTMLwhich is displayed in the browser. As such, the render()
method of a component needs to describe how the view should be represented as HTML. React builds
our appswith a fake representation of theDocument ObjectModel (DOM). React calls this the virtual
DOM. Without getting deep into details for now, React allows us to describe a component’s HTML
representation in JavaScript.

The Document Object Model (DOM) refers to the browser’s HTML tree that makes up a
web page.

JSX was created to make this JavaScript representation of HTML more HTML-like. To understand
the difference between HTML and JSX, consider this JavaScript syntax:

WOW! eBook
www.wowebook.org

Your first React Web Application 19

React.createElement('div', {className: 'ui items'},

'Hello, friend! I am a basic React component.'

)

Which can be represented in JSX as:

<div className='ui items'>

Hello, friend! I am a basic React component.

</div>

The code readability is slightly improved in the latter example. This is exacerbated in a nested tree
structure:

React.createElement('div', {className: 'ui items'},

React.createElement('p', null, 'Hello, friend! I am a basic React component.')

)

In JSX:

<div className='ui items'>

<p>

Hello, friend! I am a basic React component.

</p>

</div>

JSX presents a light abstraction over the JavaScript version, yet the legibility benefits are huge.
Readability boosts our app’s longevity and makes it easier to onboard new developers.

Even though the JSX above looks exactly like HTML, it’s important to remember that JSX
is actually just compiled into JavaScript (ex: React.createElement('div')).

During runtime React takes care of rendering the actual HTML in the browser for each
component.

The developer console

Our first component is written and we now know that it uses a special flavor of JavaScript called
JSX for improved readability.

After editing and saving our app.js, let’s refresh the page in our web browser and see what changed:

WOW! eBook
www.wowebook.org

Your first React Web Application 20

Nothing?

Every major browser comes with a toolkit that helps developers working on JavaScript code. A
central part of this toolkit is a console. Think of the console as JavaScript’s primary communication
medium back to the developer. If JavaScript encounters any errors in its execution, it will alert you
in this developer console.

Our web server, live-server, should refresh the page automatically when it detects that
app.js has changed.

To open the console in Chrome, navigate to View > Developer > JavaScript Console.

Or, just press Command + Option + J on a Mac or Control + Shift + L on Windows/Linux.

Opening the console, we are given a cryptic clue:

Uncaught SyntaxError: Unexpected token <

WOW! eBook
www.wowebook.org

Your first React Web Application 21

Error in the console

This SyntaxError prevented our code from running. A SyntaxError is thrown when the JavaScript
engine encounters tokens or token order that doesn’t conform to the syntax of the language when
parsing code. This error type indicates some code is out of place or mistyped.

The issue? Our browser’s JavaScript parser tripped when it encountered the JSX. The parser
doesn’t know anything about JSX. As far as it is concerned, this < is completely out of place.

As we discussed, JSX is an extension to standard JavaScript. Let’s have our browser’s JavaScript
interpreter use this extension.

Babel

We mentioned at the beginning of the chapter that all the code in the book would be using ES6
JavaScript. However, most browsers in use today do not fully support ES6.

Babel is a JavaScript transpiler. Babel turns ES6 code into ES5 code. We call this process
transpiling. So we can enjoy the features of ES6 today yet ensure our code still runs in browsers
that only support ES5.

Another handy feature of Babel is that it understands JSX. Babel compiles our JSX into vanilla ES5
JS that our browser can then interpret and execute. We just need to instruct the browser that we
want to use Babel to compile and run our JavaScript code.

The sample code’s index.html already imports Babel in the head tags of index.html:

WOW! eBook
www.wowebook.org

Your first React Web Application 22

<head>

<!-- ... -->

<script src="vendor/babel-standalone.js"></script>

<!-- ... -->

</head>

All we need to do is tell our JavaScript runtime that our code should be compiled by Babel. We can
do this by setting the type attribute when we import the script in index.html to text/babel.

Open index.html and change the script tag that loads ./js/app.js. We’re going to add two
attributes:

<script src="./js/seed.js"></script>

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app.js"

></script>

The attribute type="text/babel" indicates to Babel that we would like it to handle the loading
of this script. The attribute data-plugins specifies a special Babel plugin we use in this book. We
discuss this plugin at the end of the chapter.

Save index.html and reload the page.

Still nothing. However, the console no longer has the error. Depending on your version of Chrome,
you might see some warnings (highlighted in yellow as opposed to red). These warnings are safe to
ignore.

Babel successfully compiled our JSX into JavaScript and our browser was able to run that JavaScript
without any issues.

WOW! eBook
www.wowebook.org

Your first React Web Application 23

So what’s happening? We’ve defined the component, but we haven’t told React to do anything
with it yet. We need to tell the React framework that our component should be inserted on this
page.

Depending on your version of Chrome, you might see two errors.

The first:

Fetching scripts with an invalid type/language attributes is deprecated and will\

be removed in M56, around January 2017.

This warning is misleading and safe to ignore. The second:

You are using the in-browser Babel transformer. Be sure to precompile your scrip\

ts for production

Again, safe to ignore. To get up and running quickly, we’re having Babel transpile on-the-
fly in the browser. We explore other JavaScript transpiling strategies later in the book that
are more suitable for production.

ReactDOM.render()

We need to instruct React to render this ProductList inside a specific DOM node.

Add the following code below the component inside app.js:

voting_app/public/js/app-1.js

class ProductList extends React.Component {

render() {

return (

<div className='ui unstackable items'>

Hello, friend! I am a basic React component.

</div>

);

}

}

ReactDOM.render(

<ProductList />,

document.getElementById('content')

);

WOW! eBook
www.wowebook.org

Your first React Web Application 24

ReactDOM is from the react-dom library that we also include in index.html. We pass in two
arguments to the ReactDOM.render() method. The first argument is what we’d like to render. The
second argument is where to render it:

ReactDOM.render([what], [where]);

Here, for the “what,” we’re passing in a reference to our React component ProductList in JSX. For
the “where,” you might recall index.html contains a div tag with an id of content:

voting_app/public/index.html

<div id="content"></div>

We pass in a reference to that DOM node as the second argument to ReactDOM.render().

At this point, it’s interesting to note that we use different casing between the different types of React
element declarations. We have HTML DOM elements like <div> and a React component called
<ProductList />. In React, native HTML elements always start with a lowercase letter whereas
React component names always start with an uppercase letter.

With ReactDOM.render() now at the end of app.js, save the file and refresh the page in the browser:

Our component is rendered to the page

To recap, wewrote a React component using an ES6 class as well as JSX.We specified that wewanted
Babel to transpile this code to ES5. We then used ReactDOM.render() to write this component to the
DOM.

WOW! eBook
www.wowebook.org

Your first React Web Application 25

While an accomplishment, our current ProductList component is rather uninteresting. We eventu-
ally want ProductList to render a list of products.

Each product will be its own UI element, a fragment of HTML. We can represent each of these
elements as their own component, Product. Central to its paradigm, React components can render
other React components. We’ll have ProductList render Product components, one for each product
we’d like to show on the page. Each of these Product components will be a child component to
ProductList, the parent component.

Building Product

Let’s build our child component, Product, that will contain a product listing. Just like with the
ProductList component, we’ll declare a new ES6 class that extends React.Component. We’ll define
a single method, render():

class Product extends React.Component {

render() {

return (

<div>

{/* ... todo ... */}

</div>

);

}

}

ReactDOM.render(

// ...

);

For every product, we’ll add an image, a title, a description, and an avatar of the post author. The
markup is below:

voting_app/public/js/app-2.js

class Product extends React.Component {

render() {

return (

<div className='item'>

<div className='image'>

</div>

<div className='middle aligned content'>

WOW! eBook
www.wowebook.org

Your first React Web Application 26

<div className='description'>

<a>Fort Knight

<p>Authentic renaissance actors, delivered in just two weeks.</p>

</div>

<div className='extra'>

Submitted by:

<img

className='ui avatar image'

src='images/avatars/daniel.jpg'

/>

</div>

</div>

</div>

);

}

}

ReactDOM.render(

The title of the code block above references the location of this example in the book’s code
download (voting_app/public/js/app-2.js). This pattern will be common throughout
the book.

If you want to copy and paste the markup into your app.js, refer to this file.

Again, we’ve used a bit of SemanticUI styling in our code here. As we discussed previously, this
JSX code will be transpiled to regular JavaScript in the browser. Because it runs in the browser as
JavaScript, we cannot use any reserved JavaScript words in JSX. class is a reserved word. Therefore,
React has us use the attribute name className. Later, when the HTML element reaches the page,
this attribute name will be written as class.

Structurally, the Product component is similar to the ProductList component. Both have a single
render() method which returns information about an eventual HTML structure to display.

Remember, the JSX components return is not actually the HTML that gets rendered, but is
the representation that we want React to render in the DOM.

To use the Product component, we can modify the render output of our parent ProductList

component to include the child Product component:

WOW! eBook
www.wowebook.org

Your first React Web Application 27

voting_app/public/js/app-2.js

class ProductList extends React.Component {

render() {

return (

<div className='ui unstackable items'>

<Product />

</div>

);

}

}

Save app.js and refresh the web browser.

With this update, we now have two React components being rendered in our app. The ProductList
parent component is rendering the Product component as a child nested underneath its root div
element.

While neat, at the moment the child Product component is static. We hard-coded an image, the
name, the description, and author details. To use this component in a meaningful way, we’ll want
to change it to be data-driven and therefore dynamic.

Making Product data-driven

Driving the Product component with data will allow us to dynamically render the component based
upon the data that we give it. Let’s familiarize ourselves with the product data model.

WOW! eBook
www.wowebook.org

Your first React Web Application 28

The data model

In the sample code, we’ve included a file inside public/js called seed.js. seed.js contains some
example data for our products (it will “seed” our app’s data). The seed.js file contains a JavaScript
object called Seed.products. Seed.products is an array of JavaScript objects, each representing a
product object:

voting_app/public/js/seed.js

const products = [

{

id: 1,

title: 'Yellow Pail',

description: 'On-demand sand castle construction expertise.',

url: '#',

votes: generateVoteCount(),

submitterAvatarUrl: 'images/avatars/daniel.jpg',

productImageUrl: 'images/products/image-aqua.png',

},

Each product has a unique id and a handful of properties including a title and description. votes
are randomly generated for each one with the included function generateVoteCount().

We can use the same attribute keys in our React code.

Using props

We want to modify our Product component so that it no longer uses static, hard-coded attributes.
Instead, we want it to be able to accept data passed down from its parent, ProductList. Setting up
our component structure in this way enables our ProductList component to dynamically render
any number of Product components that each have their own unique attributes. Data flow will look
like this:

WOW! eBook
www.wowebook.org

Your first React Web Application 29

The way data flows from parent to child in React is through props. When a parent renders a child,
it can send along props the child depends on.

Let’s see this in action. First, let’s modify ProductList to pass down props to Product. seed.js
will save us from having to create a bunch of data manually. Let’s pluck the first object off of the
Seed.products array and use that as data for a single product:

voting_app/public/js/app-3.js

class ProductList extends React.Component {

render() {

const product = Seed.products[0];

return (

<div className='ui unstackable items'>

<Product

id={product.id}

title={product.title}

description={product.description}

url={product.url}

votes={product.votes}

submitterAvatarUrl={product.submitterAvatarUrl}

productImageUrl={product.productImageUrl}

/>

</div>

);

}

}

Here, the product variable is set to a JavaScript object that describes the first of our products.
We pass the product’s attributes along individually to the Product component using the syntax
[propName]=[propValue]. The syntax of assigning attributes in JSX is exactly the same as HTML
and XML.

There are two interesting things here. The first is the braces ({}) around each of the property values:

voting_app/public/js/app-3.js

id={product.id}

In JSX, braces are a delimiter, signaling to JSX that what resides in-between the braces is a
JavaScript expression. The other delimiter is using quotes for strings, like this:

WOW! eBook
www.wowebook.org

Your first React Web Application 30

id='1'

JSX attribute values must be delimited by either braces or quotes.

If type is important and we want to pass in something like a Number or a null, use braces.

If you’ve programmed with ES5 JavaScript before, you might be used to using var as
opposed to const or let. See Appendix B for more on these new declarations.

Now the ProductList component is passing props down to Product. Our Product component isn’t
using them yet, so let’s modify the component to use these props.

In React, a component can access all its props through the object this.props. Inside of Product, the
this.props object will look like this:

{

"id": 1,

"title": "Yellow Pail",

"description": "On-demand sand castle construction expertise.",

"url": "#",

"votes": 41,

"submitterAvatarURL": "images/avatars/daniel.jpg",

"productImageUrl": "images/products/image-aqua.png"

}

Let’s swap out everywhere that we hard-coded data and use props instead. While we’re here, we’ll
add a bit more markup like the description and the up-vote icon:

voting_app/public/js/app-3.js

class Product extends React.Component {

render() {

return (

<div className='item'>

<div className='image'>

</div>

<div className='middle aligned content'>

<div className='header'>

<a>

<i className='large caret up icon' />

WOW! eBook
www.wowebook.org

Your first React Web Application 31

{this.props.votes}

</div>

<div className='description'>

{this.props.title}

<p>

{this.props.description}

</p>

</div>

<div className='extra'>

Submitted by:

<img

className='ui avatar image'

src={this.props.submitterAvatarUrl}

/>

</div>

</div>

</div>

);

}

}

Again, everywhere inside of our JSX where we’re interpolating a variable we delimit the variable
with braces ({}). Note that we’re inserting data both as text content inside of tags like this:

voting_app/public/js/app-3.js

<div className='header'>

<a>

<i className='large caret up icon' />

{this.props.votes}

</div>

As well as for attributes on HTML elements:

voting_app/public/js/app-3.js

WOW! eBook
www.wowebook.org

Your first React Web Application 32

Interweaving props with HTML elements in this way is how we create dynamic, data-driven
React components.

this is a special keyword in JavaScript. The details about this are a bit nuanced, but for the
purposes of the majority of this book, this will be bound to the React component class.
So, when we write this.props inside the component, we’re accessing the props property
on the component. When we diverge from this rule in later sections, we’ll point it out.

For more details on this, check out this page on MDN27.

With our updated app.js file saved, let’s refresh the web browser again:

The ProductList component now shows a single product listed, the first object pulled from Seed.

We’re getting somewhere interesting. Our Product component is now data-driven. Based on the
props it receives it can render any product that we’d like.

Our code is poised to have ProductList render any number of products. We just need to configure
the component to render some number of Product components, one for each product we’d like to
represent on the page.

Rendering multiple products

To render multiple products, first we’ll have ProductList generate an array of Product components.
Each will be derived from an individual object in the Seed array. We’ll use map to do so:

27https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Your first React Web Application 33

voting_app/public/js/app-4.js

class ProductList extends React.Component {

render() {

const productComponents = Seed.products.map((product) => (

<Product

key={'product-' + product.id}

id={product.id}

title={product.title}

description={product.description}

url={product.url}

votes={product.votes}

submitterAvatarUrl={product.submitterAvatarUrl}

productImageUrl={product.productImageUrl}

/>

));

The function passed to map returns a Product component. This Product is created just as before with
props pulled from the object in Seed.

We pass an arrow function to map. Arrow functions were introduced in ES6. For more info,
see Appendix B.

As such, the productComponents variable ends up being an array of Product components:

// Our `productComponents` array

[

<Product id={1} ... />,

<Product id={2} ... />,

<Product id={3} ... />,

<Product id={4} ... />

]

Notably, we’re able to represent the Product component instance in JSX inside of return. It might
seem odd at first that we’re able to have a JavaScript array of JSX elements, but remember that Babel
will transpile the JSX representation of each Product (<Product />) into regular JavaScript:

WOW! eBook
www.wowebook.org

Your first React Web Application 34

// What `productComponents` looks like in JavaScript

[

React.createElement(Product, { id: 1, ... }),

React.createElement(Product, { id: 2, ... }),

React.createElement(Product, { id: 3, ... }),

React.createElement(Product, { id: 4, ... })

]

Array’s map()

Array’s map method takes a function as an argument. It calls this function with each item inside
of the array (in this case, each object inside Seed.products) and builds a new array by using the
return value from each function call.

Because the Seed.products array has four items, mapwill call this function four times, once for each
item. When map calls this function, it passes in as the first argument an item. The return value from
this function call is inserted into the new array that map is constructing. After handling the last item,
map returns this new array. Here, we’re storing this new array in the variable productComponents.

Note the use of the key={'product-' + product.id} prop. React uses this special property
to create unique bindings for each instance of the Product component. The key prop is not
used by our Product component, but by the React framework. It’s a special property that
we discuss deeper in the chapter “Advanced Component Configuration.” For the time being,
it’s enough to note that this property needs to be unique per React component in a list.

Now, below the declaration of productComponents, we need to modify the return value of
render. Before, we were rendering a single Product component. Now, we can render our array
productComponents:

voting_app/public/js/app-4.js

return (

<div className='ui unstackable items'>

{productComponents}

</div>

);

Refreshing the page, we’ll see all four products from Seed listed:

WOW! eBook
www.wowebook.org

Your first React Web Application 35

We now have five total React components at work. We have a single parent component, Pro-
ductList. ProductList contains four child Product components, one for each product object in
the Seed.products array in seed.js:

Product components (orange) inside of the ProductList component (red)

At the moment, our products aren’t sorted by the number of votes they have. Let’s sort them. We’ll
use Array’s sort method to do so. We’ll sort the products first before the line where we build our
productComponents array:

WOW! eBook
www.wowebook.org

Your first React Web Application 36

voting_app/public/js/app-5.js

class ProductList extends React.Component {

render() {

const products = Seed.products.sort((a, b) => (

b.votes - a.votes

));

const productComponents = products.map((product) => (

<Product

Refreshing the page, we’ll see our products are sorted.

sort() mutates the original array it was called on. While fine for now, elsewhere in the
book we discuss why mutating arrays or objects can be a dangerous pattern.

In the markup for Product above, we added an ‘up-vote’ caret icon. If we click on one of these
buttons, we’ll see that nothing happens. We’ve yet to hook up an event to the button.

Although we have a data-driven React app running in our web browser, this page still lacks
interactivity. While React has given us an easy and clean way to organize our HTML thus far and
enabled us to drive HTML generation based on a flexible, dynamic JavaScript object, we’ve still yet
to tap into its true power: creating dynamic interfaces.

The rest of this book digs deep into this power. Let’s start with something simple: the ability to
up-vote a given product.

Array’s sort() method takes an optional function as an argument. If the function is
omitted, it will just sort the array by each item’s Unicode code point value. This is rarely
what a programmer desires. If a function is supplied, elements are sorted according to the
function’s return value.

On each iteration, the arguments a and b are two subsequent elements in the array. Sorting
depends on the return value of the function:

1. If the return value is less than 0, a should come first (have a lower index).
2. If the return value is greater than 0, b should come first.
3. If the return value is equal to 0, leave order of a and b unchanged with respect to

each other.

WOW! eBook
www.wowebook.org

Your first React Web Application 37

React the vote (your app’s first interaction)

When the up-vote button on each one of the Product components is clicked, we expect it to update
the votes attribute for that Product, increasing it by one.

But the Product component can’t modify its votes. this.props is immutable.

While the child can read its props, it can’t modify them. A child does not own its props. In
our app, the parent component ProductList owns the props given to Product. React favors the
idea of one-way data flow. This means that data changes come from the “top” of the app and are
propagated “downwards” through its various components.

A child component does not own its props. Parent components own the props of child
components.

We need a way for the Product component to let ProductList know that a click on its up-vote icon
occurred. We can then have ProductList, the owner of the product’s data, update the vote count
for that product. The updated data will then flow downward from the ProductList component to
the Product component.

In JavaScript, if we treat an array or object as immutable it means we cannot or should
not make modifications to it.

Propagating the event

We know that parents communicate data to children through props. Because props are immutable,
children need some way to communicate events to parents. The parents could then make whatever
data changes might be necessary.

We can pass down functions as props too. We can have the ProductList component give each
Product component a function to call when the up-vote button is clicked. Functions passed down
through props are the canonical manner in which children communicate events with their parent
components.

Let’s see this in practice. We’ll start by having up-votes log a message to the console. Later, we’ll
have up-votes increment the votes attribute on the target product.

The function handleProductUpVote in ProductList will accept a single argument, productId. The
function will log the product’s id to the console:

WOW! eBook
www.wowebook.org

Your first React Web Application 38

voting_app/public/js/app-6.js

class ProductList extends React.Component {

handleProductUpVote(productId) {

console.log(productId + ' was upvoted.');

}

render() {

Next, we’ll pass this function down as a prop to each Product component. We’ll name the prop
onVote:

voting_app/public/js/app-6.js

const productComponents = products.map((product) => (

<Product

key={'product-' + product.id}

id={product.id}

title={product.title}

description={product.description}

url={product.url}

votes={product.votes}

submitterAvatarUrl={product.submitterAvatarUrl}

productImageUrl={product.productImageUrl}

onVote={this.handleProductUpVote}

/>

));

We can now access this function inside Product via this.props.onVote.

Let’s write a function inside Product that calls this new prop-function. We’ll name the function
handleUpVote():

voting_app/public/js/app-6.js

// Inside `Product`

handleUpVote() {

this.props.onVote(this.props.id);

}

render() {

WOW! eBook
www.wowebook.org

Your first React Web Application 39

We invoke the prop-function this.props.onVote with the id of the product. Now, we just need to
call this function every time the user clicks the caret icon.

In React, we can use the special attribute onClick to handle mouse click events.

We’ll set the onClick attribute on the a HTML tag that is the up-vote button. We’ll instruct it to call
handleUpVote() whenever it is clicked:

voting_app/public/js/app-6.js

{/* Inside `render` for Product` */}

<div className='middle aligned content'>

<div className='header'>

<i className='large caret up icon' />

{this.props.votes}

</div>

When the user clicks the up-vote icon, it will trigger a chain of function calls:

1. User clicks the up-vote icon.
2. React invokes Product component’s handleUpVote.
3. handleUpVote invokes its prop onVote. This function lives inside the parent ProductList and

logs a message to the console.

There’s one last thing we need to do to make this work. Inside the function handleUpVote()we refer
to this.props:

voting_app/public/js/app-6.js

handleUpVote() {

this.props.onVote(this.props.id);

}

Here’s the odd part: When working inside render(), we’ve witnessed that this is always bound to
the component. But inside our custom component method handleUpVote(), this is actually null.

Binding custom component methods

In JavaScript, the special this variable has a different binding depending on the context. For
instance, inside render() we say that this is “bound” to the component. Put another way, this
“references” the component.

WOW! eBook
www.wowebook.org

Your first React Web Application 40

Understanding the binding of this is one of the trickiest parts of learning JavaScript programming.
Given this, it’s fine for a beginner React programmer to not understand all the nuances at first.

In short, we want this inside handleUpVote() to reference the component, just like it does
inside render(). But why does this inside render() reference the component while this inside
handleUpVote() does not?

For the render() function, React binds this to the component for us. React specifies a default
set of special API methods. render() is one such method. As we’ll see at the end of the chapter,
componentDidMount() is another. For each of these special React methods, React will bind the this
variable to the component automatically.

So, any time we define our own custom component methods, we have to manually bind this

to the component ourselves. There’s a pattern that we use to do so.

Add the following constructor() function to the top of Product:

voting_app/public/js/app-6.js

class Product extends React.Component {

constructor(props) {

super(props);

this.handleUpVote = this.handleUpVote.bind(this);

}

constructor() is a special function in a JavaScript class. JavaScript invokes constructor()

whenever an object is created via a class. If you’ve never worked with an object-oriented language
before, it’s sufficient to know that React invokes constructor() first thing when initializing our
component. React invokes constructor() with the component’s props.

Because constructor() is called when initializing our component, we’ll use it for a couple different
types of situations in the book. For our current purposes, it’s enough to know that whenever we
want to bind custom component methods to a React component class, we can use this pattern:

class MyReactComponent extends React.Component {

constructor(props) {

super(props); // always call this first

// custom method bindings here

this.someFunction = this.someFunction.bind(this);

}

}

If you’re feeling comfortable reading further details on this pattern, see the aside Binding in
constructor().

WOW! eBook
www.wowebook.org

Your first React Web Application 41

At the end of the chapter, we’ll use an experimental JavaScript feature that allows us to bypass this
pattern. However, when working with regular ES7 JavaScript, it’s important to keep this pattern in
mind:

When defining custom methods on our React component classes, we must perform the
binding pattern inside constructor() so that this references our component.

Saving our updated app.js, refreshing our web browser, and clicking an up-vote will log some text
to our JavaScript console:

The events are being propagated up to the parent!

ProductList is the owner of the product data. And Product is now informing its parent whenever
a user up-votes a product. Our next task is to update the vote count on the product.

But where do we perform this update? At the moment, our app doesn’t have a place to store and
manage data. Seed should be thought of as a seed of example data, not our app’s datastore.

What our app is currently missing is state.

WOW! eBook
www.wowebook.org

Your first React Web Application 42

In fact, while we might be tempted to update the vote count in Seed.products like this:

// Would this work?

Seed.products.forEach((product) => {

if (product.id === productId) {

product.votes = product.votes + 1;

}

});

Doing so wouldn’t work. When updating Seed, our React app would not be informed of
the change. On the user interface there would be no indication that the vote count was
incremented.

Binding in constructor()

The first thing we do in constructor() is call super(props). The React.Component class that
our Product class is extending defines its own constructor(). By calling super(props), we’re
invoking that constructor() function first.

Importantly, the constructor() function defined by React.Componentwill bind this inside our
constructor() to the component. Because of this, it’s a good practice to always call super() first
whenever you declare a constructor() for your component.

After calling super(), we call bind() on our custom component method:

this.handleUpVote = this.handleUpVote.bind(this);

Function’s bind() method allows you to specify what the this variable inside a function body
should be set to. What we’re doing here is a common JavaScript pattern. We’re redefining the
component method handleUpVote(), setting it to the same function but bound to this (the
component). Now, whenever handleUpVote() executes, this will reference the component as
opposed to null.

Using state

Whereas props are immutable and owned by a component’s parent, state is owned by the
component. this.state is private to the component and as we’ll see can be updated with
this.setState().

Critically,when the state or props of a component update, the component will re-render itself.

WOW! eBook
www.wowebook.org

Your first React Web Application 43

Every React component is rendered as a function of its this.props and this.state. This
rendering is deterministic. Thismeans that given a set of props and a set of state, a React component
will always render a single way. As we mentioned at the beginning of the chapter, this approach
makes for a powerful UI consistency guarantee.

Because we are mutating the data for our products (the number of votes),we should consider this
data to be stateful. ProductList will be the owner of this state. It will then pass this state down as
props to Product.

At the moment, ProductList is reading directly from Seed inside render() to grab the products.
Let’s move this data into the component’s state.

When adding state to a component, the first thing we do is define what the initial state should look
like. Because constructor() is called when initializing our component, it’s the best place to define
our initial state.

In React components, state is an object. The shape of our ProductList state object will look like this:

// Shape of the `ProductList` state object

{

products: <Array>,

}

We’ll initialize our state to an object with an empty products array. Add this constructor() to
ProductList:

voting_app/public/js/app-7.js

class ProductList extends React.Component {

constructor(props) {

super(props);

this.state = {

products: [],

};

}

componentDidMount() {

this.setState({ products: Seed.products });

}

Like with our constructor() call in Product, the first line in constructor() is the super(props)

call. The first line in any constructor() functions we write for React components will always be
this same line.

WOW! eBook
www.wowebook.org

Your first React Web Application 44

Technically, because we don’t supply ProductList any props, we don’t need to propagate
the props argument to super(). But it’s a good habit to get into and helps avoid odd bugs
in the future.

Next, with our state initialized, let’s modify the ProductList component’s render function so that
it uses state as opposed to reading from Seed. We read the state with this.state:

voting_app/public/js/app-7.js

render() {

const products = this.state.products.sort((a, b) => (

b.votes - a.votes

));

ProductList is driven by its own state now. If we were to save and refresh now, all our products
would be missing. We don’t have any mechanisms in ProductList that add products to its state.

Setting state with this.setState()

It’s good practice to initialize components with “empty” state as we’ve done here. We explore the
reasoning behind this when working asynchronously with servers in the chapter “Components &
Servers.”

However, after our component is initialized, we want to seed the state for ProductList with the
data in Seed.

React specifies a set of lifecycle methods. React invokes one lifecycle method, componentDid-
Mount(), after our component has mounted to the page. We’ll seed the state for ProductList inside
this method.

We explore the rest of the lifecycle methods in the chapter “Advanced Component
Configuration.”

Knowing this, we might be tempted to set the state to Seed.products inside componentDidMount()
like this:

WOW! eBook
www.wowebook.org

Your first React Web Application 45

class ProductList extends React.Component {

// ...

// Is this valid ?

componentDidMount() {

this.state = Seed.products;

}

// ...

}

However, this is invalid. The only time we can modify the state in this manner is in constructor().
For all state modifications after the initial state, React provides components the method
this.setState(). Among other things, this method triggers the React component to re-render
which is essential after the state changes.

Never modify state outside of this.setState(). This function has important hooks
around state modification that we would be bypassing.

We discuss state management in detail throughout the book.

Add componentDidMount() to ProductList now. We’ll use setState() to seed the component’s
state:

voting_app/public/js/app-8.js

class ProductList extends React.Component {

constructor(props) {

super(props);

this.state = {

products: [],

};

}

componentDidMount() {

this.setState({ products: Seed.products });

}

The component will mount with an empty state this.state.products array. After mounting, we
populate the state with data from Seed. The component will re-render and our products will be
displayed. This happens at a speed that is imperceptible to the user.

If we save and refresh now, we see that the products are back.

WOW! eBook
www.wowebook.org

Your first React Web Application 46

Updating state and immutability

Now that ProductList is managing the products in state, we’re poised to make modifications to this
data in response to user input. Specifically, we want to increment the votes property on a product
when the user votes for it.

We just discussed that we can only make state modifications using this.setState(). So while a
component can update its state, we should treat the this.state object as immutable.

As touched on earlier, if we treat an array or object as immutable we never make modifications to
it. For example, let’s say we have an array of numbers in state:

this.setState({ nums: [1, 2, 3]});

If we want to update the state’s nums array to include a 4, we might be tempted to use push() like
this:

this.setState({ nums: this.state.nums.push(4) });

On the surface, it might appear as though we’ve treated this.state as immutable. However, the
push() method modifies the original array:

console.log(this.state.nums);

// [1, 2, 3]

this.state.nums.push(4);

console.log(this.state.nums);

// [1, 2, 3, 4] <-- Uh-oh!

Although we invoke this.setState() immediately after we push 4 onto the array, we’re still
modifying this.state outside of setState() and this is bad practice.

Part of the reason this is bad practice is because setState() is actually asynchronous.
There is no guarantee when React will update the state and re-render our component. We
touch on this in the “Advanced Component Configuration” chapter.

So, while we eventually called this.setState(), we unintentionally modified the state before that.

This next approach doesn’t work either:

WOW! eBook
www.wowebook.org

Your first React Web Application 47

const nextNums = this.state.nums;

nextNums.push(4);

console.log(nextNums);

// [1, 2, 3, 4]

console.log(this.state.nums);

// [1, 2, 3, 4] <-- Nope!

Our new variable nextNums references the same array as this.state.nums in memory:

Both variables reference the same array in memory

So when we modify the array with push(), we’re modifying the same array that this.state.nums
is pointing to.

Instead, we can use Array’s concat(). concat() creates a new array that contains the elements of
the array it was called on followed by the elements passed in as arguments.

With concat(), we can avoid mutating state:

console.log(this.state.nums);

// [1, 2, 3]

const nextNums = this.state.nums.concat(4);

console.log(nextNums);

// [1, 2, 3, 4]

console.log(this.state.nums);

// [1, 2, 3] <-- Unmodified!

We touch on immutability throughout the book. While you might be able to “get away” with
mutating the state in many situations, it’s better practice to treat state as immutable.

Treat the state object as immutable. It’s important to understand which Array and Object
methods modify the objects they are called on.

WOW! eBook
www.wowebook.org

Your first React Web Application 48

If an array is passed in as an argument to concat(), its elements are appended to the new
array. For example:

> [1, 2, 3].concat([4, 5]);

=> [1, 2, 3, 4, 5]

Knowing that we want to treat the state as immutable, the following approach to handling up-votes
would be problematic:

// Inside `ProductList`

// Invalid

handleProductUpVote(productId) {

const products = this.state.products;

products.forEach((product) => {

if (product.id === productId) {

product.votes = product.votes + 1;

}

});

this.setState({

products: products,

});

}

When we initialize products to this.state.products, product references the same array in
memory as this.state.products:

Both variables reference the same array in memory

WOW! eBook
www.wowebook.org

Your first React Web Application 49

So, when we modify a product object by incrementing its vote count inside forEach(), we’re
modifying the original product object in state.

Instead, we should create a new array of products. And if we modify one of the product objects, we
should modify a clone of the object as opposed to the original one.

Let’s see what a handleProductUpVote() implementation looks like that treats state as immutable.
We’ll see it in full then break it down:

voting_app/public/js/app-9.js

// Inside `ProductList`

handleProductUpVote(productId) {

const nextProducts = this.state.products.map((product) => {

if (product.id === productId) {

return Object.assign({}, product, {

votes: product.votes + 1,

});

} else {

return product;

}

});

this.setState({

products: nextProducts,

});

}

First, we use map() to traverse the products array. Importantly, map() returns a new array as opposed
to modifying the array this.state.products.

Next, we check if the current productmatches productId. If it does, we create a new object, copying
over the properties from the original product object. We then overwrite the votes property on our
new product object. We set it to the incremented vote count. We do this using Object’s assign()
method:

voting_app/public/js/app-9.js

if (product.id === productId) {

return Object.assign({}, product, {

votes: product.votes + 1,

});

We use Object.assign() a lot for avoiding mutating objects. For more details on the
method, check out Appendix B.

If the current product is not the one specified by productId, we return it unmodified:

WOW! eBook
www.wowebook.org

Your first React Web Application 50

voting_app/public/js/app-9.js

} else {

return product;

}

Finally, we use setState() to update the state.

map() is creating a new array. So you might ask: Why can’t we modify the product object directly?
Like this:

if (product.id === productId) {

product.votes = product.votes + 1;

}

While we’re creating a new array, the variable product here still references the product object
sitting on the original array in state. Therefore, if we make changes to it we’ll be modifying the
object in state. So we use Object.assign() to clone the original into a new object and then modify
the votes property on that new object.

Our state update for up-votes is in place. There’s one last thingwe have to do: Our custom component
method handleProductUpVote() is now referencing this. We need to add a bind() call like the one
we have for handleUpVote() in Product:

voting_app/public/js/app-9.js

class ProductList extends React.Component {

constructor(props) {

super(props);

this.state = {

products: [],

};

this.handleProductUpVote = this.handleProductUpVote.bind(this);

}

Now this in handleProductUpVote() references our component.

Our app should finally be responsive to user interaction. Save app.js, refresh the browser, and cross
your fingers:

WOW! eBook
www.wowebook.org

Your first React Web Application 51

At last, the vote counters are working! Try up-voting a product a bunch of times and notice how it
immediately jumps above products with lower vote counts.

Refactoring with the Babel plugin
transform-class-properties

In this last section, we’ll explore a possible refactor that we can make to our class components
using an experimental JavaScript feature. For reasons you’ll soon see, this feature is popular among
React developers. Because the community is still adopting this feature, we expose you to both class
component styles throughout the book.

We’re able to access this feature using Babel’s library of plugins and presets.

Babel plugins and presets

We’ve been using Babel in this project to give us the ability to write modern JavaScript that will
run in a majority of browsers on the web. Specifically, our code has been using Babel to convert ES6
syntax and JSX into vanilla ES5 JavaScript.

There’s a few ways to integrate Babel into your project. We’ve been using babel-standalonewhich
allows us to setup Babel quickly for use directly in the browser.

WOW! eBook
www.wowebook.org

Your first React Web Application 52

babel-standalone by default uses two presets. In Babel, a preset is a set of plugins used to
support particular language features. The two presets Babel has been using by default:

• es201528: Adds support for ES2015 (or ES6) JavaScript
• react29: Adds support for JSX

Remember: ES2015 is just another name used for ES6. We let Babel use the default es2015
preset for this project because we don’t need or use either of ES7’s two new features.

JavaScript is an ever-changing language. At its current pace, new syntax will be ratified for adoption
on a yearly basis.

Because JavaScript will continue to evolve, tools like Babel are here to stay. Developers want to take
advantage of the latest language features. But it takes time for browsers to update their JavaScript
engines. And it takes even more time for the majority of the public to upgrade their browsers to the
latest versions. Babel closes this gap. It enables a codebase to evolve along with JavaScript without
leaving older browsers behind.

Beyond ES7, proposed JavaScript features can exist in various stages. A feature can be an
experimental proposal, one that the community is still working out the details for (“stage 1”).
Experimental proposals are at risk of being dropped or modified at any time. Or a feature might
already be “ratified,” which means it will be included in the next release of JavaScript (“stage 4”).

We can customize Babel with presets and plugins to take advantage of these upcoming or
experimental features.

In this book, we generally avoid features that are experimental. However, there is one feature that
looks to be ratified that we make an exception for: property initializers.

We avoid features that are experimental because we don’t want to teach features that might
be modified or dropped. For your own projects, it’s up to you and your team to decide how
“strict” you want to be about the JavaScript features that you use.

If you’d like to read more about the various Babel presets and plugins, check out the docs30.

Property initializers

Property initializers are detailed in the proposal “ES Class Fields & Static Properties31.” While an
experimental feature that has yet to be ratified, property initializers offer a compelling syntax that

28https://babeljs.io/docs/plugins/preset-es2015/
29https://babeljs.io/docs/plugins/preset-react/
30https://babeljs.io/docs/plugins/
31https://github.com/tc39/proposal-class-public-fields

WOW! eBook
www.wowebook.org

https://babeljs.io/docs/plugins/preset-es2015/
https://babeljs.io/docs/plugins/preset-react/
https://babeljs.io/docs/plugins/
https://github.com/tc39/proposal-class-public-fields
https://babeljs.io/docs/plugins/preset-es2015/
https://babeljs.io/docs/plugins/preset-react/
https://babeljs.io/docs/plugins/
https://github.com/tc39/proposal-class-public-fields

Your first React Web Application 53

greatly simplify React class components. This feature works so well with React that the Facebook
team has written about using it internally32.

Property initializers are available in the Babel plugin transform-class-properties. Recall that we
specified this plugin for app.js inside index.html:

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app.js"

></script>

Therefore, we’re ready to use this feature in our code. The best way to understand what this feature
gives us is to see it in action.

Refactoring Product

Inside Product, we defined the custom component method handleUpVote. As we discussed, because
handleUpVote is not part of the standard React component API, React does not bind this inside the
method to our component. So we had to perform a manual binding trick inside constructor:

voting_app/public/js/app-9.js

class Product extends React.Component {

constructor(props) {

super(props);

this.handleUpVote = this.handleUpVote.bind(this);

}

handleUpVote() {

this.props.onVote(this.props.id);

}

render() {

With the transform-class-properties plugin,we can write handleUpVote as an arrow function.
This will ensure this inside the function is bound to the component, as expected:

32https://babeljs.io/blog/2015/06/07/react-on-es6-plus

WOW! eBook
www.wowebook.org

https://babeljs.io/blog/2015/06/07/react-on-es6-plus
https://babeljs.io/blog/2015/06/07/react-on-es6-plus

Your first React Web Application 54

voting_app/public/js/app-complete.js

class Product extends React.Component {

handleUpVote = () => (

this.props.onVote(this.props.id)

);

render() {

Using this feature, we can drop constructor(). There is no need for the manual binding call.

Note that methods that are part of the standard React API, like render(), will remain as class
methods. If we write a custom component method in which we want this bound to the component,
we write it as an arrow function.

Refactoring ProductList

We can give the same treatment to handleProductUpVote inside ProductList. In addition, property
initializers give us an alternative way to define the initial state of a component.

Before, we used constructor() in ProductList to both bind handleProductUpVote to the compo-
nent and define the component’s initial state:

class ProductList extends React.Component {

constructor(props) {

super(props);

this.state = {

products: [],

};

this.handleProductUpVote = this.handleProductUpVote.bind(this);

}

With property initializers, we no longer need to use constructor. Instead, we can define the initial
state like this:

WOW! eBook
www.wowebook.org

Your first React Web Application 55

voting_app/public/js/app-complete.js

class ProductList extends React.Component {

state = {

products: [],

};

And, if we define handleProductUpVote as an arrow function, thiswill be bound to the component
as desired:

voting_app/public/js/app-complete.js

handleProductUpVote = (productId) => {

const nextProducts = this.state.products.map((product) => {

if (product.id === productId) {

return Object.assign({}, product, {

votes: product.votes + 1,

});

} else {

return product;

}

});

this.setState({

products: nextProducts,

});

}

In sum, we can use property initializers to make two refactors to our React components:

1. We can use arrow functions for custom component methods (and avoid having to bind this)
2. We can define the initial state outside of constructor()

We expose you to both approaches in this book as both are in widespread use. Each project will be
consistent as to whether or not it uses transform-class-properties. You’re welcome to continue
to use vanilla ES6 in your own projects. However, the terseness afforded by transform-class-

properties is often too attractive to pass up.

Using ES6/ES7 with additional presets or plugins is sometimes referred to by the commu-
nity as “ES6+/ES7+”.

WOW! eBook
www.wowebook.org

Your first React Web Application 56

Congratulations!

We just wrote our first React app. There are a ton of powerful features we’ve yet to go over, yet all
of them build upon the core fundamentals we just covered:

1. We think about and organize our React apps as components
2. Using JSX inside the render method
3. Data flows from parent to children through props
4. Event flows from children to parent through functions
5. Utilizing React lifecycle methods
6. Stateful components and how state is different from props
7. How to manipulate state while treating it as immutable

Onward!

WOW! eBook
www.wowebook.org

Components
A time-logging app

In the last chapter, we described how React organizes apps into components and how data flows
between parent and child components. And we discussed core concepts such as how we manage
state and pass data between components using props.

In this chapter, we construct a more intricate application. We investigate a pattern that you can use
to build React apps from scratch and then put those steps to work to build an interface for managing
timers.

In this time-tracking app, a user can add, delete, and modify various timers. Each timer corresponds
to a different task that the user would like to keep time for:

This app will have significantly more interactive capabilities than the one built in the last chapter.
This will present us with some interesting challenges that will deepen our familiarity with React’s
core concepts.

WOW! eBook
www.wowebook.org

Components 58

Getting started

As with all chapters, before beginning make sure you’ve downloaded the book’s sample code and
have it at the ready.

Previewing the app

Let’s begin by playing around with a completed implementation of the app.

In your terminal, cd into the time_tracking_app directory:

$ cd time_tracking_app

Use npm to install all the dependencies:

$ npm install

Then boot the server:

$ npm start

Nowyou can view the app in your browser. Open your browser and enter the URL http://localhost:3000.

Play around with it for a few minutes to get a feel for all the functionality. Refresh and note that
your changes have been persisted.

Note that this app uses a different web server than the one used in the voting app. The
app won’t automatically launch in your browser or automatically refresh when you make
changes.

Prepare the app

In your terminal, run ls to see the project’s layout:

WOW! eBook
www.wowebook.org

Components 59

$ ls

README.md

data.json

nightwatch.json

node_modules/

package.json

public/

semantic.json

server.js

tests/

There are a few organizational changes from the last project.

First, notice that there is now a server.js in this project. In the last chapter, we used a pre-built
Node package (called live-server) to serve our assets.

This time we have a custom-built server which serves our assets and also adds a persistence layer.
We will cover the server in detail in the next chapter.

When you visit a website, assets are the files that your browser downloads and uses to
display the page. index.html is delivered to the browser and inside its head tags it specifies
which additional files from the server the browser needs to download.

In the last project, our assets were index.html as well as our stylesheets and images.

In this project, everything under public/ is an asset.

In the voting app, we loaded all of our app’s initial data from a JavaScript variable, loaded in the file
seed.js.

This time, we’re going to eventually store it in the text file data.json. This brings the behavior a bit
closer to a database. By using a JSON file, we can make edits to our data that will be persisted even
if the app is closed.

JSON stands for JavaScript Object Notation. JSON enables us to serialize a JavaScript object
and read/write it from a text file.

If you’re not familiar with JSON, take a look at data.json. Pretty recognizable, right?
JavaScript has a built-in mechanism to parse the contents of this file and initialize a
JavaScript object with its data.

Peek inside public:

WOW! eBook
www.wowebook.org

Components 60

$ cd public

$ ls

The structure here is the same as the last project:

favicon.ico

index.html

js/

semantic/

style.css

vendor/

Again, index.html is the centerpiece of the app. It’s where we include all of our JavaScript and CSS
files and where we specify the DOM node where we’ll ultimately mount our React app.

We’re using SemanticUI again here for styling. All of SemanticUI’s assets are underneath semantic/.

All our JavaScript files are inside of js/:

$ ls js/

app-1.js

app-2.js

app-3.js

app-4.js

app-5.js

app-6.js

app-7.js

app-8.js

app-9.js

app-complete.js

app.js

client.js

helpers.js

We’ll be building the app inside app.js. The completed version of the app which we reach in the
next chapter is inside app-complete.js. Each step we take along the way is included here: app-1.js,
app-2.js, and so forth. Like the last chapter, code examples in the book are titled with the file in
which you can find that example.

Furthermore, we’ll be using a couple additional JavaScript files for this project. As we’ll see,
client.js contains functions that we’ll use to interface with our server in the next chapter.
helpers.js contains some helper functions that our components will use.

As before, our first step is to ensure app-complete.js is no longer loaded in index.html. We’ll
instead load the empty file app.js.

Open up index.html:

WOW! eBook
www.wowebook.org

Components 61

time_tracking_app/public/index.html

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>Project Two: Timers</title>

<link rel="stylesheet" href="./semantic/dist/semantic.css" />

<link rel="stylesheet" href="style.css" />

<script src="vendor/babel-standalone.js"></script>

<script src="vendor/react.js"></script>

<script src="vendor/react-dom.js"></script>

<script src="vendor/uuid.js"></script>

<script src="vendor/fetch.js"></script>

</head>

<body>

<div id="main" class="main ui">

<h1 class="ui dividing centered header">Timers</h1>

<div id="content"></div>

</div>

<script type="text/babel" src="./js/client.js"></script>

<script type="text/babel" src="./js/helpers.js"></script>

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app.js"

></script>

<!-- Delete the script tag below to get started. -->

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app-complete.js"

></script>

</body>

</html>

Overall, this file is very similar to the one we used in our voting app. We load in our dependencies
within the head tags (the assets). Inside of body we have a few elements. This div is where we will
ultimately mount our React app:

WOW! eBook
www.wowebook.org

Components 62

time_tracking_app/public/index.html

<div id="content"></div>

And this script tag is where we instruct the browser to load app.js into the page:

time_tracking_app/public/index.html

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app.js"

></script>

We’re using the Babel plugin transform-class-properties again in this chapter. We discussed this
plugin at the end of the previous chapter.

Do as the comment says and delete the script tag that loads app-complete.js:

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app.js"

></script>

<!-- Delete the script tag below to get started. -->

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app-complete.js"

></script>

Save index.html. If you reload the page now, you’ll see the app has disappeared.

Breaking the app into components

As we did with our last project, we begin by breaking our app down into its components. Again,
visual components often map tightly to their respective React components. Let’s examine the
interface of our app:

WOW! eBook
www.wowebook.org

Components 63

In the last project, we had ProductList and Product components. The first contained instances of
the second. Here, we spot the same pattern, this time with TimerList and Timer components:

WOW! eBook
www.wowebook.org

Components 64

However, there’s one subtle difference: This list of timers has a little “+” icon at the bottom. As
we saw, we’re able to add new timers to the list using this button. So, in reality, the TimerList

component isn’t just a list of timers. It also contains a widget to create new timers.

Think about components as you would functions or objects. The single responsibility principle33

applies. A component should, ideally, only be responsible for one piece of functionality. So, the
proper response here is for us to shrink TimerList back into its responsibility of just listing timers
and to nest it under a parent component. We’ll call the parent TimersDashboard. TimersDashboard
will have TimerList and the “+”/create form widget as children:

33https://en.wikipedia.org/wiki/Single_responsibility_principle

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

Components 65

Not only does this separation of responsibilities keep components simple, but it often also improves
their re-usability. In the future, we can now drop the TimerList component anywhere in the app
where we just want to display a list of timers. This component no longer carries the responsibility
of also creating timers, which might be a behavior we want to have for just this dashboard view.

How you name your components is indeed up to you, but having some consistent rules
around language as we do here will greatly improve code clarity.

In this case, developers can quickly reason that any component they come across that ends
in the word List simply renders a list of children and no more.

The “+”/create form widget is interesting because it has two distinct representations. When the “+”
button is clicked, the widget transmutes into a form. When the form is closed, the widget transmutes
back into a “+” button.

There are two approaches we could take. The first one is to have the parent component, Timers-
Dashboard, decide whether or not to render a “+” component or a form component based on
some piece of stateful data. It could swap between the two children. However, this adds more
responsibility to TimersDashboard. The alternative is to have a new child component own the single
responsibility of determining whether or not to display a “+” button or a create timer form. We’ll
call it ToggleableTimerForm. As a child, it can either render the component TimerForm or the HTML
markup for the “+” button.

At this point, we’ve carved out four components:

WOW! eBook
www.wowebook.org

Components 66

Now that we have a sharp eye for identifying overburdened components, another candidate should
catch our eye:

A single timer: Displaying time (left) vs. edit form (right)

The timer itself has a fair bit of functionality. It can transform into an edit form, delete itself, and
start and stop itself. Do we need to break this up? And if so, how?

Displaying a timer and editing a timer are indeed two distinct UI elements. They should be two
distinct React components. Like ToggleableTimerForm, we need some container component that
renders either the timer’s face or its edit form depending on if the timer is being edited.

WOW! eBook
www.wowebook.org

Components 67

We’ll call this EditableTimer. The child of EditableTimer will then be either a Timer component
or the edit form component. The form for creating and editing timers is very similar, so let’s assume
that we can use the component TimerForm in both contexts:

As for the other functionality of the timer, like the start and stop buttons, it’s a bit tough to determine
at this point whether or not they should be their own components. We can trust that the answers
will be more apparent after we’ve written some code.

Working back up the component tree, we can see that the name TimerList would be a misnomer.
It really is a EditableTimerList. Everything else looks good.

So, we have our final component hierarchy, with some ambiguity around the final state of the timer
component:

WOW! eBook
www.wowebook.org

Components 68

• TimersDashboard: Parent container
– EditableTimerList: Displays a list of timer containers

* EditableTimer: Displays either a timer or a timer’s edit form
· Timer: Displays a given timer
· TimerForm: Displays a given timer’s edit form

– ToggleableTimerForm: Displays a form to create a new timer
* TimerForm (not displayed): Displays a new timer’s create form

Represented as a hierarchical tree:

WOW! eBook
www.wowebook.org

Components 69

In our previous app, ProductList handled not only rendering components, but also the
responsibility of handling up-votes and talking to the store. While this worked for that
app, you can imagine that as a codebase expands, there may come a day where we’d want
to free ProductList of this responsibility.

For example, imagine if we added a “sort by votes” feature to ProductList. What if we
wanted some pages to be sortable (category pages) but other pages to be static (top 10)?
We’d want to “hoist” sort responsibility up to a parent component and make ProductList
the straightforward list renderer that it should be.

This new parent component could then include the sorting-widget component and then
pass down the ordered products to the ProductList component.

The steps for building React apps from scratch

Now that we have a good understanding of the composition of our components, we’re ready to build
a static version of our app. Ultimately, our top-level component will communicate with a server.The

WOW! eBook
www.wowebook.org

Components 70

serverwill be the initial source of state, and React will render itself according to the data the server
provides. Our app will also send updates to the server, like when a timer is started:

However, it will simplify things for us if we start off with static components, as we did in the last
chapter. Our React components will do little more than render HTML. Clicking on buttons won’t
yield any behavior as we will not have wired up any interactivity. This will enable us to lay the
framework for the app, getting a clear idea of how the component tree is organized.

Next, we can determine what the state should be for the app and in which component it should
live. We’ll start off by just hard-coding the state into the components instead of loading it from the
server.

At that point, we’ll have the data flow from parent to child in place. Then we can add inverse data
flow, propagating events from child to parent.

Finally, we’ll modify the top-level component to have it communicate with the server.

In fact, this follows from a handy framework for developing a React app from scratch:

1. Break the app into components
2. Build a static version of the app
3. Determine what should be stateful
4. Determine in which component each piece of state should live
5. Hard-code initial states
6. Add inverse data flow

WOW! eBook
www.wowebook.org

Components 71

7. Add server communication

We followed this pattern in the last project:

1. Break the app into components

We looked at the desired UI and determined we wanted ProductList and Product components.

2. Build a static version of the app

Our components started off without using state. Instead, we had ProductList pass down static
props to Product.

3. Determine what should be stateful

In order for our application to become interactive, we had to be able to modify the vote property on
each product. Each product had to be mutable and therefore stateful.

4. Determine in which component each piece of state should live

ProductList managed the voting state using React component class methods.

5. Hard-code initial state

When we re-wrote ProductList to use this.state, we seeded it from Seed.products.

6. Add inverse data flow

We defined the handleUpVote function in ProductList and passed it down in props so that each
Product could inform ProductList of up-vote events.

7. Add server communication

We did not add a server component to our last app, but we will be doing so in this one.

If steps in this process aren’t completely clear right now, don’t worry. The purpose of this chapter is
to familiarize yourself with this procedure.

We’ve already covered step (1) and have a good understanding of all of our components, save for
some uncertainty down at the Timer component. Step (2) is to build a static version of the app. As
in the last project, this amounts to defining React components, their hierarchy, and their HTML
representation. We completely avoid state for now.

Step 2: Build a static version of the app

TimersDashboard

Let’s start off with the TimersDashboard component. Again, all of our React code for this chapter
will be inside of the file public/app.js.

We’ll begin by defining a familiar function, render():

WOW! eBook
www.wowebook.org

Components 72

time_tracking_app/public/js/app-1.js

class TimersDashboard extends React.Component {

render() {

return (

<div className='ui three column centered grid'>

<div className='column'>

<EditableTimerList />

<ToggleableTimerForm

isOpen={true}

/>

</div>

</div>

);

}

}

This component renders its two child components nested under div tags. TimersDashboard passes
down one prop to ToggleableTimerForm: isOpen. This is used by the child component to determine
whether to render a “+” or TimerForm. When ToggleableTimerForm is “open” the form is being
displayed.

As in the last chapter, don’t worry about the className attribute on the div tags. This will
ultimately define the class on HTML div elements and is purely for styling purposes.

In this example, classes like ui three column centered grid all come from the CSS
framework Semantic UI34. The framework is included in the head of index.html.

We will define EditableTimerList next. We’ll have it render two EditableTimer components. One
will end up rendering a timer’s face. The other will render a timer’s edit form:

time_tracking_app/public/js/app-1.js

class EditableTimerList extends React.Component {

render() {

return (

<div id='timers'>

<EditableTimer

title='Learn React'

project='Web Domination'

elapsed='8986300'

runningSince={null}

34http://semantic-ui.com

WOW! eBook
www.wowebook.org

http://semantic-ui.com/
http://semantic-ui.com/

Components 73

editFormOpen={false}

/>

<EditableTimer

title='Learn extreme ironing'

project='World Domination'

elapsed='3890985'

runningSince={null}

editFormOpen={true}

/>

</div>

);

}

}

We’re passing five props to each child component. The key difference between the two Editable-

Timer components is the value being set for editFormOpen. We’ll use this boolean to instruct
EditableTimer which sub-component to render.

The purpose of the prop runningSince will be covered later on in the app’s development.

EditableTimer

EditableTimer returns either a TimerForm or a Timer based on the prop editFormOpen:

time_tracking_app/public/js/app-1.js

class EditableTimer extends React.Component {

render() {

if (this.props.editFormOpen) {

return (

<TimerForm

title={this.props.title}

project={this.props.project}

/>

);

} else {

return (

<Timer

title={this.props.title}

project={this.props.project}

WOW! eBook
www.wowebook.org

Components 74

elapsed={this.props.elapsed}

runningSince={this.props.runningSince}

/>

);

}

}

}

Note that title and project are passed down as props to TimerForm. This will enable the component
to fill in these fields with the timer’s current values.

TimerForm

We’ll build an HTML form that will have two input fields. The first input field is for the title and
the second is for the project. It also has a pair of buttons at the bottom:

time_tracking_app/public/js/app-1.js

class TimerForm extends React.Component {

render() {

const submitText = this.props.title ? 'Update' : 'Create';

return (

<div className='ui centered card'>

<div className='content'>

<div className='ui form'>

<div className='field'>

<label>Title</label>

<input type='text' defaultValue={this.props.title} />

</div>

<div className='field'>

<label>Project</label>

<input type='text' defaultValue={this.props.project} />

</div>

<div className='ui two bottom attached buttons'>

<button className='ui basic blue button'>

{submitText}

</button>

<button className='ui basic red button'>

Cancel

</button>

</div>

</div>

WOW! eBook
www.wowebook.org

Components 75

</div>

</div>

);

}

}

Look at the input tags. We’re specifying that they have type of text and then we are using the
React property defaultValue. When the form is used for editing as it is here, this sets the fields to
the current values of the timer as desired.

Later, we’ll use TimerForm again within ToggleableTimerForm for creating timers.
ToggleableTimerForm will not pass TimerForm any props. this.props.title and
this.props.project will therefore return undefined and the fields will be left empty.

At the beginning of render(), before the return statement, we define a variable submitText. This
variable uses the presence of this.props.title to determine what text the submit button at the
bottom of the form should display. If title is present, we know we’re editing an existing timer, so
it displays “Update.” Otherwise, it displays “Create.”

With all of this logic in place, TimerForm is prepared to render a form for creating a new timer or
editing an existing one.

We used an expression with the ternary operator to set the value of submitText. The
syntax is:

1 condition ? expression1 : expression2

If the condition is true, the operator returns the value of expression1. Otherwise, it
returns the value of expression2. In our example, the variable submitText is set to the
returned expression.

ToggleableTimerForm

Let’s turn our attention next to ToggleableTimerForm. Recall that this is a wrapper component
around TimerForm. It will display either a “+” or a TimerForm. Right now, it accepts a single prop,
isOpen, from its parent that instructs its behavior:

WOW! eBook
www.wowebook.org

Components 76

time_tracking_app/public/js/app-1.js

class ToggleableTimerForm extends React.Component {

render() {

if (this.props.isOpen) {

return (

<TimerForm />

);

} else {

return (

<div className='ui basic content center aligned segment'>

<button className='ui basic button icon'>

<i className='plus icon' />

</button>

</div>

);

}

}

}

As noted earlier, TimerForm does not receive any props from ToggleableTimerForm. As such, its
title and project fields will be rendered empty.

The return statement under the else block is the markup to render a “+” button. You could make
a case that this should be its own React component (say PlusButton) but at present we’ll keep the
code inside ToggleableTimerForm.

Timer

Time for the Timer component. Again, don’t worry about all the div and span elements and
className attributes. We’ve provided these for styling purposes:

time_tracking_app/public/js/app-1.js

class Timer extends React.Component {

render() {

const elapsedString = helpers.renderElapsedString(this.props.elapsed);

return (

<div className='ui centered card'>

<div className='content'>

<div className='header'>

{this.props.title}

</div>

WOW! eBook
www.wowebook.org

Components 77

<div className='meta'>

{this.props.project}

</div>

<div className='center aligned description'>

<h2>

{elapsedString}

</h2>

</div>

<div className='extra content'>

<i className='edit icon' />

<i className='trash icon' />

</div>

</div>

<div className='ui bottom attached blue basic button'>

Start

</div>

</div>

);

}

}

elapsed in this app is in milliseconds. This is the representation of the data that React will keep.
This is a good representation for machines, but we want to show our carbon-based users a more
readable format.

We use a function defined in helpers.js, renderElapsedString(). You can pop open that file if
you’re curious about how it’s implemented. The string it renders is in the format ‘HH:MM:SS’.

Note that we could store elapsed in seconds as opposed to milliseconds, but JavaScript’s
time functionality is all inmilliseconds.We keep elapsed consistent with this for simplicity.
As a bonus, our timers are also slightly more accurate, even though they round to seconds
when displayed to the user.

Render the app

With all of the components defined, the last step before we can view our static app is to ensure we
call ReactDOM#render(). Put this at the bottom of the file:

WOW! eBook
www.wowebook.org

Components 78

time_tracking_app/public/js/app-1.js

ReactDOM.render(

<TimersDashboard />,

document.getElementById('content')

);

Again, we specify with ReactDOM#render() which React component we want to render
and where in our HTML document (index.html) to render it.

In this case, we’re rendering TimersDashboard at the div with the id of content.

Try it out

Save app.js and boot the server (npm start). Find it at localhost:3000:

Tweak some of the props and refresh to see the results. For example:

• Flip the prop passed down to ToggleableTimerForm from true to false and see the “+” button
render.

WOW! eBook
www.wowebook.org

Components 79

• Flip parameters on editFormOpen and witness EditableTimer flip the child it renders
accordingly.

Let’s review all of the components represented on the page:

Inside TimersDashboard are two child components: EditableTimerList and ToggleableTimerForm.

EditableTimerList contains two EditableTimer components. The first of these has a Timer

component as a child and the second a TimerForm. These bottom-level components — also known
as leaf components — hold the majority of the page’s HTML. This is generally the case. The
components above leaf components are primarily concerned with orchestration.

ToggleableTimerForm renders a TimerForm. Notice how the two forms on the page have different
language for their buttons, as the first is updating and the second is creating.

Step 3: Determine what should be stateful

In order to bestow our app with interactivity, we must evolve it from its static existence to a mutable
one. The first step is determining what, exactly, should be mutable. Let’s start by collecting all of the
data that’s employed by each component in our static app. In our static app, data will be wherever
we are defining or using props. We will then determine which of that data should be stateful.

TimersDashboard

In our static app, this declares two child components. It sets one prop, which is the isOpen boolean
that is passed down to ToggleableTimerForm.

EditableTimerList

This declares two child components, each which have props corresponding to a given timer’s
properties.

EditableTimer

This uses the prop editFormOpen.

Timer

This uses all the props for a timer.

TimerForm

This has two interactive input fields, one for title and one for project. When editing an existing
timer, these fields are initialized with the timer’s current values.

State criteria

We can apply criteria to determine if data should be stateful:

WOW! eBook
www.wowebook.org

Components 80

These questions are from the excellent article by Facebook called “Thinking In React”. You
can read the original article here35.

1. Is it passed in from a parent via props? If so, it probably isn’t state.

A lot of the data used in our child components are already listed in their parents. This criterion helps
us de-duplicate.

For example, “timer properties” is listed multiple times. When we see the properties declared in
EditableTimerList, we can consider it state. But when we see it elsewhere, it’s not.

2. Does it change over time? If not, it probably isn’t state.

This is a key criterion of stateful data: it changes.

3. Can you compute it based on any other state or props in your component? If so, it’s not
state.

For simplicity, we want to strive to represent state with as few data points as possible.

Applying the criteria

TimersDashboard

• isOpen boolean for ToggleableTimerForm

Stateful. The data is defined here. It changes over time. And it cannot be computed from other state
or props.

EditableTimerList

• Timer properties

Stateful. The data is defined in this component, changes over time, and cannot be computed from
other state or props.

EditableTimer

• editFormOpen for a given timer

Stateful. The data is defined in this component, changes over time, and cannot be computed from
other state or props.

Timer

35https://facebook.github.io/react/docs/thinking-in-react.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

Components 81

• Timer properties

In this context, not stateful. Properties are passed down from the parent.

TimerForm

We might be tempted to conclude that TimerForm doesn’t manage any stateful data, as title and
project are props passed down from the parent. However, as we’ll see, forms are special state
managers in their own right.

So, outside of TimerForm, we’ve identified our stateful data:

• The list of timers and properties of each timer
• Whether or not the edit form of a timer is open
• Whether or not the create form is open

Step 4: Determine in which component each piece of
state should live

While the data we’ve determined to be stateful might live in certain components in our static app,
this does not indicate the best position for it in our stateful app. Our next task is to determine the
optimal place for each of our three discrete pieces of state to live.

This can be challenging at times but, again, we can apply the following steps from Facebook’s guide
“Thinking in React36” to help us with the process:

For each piece of state:

• Identify every component that renders something based on that state.
• Find a common owner component (a single component above all the components
that need the state in the hierarchy).

• Either the common owner or another component higher up in the hierarchy
should own the state.

• If you can’t find a component where it makes sense to own the state, create a new
component simply for holding the state and add it somewhere in the hierarchy
above the common owner component.

Let’s apply this method to our application:

36https://facebook.github.io/react/docs/thinking-in-react.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

Components 82

The list of timers and properties of each timer

At first glance, we may be tempted to conclude that TimersDashboard does not appear to use this
state. Instead, the first component that uses it is EditableTimerList. This matches the location of
the declaration of this data in our static app. Because ToggleableTimerForm doesn’t appear to use
the state either, we might deduce that EditableTimerList must then be the common owner.

While this may be the case for displaying timers, modifying them, and deleting them, what about
creates? ToggleableTimerForm does not need the state to render, but it can affect state. It needs to
be able to insert a new timer. It will propagate the data for the new timer up to TimersDashboard.

Therefore, TimersDashboard is truly the common owner. It will render EditableTimerList by
passing down the timer state. It can the handle modifications from EditableTimerList and
creates from ToggleableTimerForm, mutating the state. The new state will flow downward through
EditableTimerList.

Whether or not the edit form of a timer is open

In our static app, EditableTimerList specifies whether or not a EditableTimer should be rendered
with its edit form open. Technically, though, this state could just live in each individual Editable-
Timer. No parent component in the hierarchy depends on this data.

Storing the state in EditableTimer will be fine for our current needs. But there are a few
requirements that might require us to “hoist” this state up higher in the component hierarchy in
the future.

For instance, what if we wanted to impose a restriction such that only one edit form could be
open at a time? Then it would make sense for EditableTimerList to own the state, as it would
need to inspect it to determine whether to allow a new “edit form open” event to succeed. If we
wanted to allow only one form open at all, including the create form, then we’d hoist the state up
to TimersDashboard.

Visibility of the create form

TimersDashboard doesn’t appear to care about whether ToggleableTimerForm is open or closed. It
feels safe to reason that the state can just live inside ToggleableTimerForm itself.

So, in summary, we’ll have three pieces of state each in three different components:

• Timer data will be owned and managed by TimersDashboard.
• Each EditableTimer will manage the state of its timer edit form.
• The ToggleableTimerForm will manage the state of its form visibility.

WOW! eBook
www.wowebook.org

Components 83

Step 5: Hard-code initial states

We’re now well prepared to make our app stateful. At this stage, we won’t yet communicate with
the server. Instead, we’ll define our initial states within the components themselves. This means
hard-coding a list of timers in the top-level component, TimersDashboard. For our two other pieces
of state, we’ll have the components’ forms closed by default.

After we’ve added initial state to a parent component, we’ll make sure our props are properly
established in its children.

Adding state to TimersDashboard

Start by modifying TimersDashboard to hold the timer data directly inside the component:

time_tracking_app/public/js/app-2.js

class TimersDashboard extends React.Component {

state = {

timers: [

{

title: 'Practice squat',

project: 'Gym Chores',

id: uuid.v4(),

elapsed: 5456099,

runningSince: Date.now(),

},

{

title: 'Bake squash',

project: 'Kitchen Chores',

id: uuid.v4(),

elapsed: 1273998,

runningSince: null,

},

],

};

render() {

return (

<div className='ui three column centered grid'>

<div className='column'>

<EditableTimerList

timers={this.state.timers}

/>

WOW! eBook
www.wowebook.org

Components 84

<ToggleableTimerForm />

</div>

</div>

);

}

}

We’re leaning on the Babel plugin transform-class-properties to give us the property initializers
syntax. We set the initial state to an object with the key timers. timers points to an array with two
hard-coded timer objects.

We discuss property initializers in the previous chapter.

Below, in render, we pass down state.timers to EditableTimerList.

For the id property, we’re using a library called uuid. We load this library in index.html. We use
uuid.v4() to randomly generate a Universally Unique IDentifier37 for each item.

A UUID is a string that looks like this:

2030efbd-a32f-4fcc-8637-7c410896b3e3

Receiving props in EditableTimerList

EditableTimerList receives the list of timers as a prop, timers. Modify that component to use those
props:

time_tracking_app/public/js/app-2.js

class EditableTimerList extends React.Component {

render() {

const timers = this.props.timers.map((timer) => (

<EditableTimer

key={timer.id}

id={timer.id}

title={timer.title}

project={timer.project}

37https://en.wikipedia.org/wiki/Universally_unique_identifier

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Components 85

elapsed={timer.elapsed}

runningSince={timer.runningSince}

/>

));

return (

<div id='timers'>

{timers}

</div>

);

}

}

Hopefully this looks familiar. We’re using map on the timers array to build a list of EditableTimer
components. This is exactly how we built our list of Product components inside ProductList in the
last chapter.

We pass the id down to EditableTimer as well. This is a bit of eager preparation. Remember how
Product communicated up to ProductList by calling a function and passing in its id? It’s safe to
assume we’ll be doing this again.

Props vs. state

With your renewed understanding of React’s state paradigm, let’s reflect on props again.

Remember, props are state’s immutable accomplice. What existed as mutable state in Timers-

Dashboard is passed down as immutable props to EditableTimerList.

We talked at length about what qualifies as state and where state should live. Mercifully, we do not
need to have an equally lengthy discussion about props. Once you understand state, you can see
how props act as its one-way data pipeline. State is managed in some select parent components
and then that data flows down through children as props.

If state is updated, the component managing that state re-renders by calling render(). This, in turn,
causes any of its children to re-render as well. And the children of those children. And on and on
down the chain.

Let’s continue our own march down the chain.

Adding state to EditableTimer

In the static version of our app, EditableTimer relied on editFormOpen as a prop to be passed down
from the parent. We decided that this state could actually live here in the component itself.

We’ll set the initial value of editFormOpen to false, which means that the form starts off as closed.
We’ll also pass the id property down the chain:

WOW! eBook
www.wowebook.org

Components 86

time_tracking_app/public/js/app-2.js

class EditableTimer extends React.Component {

state = {

editFormOpen: false,

};

render() {

if (this.state.editFormOpen) {

return (

<TimerForm

id={this.props.id}

title={this.props.title}

project={this.props.project}

/>

);

} else {

return (

<Timer

id={this.props.id}

title={this.props.title}

project={this.props.project}

elapsed={this.props.elapsed}

runningSince={this.props.runningSince}

/>

);

}

}

}

Timer remains stateless

If you look at Timer, you’ll see that it does not need to be modified. It has been using exclusively
props and is so far unaffected by our refactor.

Adding state to ToggleableTimerForm

We know that we’ll need to tweak ToggleableTimerForm as we’ve assigned it some stateful
responsibility.Wewant to have the componentmanage the state isOpen. Because this state is isolated
to this component, let’s also add our app’s first bit of interactivity while we’re here.

Let’s start by initializing the state. We want the component to initialize to a closed state:

WOW! eBook
www.wowebook.org

Components 87

time_tracking_app/public/js/app-2.js

class ToggleableTimerForm extends React.Component {

state = {

isOpen: false,

};

Next, let’s define a function that will toggle the state of the form to open:

time_tracking_app/public/js/app-2.js

handleFormOpen = () => {

this.setState({ isOpen: true });

};

render() {

As we explored at the end of the last chapter, we need to write this function as an arrow function in
order to ensure this inside the function is bound to the component. React will automatically bind
class methods corresponding to the component API (like render and componentDidMount) to the
component for us.

As a refresher, without the property initializer feature we’d write our custom component method
like this:

handleFormOpen() {

this.setState({ isOpen: true });

}

Our next step would be to bind this method to the component inside the constructor, like this:

constructor(props) {

super(props);

this.handleFormOpen = this.handleFormOpen.bind(this);

}

This is a perfectly valid approach and does not use any features beyond ES7. However, we’ll be
using property initializers for this project.

While we’re here, we can also add a little bit of interactivity:

WOW! eBook
www.wowebook.org

Components 88

time_tracking_app/public/js/app-2.js

render() {

if (this.state.isOpen) {

return (

<TimerForm />

);

} else {

return (

<div className='ui basic content center aligned segment'>

<button

className='ui basic button icon'

onClick={this.handleFormOpen}

>

<i className='plus icon' />

</button>

</div>

);

}

}

Like the up-vote button in the last app, we use the onClick property on button to invoke the function
handleFormOpen(). handleFormOpen() modifies the state, setting isOpen to true. This causes the
component to re-render. When render() is called this second time around, this.state.isOpen is
true and ToggleableTimerForm renders TimerForm. Neat.

Adding state to TimerForm

We mentioned earlier that TimerForm would manage state as it includes a form. In React, forms are
stateful.

Recall that TimerForm includes two input fields:

WOW! eBook
www.wowebook.org

Components 89

These input fields are modifiable by the user. In React, all modifications that are made to a
component should be handled by React and kept in state. This includes changes like the modification
of an input field. By having React manage all modifications, we guarantee that the visual component
that the user is interacting with on the DOM matches the state of the React component behind the
scenes.

The best way to understand this is to see what it looks like.

To make these input fields stateful, let’s first initialize state at the top of the component:

time_tracking_app/public/js/app-2.js

class TimerForm extends React.Component {

state = {

title: this.props.title || '',

project: this.props.project || '',

};

Our state object has two properties, each corresponding to an input field that TimerForm manages.
We set the initial state of these properties to the values passed down via props. If TimerForm is
creating a new timer as opposed to editing an existing one, those props would be undefined. In that
case, we initialize both to a blank string ('').

We want to avoid initializing title or project to undefined. That’s because the value of
an input field can’t technically ever be undefined. If it’s empty, its value in JavaScript is a
blank string. In fact, if you initialize the value of an input field to undefined, React will
complain.

defaultValue only sets the value of the input field for the initial render. Instead of using
defaultValue, we can connect our input fields directly to our component’s state using value. We
could do something like this:

<div className='field'>

<label>Title</label>

<input

type='text'

value={this.state.title}

/>

</div>

With this change, our input fields would be driven by state. Whenever the state properties title or
project change, our input fields would be updated to reflect the new value.

WOW! eBook
www.wowebook.org

Components 90

However, this misses a key ingredient:We don’t currently have any way for the user tomodify
this state. The input field will start off in-sync with the component’s state. But the moment the user
makes a modification, the input field will become out-of-sync with the component’s state.

We can fix this by using React’s onChange attribute for input elements. Like onClick for button or a
elements, we can set onChange to a function. Whenever the input field is changed, React will invoke
the function specified.

Let’s set the onChange attributes on both input fields to functions we’ll define next:

time_tracking_app/public/js/app-2.js

<div className='field'>

<label>Title</label>

<input

type='text'

value={this.state.title}

onChange={this.handleTitleChange}

/>

</div>

<div className='field'>

<label>Project</label>

<input

type='text'

value={this.state.project}

onChange={this.handleProjectChange}

/>

</div>

The functions handleTitleChange and handleProjectChange will both modify their respective
properties in state. Here’s what they look like:

time_tracking_app/public/js/app-2.js

handleTitleChange = (e) => {

this.setState({ title: e.target.value });

};

handleProjectChange = (e) => {

this.setState({ project: e.target.value });

};

When React invokes the function passed to onChange, it invokes the function with an event
object. We call this argument e. The event object includes the updated value of the field under
target.value. We update the state to the new value of the input field.

WOW! eBook
www.wowebook.org

Components 91

Using a combination of state, the value attribute, and the onChange attribute is the canonical method
we use towrite form elements in React.We explore forms in depth in the chapter “Forms.”We explore
this topic specifically in the section “Uncontrolled vs. Controlled Components.”

To recap, here’s an example of the lifecycle of TimerForm:

1. On the page is a timer with the title “Mow the lawn.”
2. The user toggles open the edit form for this timer, mounting TimerForm to the page.
3. TimerForm initializes the state property title to the string "Mow the lawn".
4. The user modifies the input field, changing it to the value "Cut the grass".
5. With every keystroke, React invokes handleTitleChange. The internal state of title is kept

in-sync with what the user sees on the page.

With TimerForm refactored, we’ve finished establishing our stateful data inside our elected compo-
nents. Our downward data pipeline, props, is assembled.

We’re ready — and perhaps a bit eager — to build out interactivity using inverse data flow. But
before we do, let’s save and reload the app to ensure everything is working. We expect to see new
example timers based on the hard-coded data in TimersDashboard. We also expect clicking the “+”
button toggles open a form:

Step 6: Add inverse data flow

As we saw in the last chapter, children communicate with parents by calling functions that are
handed to them via props. In the ProductHunt app, when an up-vote was clicked Product didn’t do
any data management. It was not the owner of its state. Instead, it called a function given to it by
ProductList, passing in its id. ProductList was then able to manage state accordingly.

We are going to need inverse data flow in two areas:

WOW! eBook
www.wowebook.org

Components 92

• TimerForm needs to propagate create and update events (create while under Toggleable-
TimerForm and update while under EditableTimer). Both events will eventually reach
TimersDashboard.

• Timer has a fair amount of behavior. It needs to handle delete and edit clicks, as well as the
start and stop timer logic.

Let’s start with TimerForm.

TimerForm

To get a clear idea of what exactly TimerForm will require, we’ll start by adding event handlers to it
and then work our way backwards up the hierarchy.

TimerForm needs two event handlers:

• When the form is submitted (creating or updating a timer)
• When the “Cancel” button is clicked (closing the form)

TimerFormwill receive two functions as props to handle each event. The parent component that uses
TimerForm is responsible for providing these functions:

• props.onFormSubmit(): called when the form is submitted
• props.onFormClose(): called when the “Cancel” button is clicked

As we’ll see soon, this empowers the parent component to dictate what the behavior should be when
these events occur.

Let’s first modify the buttons on TimerForm. We’ll specify onClick attributes for each:

time_tracking_app/public/js/app-3.js

<div className='ui two bottom attached buttons'>

<button

className='ui basic blue button'

onClick={this.handleSubmit}

>

{submitText}

</button>

<button

className='ui basic red button'

onClick={this.props.onFormClose}

>

Cancel

</button>

</div>

WOW! eBook
www.wowebook.org

Components 93

The onClick attribute for the “Submit” button specifies the function this.handleSubmit, which
we’ll define next. The onClick attribute for the “Cancel” button specifies the prop onFormClose

directly.

Let’s see what handleSubmit looks like:

time_tracking_app/public/js/app-3.js

handleSubmit = () => {

this.props.onFormSubmit({

id: this.props.id,

title: this.state.title,

project: this.state.project,

});

};

render() {

handleSubmit() calls a yet-to-be-defined function, onFormSubmit(). It passes in a data object with
id, title, and project attributes. This means id will be undefined for creates, as no id exists yet.

Before moving on, let’s make one last tweak to TimerForm:

time_tracking_app/public/js/app-3.js

render() {

const submitText = this.props.id ? 'Update' : 'Create';

We have submitText switch on id as opposed to title. Using the id property to determine whether
or not an object has been created is a more common practice.

ToggleableTimerForm

Let’s chase the submit event from TimerForm as it bubbles up the component hierarchy. First,
we’ll modify ToggleableTimerForm. We need it to pass down two prop-functions to TimerForm,
onFormClose() and onFormSubmit():

WOW! eBook
www.wowebook.org

Components 94

time_tracking_app/public/js/app-3.js

// Inside ToggleableTimerForm

handleFormOpen = () => {

this.setState({ isOpen: true });

};

handleFormClose = () => {

this.setState({ isOpen: false });

};

handleFormSubmit = (timer) => {

this.props.onFormSubmit(timer);

this.setState({ isOpen: false });

};

render() {

if (this.state.isOpen) {

return (

<TimerForm

onFormSubmit={this.handleFormSubmit}

onFormClose={this.handleFormClose}

/>

);

} else {

Looking first at the render() function, we can see we pass in the two functions as props. Functions
are just like any other prop.

Of most interest here is handleFormSubmit(). Remember, ToggleableTimerForm is not the manager
of timer state. TimerForm has an event it’s emitting, in this case the submission of a new timer.
ToggleableTimerForm is just a proxy of this message. So, when the form is submitted, it calls its own
prop-function props.onFormSubmit(). We’ll eventually define this function in TimersDashboard.

handleFormSubmit() accepts the argument timer. Recall that in TimerForm this argument is an
object containing the desired timer properties. We just pass that argument along here.

After invoking onFormSubmit(), handleFormSubmit() calls setState() to close its form.

Note that the result of onFormSubmit() will not impact whether or not the form is closed.
We invoke onFormSubmit(), whichmay eventually create an asynchronous call to a server.
Execution will continue before we hear back from the server which means setState()will
be called.

If onFormSubmit() fails — such as if the server is temporarily unreachable — we’d ideally
have some way to display an error message and re-open the form.

WOW! eBook
www.wowebook.org

Components 95

TimersDashboard

We’ve reached the top of the hierarchy, TimersDashboard. As this component will be responsible for
the data for the timers, it is here that we will define the logic for handling the events we’re capturing
down at the leaf components.

The first event we’re concerned with is the submission of a form. When this happens, either a new
timer is being created or an existing one is being updated. We’ll use two separate functions to handle
the two distinct events:

• handleCreateFormSubmit() will handle creates and will be the function passed to Tog-

gleableTimerForm

• handleEditFormSubmit() will handle updates and will be the function passed to Editable-

TimerList

Both functions travel down their respective component hierarchies until they reach TimerForm as
the prop onFormSubmit().

Let’s start with handleCreateFormSubmit, which inserts a new timer into our timer list state:

time_tracking_app/public/js/app-3.js

// Inside TimersDashboard

handleCreateFormSubmit = (timer) => {

this.createTimer(timer);

};

createTimer = (timer) => {

const t = helpers.newTimer(timer);

this.setState({

timers: this.state.timers.concat(t),

});

};

render() {

return (

<div className='ui three column centered grid'>

<div className='column'>

<EditableTimerList

timers={this.state.timers}

/>

<ToggleableTimerForm

onFormSubmit={this.handleCreateFormSubmit}

/>

WOW! eBook
www.wowebook.org

Components 96

</div>

</div>

);

}

We create the timer object with helpers.newTimer(). You can peek at the implementation inside
of helpers.js. We pass in the object that originated down in TimerForm. This object has title and
project properties. helpers.newTimer() returns an object with those title and project properties
as well as a generated id.

The next line calls setState(), appending the new timer to our array of timers held under timers.
We pass the whole state object to setState().

You might wonder: why separate handleCreateFormSubmit() and createTimer()? While
not strictly required, the idea here is that we have one function for handling the event
(handleCreateFormSubmit()) and another for performing the operation of creating a timer
(createTimer()).

This separation follows from the Single Responsibility Principle and enables us to call
createTimer() from elsewhere if needed.

We’ve finished wiring up the create timer flow from the form down in TimerForm up to the state
managed in TimersDashboard. Save app.js and reload your browser. Toggle open the create form
and create some new timers:

WOW! eBook
www.wowebook.org

Components 97

Updating timers

We need to give the same treatment to the update timer flow. However, as you can see in the current
state of the app, we haven’t yet added the ability for a timer to be edited. So we don’t have a way
to display an edit form, which will be a prerequisite to submitting one.

To display an edit form, the user clicks on the edit icon on a Timer. This should propagate an event
up to EditableTimer and tell it to flip its child component, opening the form.

Adding editability to Timer

To notify our app that the user wants to edit a timer we need to add an onClick attribute to the span
tag of the edit button. We anticipate a prop-function, onEditClick():

WOW! eBook
www.wowebook.org

Components 98

time_tracking_app/public/js/app-4.js

{/* Inside Timer.render() */}

<div className='extra content'>

<span

className='right floated edit icon'

onClick={this.props.onEditClick}

>

<i className='edit icon' />

<i className='trash icon' />

</div>

Updating EditableTimer

Now we’re prepared to update EditableTimer. Again, it will display either the TimerForm (if we’re
editing) or an individual Timer (if we’re not editing).

Let’s add event handlers for both possible child components. For TimerForm, we want to handle the
form being closed or submitted. For Timer, we want to handle the edit icon being pressed:

time_tracking_app/public/js/app-4.js

// Inside EditableTimer

handleEditClick = () => {

this.openForm();

};

handleFormClose = () => {

this.closeForm();

};

handleSubmit = (timer) => {

this.props.onFormSubmit(timer);

this.closeForm();

};

closeForm = () => {

this.setState({ editFormOpen: false });

};

WOW! eBook
www.wowebook.org

Components 99

openForm = () => {

this.setState({ editFormOpen: true });

};

We pass these event handlers down as props:

time_tracking_app/public/js/app-4.js

render() {

if (this.state.editFormOpen) {

return (

<TimerForm

id={this.props.id}

title={this.props.title}

project={this.props.project}

onFormSubmit={this.handleSubmit}

onFormClose={this.handleFormClose}

/>

);

} else {

return (

<Timer

id={this.props.id}

title={this.props.title}

project={this.props.project}

elapsed={this.props.elapsed}

runningSince={this.props.runningSince}

onEditClick={this.handleEditClick}

/>

);

}

}

Look a bit familiar? EditableTimer handles the same events emitted from TimerForm in a very
similar manner as ToggleableTimerForm. This makes sense. Both EditableTimer and Toggleable-

TimerForm are just intermediaries between TimerForm and TimersDashboard. TimersDashboard is
the one that defines the submit function handlers and assigns them to a given component tree.

Like ToggleableTimerForm, EditableTimer doesn’t do anything with the incoming timer. In
handleSubmit(), it just blindly passes this object along to its prop-function onFormSubmit(). It then
closes the form with closeForm().

We pass along a new prop to Timer, onEditClick. The behavior for this function is defined in
handleEditClick, which modifies the state for EditableTimer, opening the form.

WOW! eBook
www.wowebook.org

Components 100

Updating EditableTimerList

Moving up a level, we make a one-line addition to EditableTimerList to send the submit function
from TimersDashboard to each EditableTimer:

time_tracking_app/public/js/app-4.js

// Inside EditableTimerList

const timers = this.props.timers.map((timer) => (

<EditableTimer

key={timer.id}

id={timer.id}

title={timer.title}

project={timer.project}

elapsed={timer.elapsed}

runningSince={timer.runningSince}

onFormSubmit={this.props.onFormSubmit}

/>

));

// ...

EditableTimerList doesn’t need to do anything with this event so again we just pass the function
on directly.

Defining onEditFormSubmit() in TimersDashboard

Last step with this pipeline is to define and pass down the submit function for edit forms in
TimersDashboard.

For creates, we have a function that creates a new timer object with the specified attributes and we
append this new object to the end of the timers array in the state.

For updates, we need to hunt through the timers array until we find the timer object that is being
updated. As mentioned in the last chapter, the state object cannot be updated directly. We have to
use setState().

Therefore, we’ll use map() to traverse the array of timer objects. If the timer’s id matches that of
the form submitted, we’ll return a new object that contains the timer with the updated attributes.
Otherwise we’ll just return the original timer. This new array of timer objects will be passed to
setState():

WOW! eBook
www.wowebook.org

Components 101

time_tracking_app/public/js/app-4.js

// Inside TimersDashboard

handleEditFormSubmit = (attrs) => {

this.updateTimer(attrs);

};

createTimer = (timer) => {

const t = helpers.newTimer(timer);

this.setState({

timers: this.state.timers.concat(t),

});

};

updateTimer = (attrs) => {

this.setState({

timers: this.state.timers.map((timer) => {

if (timer.id === attrs.id) {

return Object.assign({}, timer, {

title: attrs.title,

project: attrs.project,

});

} else {

return timer;

}

}),

});

};

We pass this down as a prop inside render():

time_tracking_app/public/js/app-4.js

{ /* Inside TimersDashboard.render() */}

<EditableTimerList

timers={this.state.timers}

onFormSubmit={this.handleEditFormSubmit}

/>

Note that we can call map() on this.state.timers from within the JavaScript object we’re passing
to setState(). This is an often used pattern. The call is evaluated and then the property timers is
set to the result.

WOW! eBook
www.wowebook.org

Components 102

Inside of the map() function we check if the timer matches the one being updated. If not, we
just return the timer. Otherwise, we use Object#assign() to return a new object with the timer’s
updated attributes.

Remember, it’s important here that we treat state as immutable. By creating a new timers object
and then using Object#assign() to populate it, we’re not modifying any of the objects sitting in
state.

We discuss the Object#assign() method in the last chapter.

As we did with ToggleableTimerForm and handleCreateFormSubmit, we pass down handleEd-

itFormSubmit as the prop onFormSubmit. TimerForm calls this prop, oblivious to the fact that
this function is entirely different when it is rendered underneath EditableTimer as opposed to
ToggleableTimerForm.

Both of the forms are wired up! Save app.js, reload the page, and try both creating and updating
timers. You can also click “Cancel” on an open form to close it:

The rest of our work resides within the timer. We need to:

• Wire up the trash button (deleting a timer)
• Implement the start/stop buttons and the timing logic itself

At that point, we’ll have a complete server-less solution.

WOW! eBook
www.wowebook.org

Components 103

Try it yourself : Before moving on to the next section, see how far you can get wiring up the trash
button by yourself. Move ahead afterwards and verify your solution is sound.

Deleting timers

Adding the event handler to Timer

In Timer, we define a function to handle trash button click events:

time_tracking_app/public/js/app-5.js

class Timer extends React.Component {

handleTrashClick = () => {

this.props.onTrashClick(this.props.id);

};

render() {

And then use onClick to connect that function to the trash icon:

time_tracking_app/public/js/app-5.js

{/* Inside Timer.render() */}

<div className='extra content'>

<span

className='right floated edit icon'

onClick={this.props.onEditClick}

>

<i className='edit icon' />

<span

className='right floated trash icon'

onClick={this.handleTrashClick}

>

<i className='trash icon' />

</div>

We’ve yet to define the function that will be set as the prop onTrashClick(). But you can imagine
that when this event reaches the top (TimersDashboard), we’re going to need the id to sort out which
timer is being deleted. handleTrashClick() provides the id to this function.

WOW! eBook
www.wowebook.org

Components 104

Routing through EditableTimer

EditableTimer just proxies the function:

time_tracking_app/public/js/app-5.js

// Inside EditableTimer

} else {

return (

<Timer

id={this.props.id}

title={this.props.title}

project={this.props.project}

elapsed={this.props.elapsed}

runningSince={this.props.runningSince}

onEditClick={this.handleEditClick}

onTrashClick={this.props.onTrashClick}

/>

);

}

Routing through EditableTimerList

As does EditableTimerList:

time_tracking_app/public/js/app-5.js

// Inside EditableTimerList.render()

const timers = this.props.timers.map((timer) => (

<EditableTimer

key={timer.id}

id={timer.id}

title={timer.title}

project={timer.project}

elapsed={timer.elapsed}

runningSince={timer.runningSince}

onFormSubmit={this.props.onFormSubmit}

onTrashClick={this.props.onTrashClick}

/>

));

WOW! eBook
www.wowebook.org

Components 105

Implementing the delete function in TimersDashboard

The last step is to define the function in TimersDashboard that deletes the desired timer from the
state array. There are many ways to accomplish this in JavaScript. Don’t sweat it if your solution
was not the same or if you didn’t quite work one out.

We add our handler function that we ultimately pass down as a prop:

time_tracking_app/public/js/app-5.js

// Inside TimersDashboard

handleEditFormSubmit = (attrs) => {

this.updateTimer(attrs);

};

handleTrashClick = (timerId) => {

this.deleteTimer(timerId);

};

deleteTimer() uses Array’s filter() method to return a new array with the timer object that has
an id matching timerId removed:

time_tracking_app/public/js/app-5.js

// Inside TimersDashboard

deleteTimer = (timerId) => {

this.setState({

timers: this.state.timers.filter(t => t.id !== timerId),

});

};

Finally, we pass down handleTrashClick() as a prop:

time_tracking_app/public/js/app-5.js

{/* Inside TimersDashboard.render() */}

<EditableTimerList

timers={this.state.timers}

onFormSubmit={this.handleEditFormSubmit}

onTrashClick={this.handleTrashClick}

/>

WOW! eBook
www.wowebook.org

Components 106

Array’s filter()method accepts a function that is used to “test” each element in the array.
It returns a new array containing all the elements that “passed” the test. If the function
returns true, the element is kept.

Save app.js and reload the app. Low and behold, you can delete timers:

Adding timing functionality

Create, update, and delete (CRUD) capability is now in place for our timers. The next challenge:
making these timers functional.

There are several different ways we can implement a timer system. The simplest approach would
be to have a function update the elapsed property on each timer every second. But this is severely
limited. What happens when the app is closed? The timer should continue “running.”

This is why we’ve included the timer property runningSince. A timer is initialized with elapsed

equal to 0. When a user clicks “Start”, we do not increment elapsed. Instead, we just set
runningSince to the start time.

We can then use the difference between the start time and the current time to render the time for
the user. When the user clicks “Stop”, the difference between the start time and the current time is
added to elapsed. runningSince is set to null.

Therefore, at any given time, we can derive how long the timer has been running by taking
Date.now() - runningSince and adding it to the total accumulated time (elapsed). We’ll calculate
this inside the Timer component.

WOW! eBook
www.wowebook.org

Components 107

For the app to truly feel like a running timer, we want React to constantly perform this operation
and re-render the timers. But elapsed and runningSince will not be changing while the timer is
running. So the one mechanism we’ve seen so far to trigger a render() call will not be sufficient.

Instead, we can use React’s forceUpdate()method. This forces a React component to re-render. We
can call it on an interval to yield the smooth appearance of a live timer.

Adding a forceUpdate() interval to Timer

helpers.renderElapsedString() accepts an optional second argument, runningSince. It will add
the delta of Date.now() - runningSince to elapsed and use the function millisecondsToHuman()

to return a string formatted as HH:MM:SS.

We will establish an interval to run forceUpdate() after the component mounts:

time_tracking_app/public/js/app-6.js

class Timer extends React.Component {

componentDidMount() {

this.forceUpdateInterval = setInterval(() => this.forceUpdate(), 50);

}

componentWillUnmount() {

clearInterval(this.forceUpdateInterval);

}

handleTrashClick = () => {

this.props.onTrashClick(this.props.id);

};

render() {

const elapsedString = helpers.renderElapsedString(

this.props.elapsed, this.props.runningSince

);

return (

In componentDidMount(), we use the JavaScript function setInterval(). This will invoke the
function forceUpdate() once every 50 ms, causing the component to re-render. We set the return
of setInterval() to this.forceUpdateInterval.

In componentWillUnmount(), we use clearInterval() to stop the interval this.forceUpdateInterval.
componentWillUnmount() is called before a component is removed from the app. This will happen
if a timer is deleted. We want to ensure we do not continue calling forceUpdate() after the timer
has been removed from the page. React will throw errors.

WOW! eBook
www.wowebook.org

Components 108

setInterval() accepts two arguments. The first is the function you would like to call
repeatedly. The second is the interval on which to call that function (in milliseconds).

setInterval() returns a unique interval ID. You can pass this interval ID to
clearInterval() at any time to halt the interval.

You might ask: Wouldn’t it be more efficient if we did not continuously call forceUpdate()
on timers that are not running?

Indeed, we would save a few cycles. But it would not be worth the added code complexity.
React will call render()which performs some inexpensive operations in JavaScript. It will
then compare this result to the previous call to render() and see that nothing has changed.
It stops there — it won’t attempt any DOM manipulation.

The 50 ms interval was not derived scientifically. Selecting an interval that’s too high
will make the timer look unnatural. It would jump unevenly between values. Selecting
an interval that’s too low would just be an unnecessary amount of work. A 50 ms interval
looks good to humans and is ages in computerland.

Try it out

Save app.js and reload. The first timer should be running.

We’ve begun to carve out the app’s real utility! We need only wire up the start/stop button and our
server-less app will be feature complete.

Add start and stop functionality

The action button at the bottom of each timer should display “Start” if the timer is paused and “Stop”
if the timer is running. It should also propagate events when clicked, depending on if the timer is
being stopped or started.

We could build all of this functionality into Timer. We could have Timer decide to render one HTML
snippet or another depending on if it is running. But that would be adding more responsibility and
complexity to Timer. Instead, let’s make the button its own React component.

Add timer action events to Timer

Let’s modify Timer, anticipating a new component called TimerActionButton. This button just needs
to know if the timer is running. It also needs to be able to propagate two events, onStartClick() and

WOW! eBook
www.wowebook.org

Components 109

onStopClick(). These events will eventually need to make it all the way up to TimersDashboard,
which can modify runningSince on the timer.

First, the event handlers:

time_tracking_app/public/js/app-7.js

// Inside Timer

componentWillUnmount() {

clearInterval(this.forceUpdateInterval);

}

handleStartClick = () => {

this.props.onStartClick(this.props.id);

};

handleStopClick = () => {

this.props.onStopClick(this.props.id);

};

// ...

Then, inside render(), we’ll declare TimerActionButton at the bottom of the outermost div:

time_tracking_app/public/js/app-7.js

{/* At the bottom of `Timer.render()`` */}

<TimerActionButton

timerIsRunning={!!this.props.runningSince}

onStartClick={this.handleStartClick}

onStopClick={this.handleStopClick}

/>

</div>

);

We use the same technique used in other click-handlers: onClick on the HTML element specifies a
handler function in the component that invokes a prop-function, passing in the timer’s id.

We use !! here to derive the boolean prop timerIsRunning for TimerActionButton. !!
returns false when runningSince is null.

Create TimerActionButton

Create the TimerActionButton component now:

WOW! eBook
www.wowebook.org

Components 110

time_tracking_app/public/js/app-7.js

class TimerActionButton extends React.Component {

render() {

if (this.props.timerIsRunning) {

return (

<div

className='ui bottom attached red basic button'

onClick={this.props.onStopClick}

>

Stop

</div>

);

} else {

return (

<div

className='ui bottom attached green basic button'

onClick={this.props.onStartClick}

>

Start

</div>

);

}

}

}

We render one HTML snippet or another based on this.props.timerIsRunning.

You know the drill. Now we run these events up the component hierarchy, all the way up to
TimersDashboard where we’re managing state:

Run the events through EditableTimer and EditableTimerList

First EditableTimer:

WOW! eBook
www.wowebook.org

Components 111

time_tracking_app/public/js/app-7.js

// Inside EditableTimer

} else {

return (

<Timer

id={this.props.id}

title={this.props.title}

project={this.props.project}

elapsed={this.props.elapsed}

runningSince={this.props.runningSince}

onEditClick={this.handleEditClick}

onTrashClick={this.props.onTrashClick}

onStartClick={this.props.onStartClick}

onStopClick={this.props.onStopClick}

/>

);

}

And then EditableTimerList:

time_tracking_app/public/js/app-7.js

// Inside EditableTimerList

const timers = this.props.timers.map((timer) => (

<EditableTimer

key={timer.id}

id={timer.id}

title={timer.title}

project={timer.project}

elapsed={timer.elapsed}

runningSince={timer.runningSince}

onFormSubmit={this.props.onFormSubmit}

onTrashClick={this.props.onTrashClick}

onStartClick={this.props.onStartClick}

onStopClick={this.props.onStopClick}

/>

));

Finally, we define these functions in TimersDashboard. They should hunt through the state timers
array using map, setting runningSince appropriately when they find the matching timer.

First we define the handling functions:

WOW! eBook
www.wowebook.org

Components 112

time_tracking_app/public/js/app-7.js

// Inside TimersDashboard

handleTrashClick = (timerId) => {

this.deleteTimer(timerId);

};

handleStartClick = (timerId) => {

this.startTimer(timerId);

};

handleStopClick = (timerId) => {

this.stopTimer(timerId);

};

And then startTimer() and stopTimer():

time_tracking_app/public/js/app-7.js

deleteTimer = (timerId) => {

this.setState({

timers: this.state.timers.filter(t => t.id !== timerId),

});

};

startTimer = (timerId) => {

const now = Date.now();

this.setState({

timers: this.state.timers.map((timer) => {

if (timer.id === timerId) {

return Object.assign({}, timer, {

runningSince: now,

});

} else {

return timer;

}

}),

});

};

stopTimer = (timerId) => {

const now = Date.now();

WOW! eBook
www.wowebook.org

Components 113

this.setState({

timers: this.state.timers.map((timer) => {

if (timer.id === timerId) {

const lastElapsed = now - timer.runningSince;

return Object.assign({}, timer, {

elapsed: timer.elapsed + lastElapsed,

runningSince: null,

});

} else {

return timer;

}

}),

});

};

Finally, we pass them down as props:

time_tracking_app/public/js/app-7.js

{/* Inside TimerDashboard.render() */}

<EditableTimerList

timers={this.state.timers}

onFormSubmit={this.handleEditFormSubmit}

onTrashClick={this.handleTrashClick}

onStartClick={this.handleStartClick}

onStopClick={this.handleStopClick}

/>

When startTimer comes across the relevant timer within its map call, it sets the property run-

ningSince to the current time.

stopTimer calculates lastElapsed, the amount of time that the timer has been running for since it
was started. It adds this amount to elapsed and sets runningSince to null, “stopping” the timer.

Try it out

Save app.js, reload, and behold! You can now create, update, and delete timers as well as actually
use them to time things:

WOW! eBook
www.wowebook.org

Components 114

This is excellent progress. But, without a connection to a server, our app is ephemeral. If we refresh
the page, we lose all of our timer data. Our app does not have any persistence.

A server can give us persistence. We’ll have our server write all changes to timer data to a file.
Instead of hard-coding state inside of the TimersDashboard component, when our app loads it will
query the server and construct its timer state based on the data the server provides. We’ll then have
our React app notify the server about any state changes, like when a timer is started.

Communicating with a server is the last big major building block you’ll need to develop and
distribute real-world web applications with React.

Methodology review

While building our time-logging app, we learned and applied a methodology for building React
apps. Again, those steps were:

1. Break the app into components

We mapped out the component structure of our app by examining the app’s working UI. We
then applied the single-responsibility principle to break components down so that each had
minimal viable functionality.

2. Build a static version of the app

Our bottom-level (user-visible) components rendered HTML based on static props, passed
down from parents.

3. Determine what should be stateful

We used a series of questions to deducewhat data should be stateful. This datawas represented
in our static app as props.

4. Determine in which component each piece of state should live

We used another series of questions to determine which component should own each
piece of state. TimersDashboard owned timer state data and ToggleableTimerForm and
EditableTimer both held state pertaining to whether or not to render a TimerForm.

WOW! eBook
www.wowebook.org

Components 115

5. Hard-code initial states

We then initialized state-owners’ state properties with hard-coded values.
6. Add inverse data flow

We added interactivity by decorating buttons with onClick handlers. These called functions
that were passed in as props down the hierarchy from whichever component owned the
relevant state being manipulated.

The final step is 7. Add server communication. We’ll tackle this in the next chapter.

WOW! eBook
www.wowebook.org

Components & Servers
Introduction

In the last chapter, we used a methodology to construct a React app. State management of timers
takes place in the top-level component TimersDashboard. As in all React apps, data flows from the
top down through the component tree to leaf components. Leaf components communicate events to
state managers by calling prop-functions.

At the moment, TimersDashboard has a hard-coded initial state. Any mutations to the state will
only live as long as the browser window is open. That’s because all state changes are happening
in-memory inside of React. We need our React app to communicate with a server. The server will
be in charge of persisting the data. In this app, data persistence happens inside of a file, data.json.

EditableTimer and ToggleableTimerForm also have hard-coded initial state. But because this state
is just whether or not their forms are open, we don’t need to communicate these state changes to
the server. We’re OK with the forms starting off closed every time the app boots.

Preparation

To help you get familiar with the API for this project and working with APIs in general, we have a
short section where we make requests to the API outside of React.

curl

We’ll use a tool called curl to make more involved requests from the command line.

OS X users should already have curl installed.

Windows users can download and install curl here: https://curl.haxx.se/download.html38.

server.js

Included in the root of your project folder is a file called server.js. This is a Node.js server
specifically designed for our time-tracking app.

You don’t have to know anything about Node.js or about servers in general to work with
the server we’ve supplied. We’ll provide the guidance that you need.

38https://curl.haxx.se/download.html

WOW! eBook
www.wowebook.org

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Components & Servers 117

server.js uses the file data.json as its “store.” The server will read and write to this file to persist
data. You can take a look at that file to see the initial state of the store that we’ve provided.

server.jswill return the contents of data.jsonwhen asked for all items. When notified, the server
will reflect any updates, deletes, or timer stops and starts in data.json. This is how data will be
persisted even if the browser is reloaded or closed.

Before we start working with the server, let’s briefly cover itsAPI. Again, don’t be concerned if this
outline is a bit perplexing. It will hopefully become clearer as we start writing some code.

The Server API

Our ultimate goal in this chapter is to replicate state changes on the server. We’re not going to
move all state management exclusively to the server. Instead, the server will maintain its state (in
data.json) and React will maintain its state (in this case, within this.state in TimersDashboard).
We’ll demonstrate later why keeping state in both places is desirable.

TimersDashboard communicates with the server

If we perform an operation on the React (“client”) state that we want to be persisted, then we also
need to notify the server of that state change. This will keep the two states in sync. We’ll consider
these our “write” operations. The write operations we want to send to the server are:

• A timer is created

WOW! eBook
www.wowebook.org

Components & Servers 118

• A timer is updated
• A timer is deleted
• A timer is started
• A timer is stopped

We’ll have just one read operation: requesting all of the timers from the server.

HTTP APIs

This section assumes a little familiarity with HTTP APIs. If you’re not familiar with HTTP
APIs, you may want to read up on them39 at some point.

However, don’t be deterred from continuing with this chapter for the time being. Essen-
tially what we’re doing is making a “call” from our browser out to a local server and
conforming to a specified format.

text/html endpoint

GET /

This entire time, server.js has actually been responsible for serving the app. When your browser
requests localhost:3000/, the server returns the file index.html. index.html loads in all of our
JavaScript/React code.

Note that React never makes a request to the server at this path. This is just used by the
browser to load the app. React only communicates with the JSON endpoints.

JSON endpoints

data.json is a JSON document. As touched on in the last chapter, JSON is a format for storing
human-readable data objects. We can serialize JavaScript objects into JSON. This enables JavaScript
objects to be stored in text files and transported over the network.

data.json contains an array of objects. While not strictly JavaScript, the data in this array can be
readily loaded into JavaScript.

In server.js, we see lines like this:

39http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/

WOW! eBook
www.wowebook.org

http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/
http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/

Components & Servers 119

fs.readFile(DATA_FILE, function(err, data) {

const timers = JSON.parse(data);

// ...

});

data is a string, the JSON. JSON.parse() converts this string into an actual JavaScript array of
objects.

GET /api/timers

Returns a list of all timers.

POST /api/timers

Accepts a JSON body with title, project, and id attributes. Will insert a new timer object into its
store.

POST /api/timers/start

Accepts a JSON body with the attribute id and start (a timestamp). Hunts through its store and
finds the timer with the matching id. Sets its runningSince to start.

POST /api/timers/stop

Accepts a JSON body with the attribute id and stop (a timestamp). Hunts through its store and finds
the timer with the matching id. Updates elapsed according to how long the timer has been running
(stop - runningSince). Sets runningSince to null.

PUT /api/timers

Accepts a JSON body with the attributes id and title and/or project. Hunts through its store and
finds the timer with the matching id. Updates title and/or project to new attributes.

DELETE /api/timers

Accepts a JSON body with the attribute id. Hunts through its store and deletes the timer with the
matching id.

Playing with the API

If your server is not booted, make sure to boot it:

npm start

You can visit the endpoint /api/timers endpoint in your browser and see the JSON response
(localhost:3000/api/timers). When you visit a new URL in your browser, your browser makes a
GET request. So our browser calls GET /api/timers and the server returns all of the timers:

WOW! eBook
www.wowebook.org

Components & Servers 120

Note that the server stripped all of the extraneous whitespace in data.json, including newlines, to
keep the payload as small as possible. Those only exist in data.json to make it human-readable.

We can use a Chrome extension like JSONView40 to “humanize” the raw JSON. JSONView takes
these raw JSON chunks and adds back in the whitespace for readability:

Visiting the endpoint after installing JSONView

We can only easily use the browser to make GET requests. For writing data — like starting and
stopping timers — we’ll have to make POST, PUT, or DELETE requests. We’ll use curl to play around
with writing data.

Run the following command from the command line:

40https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc

WOW! eBook
www.wowebook.org

https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc

Components & Servers 121

$ curl -X GET localhost:3000/api/timers

The -X flag specifies which HTTP method to use. It should return a response that looks a bit like
this:

[{"title":"Mow the lawn","project":"House Chores","elapsed":5456099,"id":"0a4a79\

cb-b06d-4cb1-883d-549a1e3b66d7"},{"title":"Clear paper jam","project":"Office Ch\

ores","elapsed":1273998,"id":"a73c1d19-f32d-4aff-b470-cea4e792406a"},{"title":"P\

onder origins of universe","project":"Life Chores","id":"2c43306e-5b44-4ff8-8753\

-33c35adbd06f","elapsed":11750,"runningSince":"1456225941911"}]

You can start one of the timers by issuing a PUT request to the /api/timers/start endpoint. We
need to send along the id of one of the timers and a start timestamp:

$ curl -X POST \

-H 'Content-Type: application/json' \

-d '{"start":1456468632194,"id":"a73c1d19-f32d-4aff-b470-cea4e792406a"}' \

localhost:3000/api/timers/start

The -H flag sets a header for our HTTP request, Content-Type. We’re informing the server that the
body of the request is JSON.

The -d flag sets the body of our request. Inside of single-quotes '' is the JSON data.

When you press enter, curl will quickly return without any output. The server doesn’t return
anything on success for this endpoint. If you open up data.json, you will see that the timer you
specified now has a runningSince property, set to the value we specified as start in our request.

If you’d like, you can play around with the other endpoints to get a feel for how they work. Just be
sure to set the appropriate method with -X and to pass along the JSON Content-Type for the write
endpoints.

We’ve written a small library, client, to aid you in interfacing with the API in JavaScript.

Note that the backslash \ above is only used to break the command out over multiple lines
for readability. This only works on macOS and Linux. Windows users can just type it out
as one long string.

Tool tip: jq
macOS and Linux users: If you want to parse and process JSON on the command line, we highly
recommend the tool “jq.”

You can pipe curl responses directly into jq to have the response pretty-formatted:

WOW! eBook
www.wowebook.org

Components & Servers 122

curl -X GET localhost:3000/api/timers | jq '.'

You can also do some powerful manipulation of JSON, like iterating over all objects in the response
and returning a particular field. In this example, we extract just the id property of every object in
an array:

curl -X GET localhost:3000/api/timers | jq '.[] | { id }'

You can download jq here: https://stedolan.github.io/jq/a.

ahttps://stedolan.github.io/jq/

Loading state from the server

Right now, we set initial state in TimersDashboard by hardcoding a JavaScript object, an array of
timers. Let’s modify this function to load data from the server instead.

We’ve written the client library that your React app will use to interact with the server, client. The
library is defined in public/js/client.js. We’ll use it first and then take a look at how it works in
the next section.

The GET /api/timers endpoint provides a list of all timers, as represented in data.json. We can use
client.getTimers() to call this endpoint from our React app. We’ll do this to “hydrate” the state
kept by TimersDashboard.

When we call client.getTimers(), the network request is made asynchronously. The function call
itself is not going to return anything useful:

// Wrong

// `getTimers()` does not return the list of timers

const timers = client.getTimers();

Instead, we can pass getTimers() a success function. getTimers() will invoke that function after it
hears back from the server if the server successfully returned a result. getTimers() will invoke the
function with a single argument, the list of timers returned by the server:

WOW! eBook
www.wowebook.org

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Components & Servers 123

// Passing `getTimers()` a success function

client.getTimers((serverTimers) => (

// do something with the array of timers, `serverTimers`

));

client.getTimers() uses the Fetch API, which we cover in the next section. For our
purposes, the important thing to know is that when getTimers() is invoked, it fires off
the request to the server and then returns control flow immediately. The execution of our
program does not wait for the server’s response. This is why getTimers() is called an
asynchronous function.

The success function we pass to getTimers() is called a callback. We’re saying: “When
you finally hear back from the server, if it’s a successful response, invoke this function.”
This asynchronous paradigm ensures that execution of our JavaScript is not blocked by
I/O.

We’ll initialize our component’s state with the timers property set to a blank array. This will allow
all components to mount and perform their initial render. Then, we can populate the app by making
a request to the server and setting the state:

time_tracking_app/public/js/app-8.js

class TimersDashboard extends React.Component {

state = {

timers: [],

};

componentDidMount() {

this.loadTimersFromServer();

setInterval(this.loadTimersFromServer, 5000);

}

loadTimersFromServer = () => {

client.getTimers((serverTimers) => (

this.setState({ timers: serverTimers })

)

);

};

// ...

A timeline is the best medium for illustrating what happens:

WOW! eBook
www.wowebook.org

Components & Servers 124

1. Before initial render

React initializes the component. state is set to an object with the property timers, a blank
array, is returned.

2. The initial render

React then calls render() on TimersDashboard. In order for the render to complete, Editable-
TimerList and ToggleableTimerForm — its two children — must be rendered.

3. Children are rendered

EditableTimerList has its render method called. Because it was passed a blank data array, it
simply produces the following HTML output:

<div id='timers'>

</div>

ToggleableTimerForm renders its HTML, which is the “+” button.
4. Initial render is finished

With its children rendered, the initial render of TimersDashboard is finished and the HTML
is written to the DOM.

5. componentDidMount is invoked

Now that the component is mounted, componentDidMount() is called on TimersDashboard.

This method calls loadTimersFromServer(). In turn, that function calls client.getTimers().
That will make the HTTP request to our server, requesting the list of timers. When client

hears back, it invokes our success function.

On invocation, the success function is passed one argument, serverTimers. This is the array
of timers returned by the server. We then call setState(), which will trigger a new render.
The new render populates our app with EditableTimer children and all of their children. The
app is fully loaded and at an imperceptibly fast speed for the end user.

We also do one other interesting thing in componentDidMount. We use setInterval() to ensure
loadTimersFromServer() is called every 5 seconds. While we will be doing our best to mirror state
changes between client and server, this hard-refresh of state from the server will ensure our client
will always be correct should it shift from the server.

The server is considered the master holder of state. Our client is a mere replica. This becomes
incredibly powerful in a multi-instance scenario. If you have two instances of your app running
— in two different tabs or two different computers — changes in one will be pushed to the other
within five seconds.

WOW! eBook
www.wowebook.org

Components & Servers 125

Try it out

Let’s have fun with this now. Save app.js and reload the app. You should see a whole new list of
timers, driven by data.json. Any action you take will be wiped out within five seconds. Every five
seconds, state is restored from the server. For instance, try deleting a timer and witness it resiliently
spring back unscathed. Because we’re not telling the server about these actions, its state remains
unchanged.

On the flip-side, you can try modifying data.json. Notice how any modifications to data.jsonwill
be propagated to your app in under five seconds. Neat.

We’re loading the initial state from the server. We have an interval function in place to ensure the
client app’s state does not drift from the server’s in a multi-instance scenario.

We’ll need to inform our server of the rest of our state changes: creates, updates (including starts
and stops), and deletes. But first, let’s pop open the logic behind client to see how it works.

While it is indeed neat that changes to our server data is seamlessly propagated to our view,
in certain applications — like messaging — five seconds is almost an eternity. We’ll cover
the concept of long-polling in a future app. Long-polling enables changes to be pushed to
clients near instantly.

client

If you open up client.js, the first method defined in the library is getTimers():

time_tracking_app/public/js/client.js

function getTimers(success) {

return fetch('/api/timers', {

headers: {

Accept: 'application/json',

},

}).then(checkStatus)

.then(parseJSON)

.then(success);

}

We are using the new Fetch API to perform all of our HTTP requests. Fetch’s interface should look
relatively familiar if you’ve ever used XMLHttpRequest or jQuery’s ajax().

WOW! eBook
www.wowebook.org

Components & Servers 126

Fetch

Until Fetch, JavaScript developers had two options for making web requests: Use XMLHttpRequest
which is supported natively in all browsers or import a library that provides a wrapper around it
(like jQuery’s ajax()). Fetch provides a better interface than XMLHttpRequest. And while Fetch is
still undergoing standardization, it is already supported by a few major browsers. At the time of
writing, Fetch is turned on by default in Firefox 39 and above and Chrome 42 and above.

Until Fetch is more widely adopted by browsers, it’s a good idea to include the library just in case.
We’ve already done so inside index.html:

<!-- inside `head` tags index.html -->

<script src="vendor/fetch.js"></script>

As we can see in client.getTimers(), fetch() accepts two arguments:

• The path to the resource we want to fetch
• An object of request parameters

By default, Fetch makes a GET request, so we’re telling Fetch to make a GET request to /api/timers.
We also pass along one parameter: headers, the HTTP headers in our request. We’re telling the
server we’ll accept only a JSON response.

Attached to the end of our call to fetch(), we have a chain of .then() statements:

time_tracking_app/public/js/client.js

}).then(checkStatus)

.then(parseJSON)

.then(success);

To understand how this works, let’s first review the functions that we pass to each .then()

statement:

• checkStatus(): This function is defined inside of client.js. It checks if the server returned
an error. If the server returned an error, checkStatus() logs the error to the console.

• parseJSON(): This function is also defined inside of client.js. It takes the response object
emitted by fetch() and returns a JavaScript object.

• success(): This is the function we pass as an argument to getTimers(). getTimers() will
invoke this function if the server successfully returned a response.

WOW! eBook
www.wowebook.org

Components & Servers 127

Fetch returns a promise. While wewon’t go into detail about promises, as you can see here a promise
allows you to chain .then() statements. We pass each .then() statement a function. What we’re
essentially saying here is: “Fetching the timers from /api/timers then check the status code returned
by the server. Then, extract the JavaScript object from the response. Then, pass that object to the
success function.”

At each stage of the pipeline, the result of the previous statement is passed as the argument to the
next one:

1. When checkStatus() is invoked, it’s passed a Fetch response object that fetch() returns.
2. checkStatus(), after verifying the response, returns the same response object.
3. parseJSON() is invoked and passed the response object returned by checkStatus().
4. parseJSON() returns the JavaScript array of timers returned by the server.
5. success() is invoked with the array of timers returned by parseJSON().

We could attach an infinite number of .then() statements to our pipeline. This pattern enables
us to chain multiple function calls together in an easy-to-read format that supports asynchronous
functions like fetch().

It’s OK if you’re still uncomfortable with the concept of promises. We’ve written all the
client code for this chapter for you, so you won’t have trouble completing this chapter. You
can come back afterwards to play around with client.js and get a feel for how it works.

You can read more about JavaScript’s Fetch here41 and promises here42.

Looking at the rest of the functions in client.js, you’ll note the methods contain much of the same
boilerplate with small differences based on the endpoint of the API we are calling.

We just looked at getTimers()which demonstrates reading from the server. We’ll look at one more
function, one that writes to the server.

startTimer()makes a POST request to the /api/timers/start endpoint. The server needs the id of
the timer and the start time. That request method looks like:

41https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
42https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Components & Servers 128

time_tracking_app/public/js/client.js

function startTimer(data) {

return fetch('/api/timers/start', {

method: 'post',

body: JSON.stringify(data),

headers: {

'Accept': 'application/json',

'Content-Type': 'application/json',

},

}).then(checkStatus);

}

In addition to headers, the request parameters object that we pass to fetch() has two more
properties:

time_tracking_app/public/js/client.js

method: 'post',

body: JSON.stringify(data),

Those are:

• method: The HTTP request method. fetch() defaults to a GET request, so we specify we’d like
a POST here.

• body: The body of our HTTP request, the data we’re sending to the server.

startTimer() expects an argument, data. This is the object that will be sent along in the body of
our request. It contains the properties id and start. An invocation of startTimer()might look like
this:

// Example invocation of `startTimer()`

startTimer(

{

id: "bc5ea63b-9a21-4233-8a76-f4bca9d0a042",

start: 1455584369113,

}

);

In this example, the body of our request to the server will look like this:

WOW! eBook
www.wowebook.org

Components & Servers 129

{

"id": "bc5ea63b-9a21-4233-8a76-f4bca9d0a042",

"start": 1455584369113

}

The server will extract the id and start timestamp from the body and “start” the timer.

We don’t pass startTimers() a success function. Our app does not need data from the server for
this request and indeed our server will not return anything besides an “OK” anyway.

getTimers() is our only read operation and therefore the only one we’ll pass a success function.
The rest of our calls to the server are writes. Let’s implement those now.

Sending starts and stops to the server

We can use the methods startTimer() and stopTimer() on client to make calls to the appropriate
endpoints on the server. We just need to pass in an object that includes the id of the timer as well
as the time it was started/stopped:

time_tracking_app/public/js/app-9.js

// Inside TimersDashboard

// ...

startTimer = (timerId) => {

const now = Date.now();

this.setState({

timers: this.state.timers.map((timer) => {

if (timer.id === timerId) {

return Object.assign({}, timer, {

runningSince: now,

});

} else {

return timer;

}

}),

});

client.startTimer(

{ id: timerId, start: now }

);

};

WOW! eBook
www.wowebook.org

Components & Servers 130

stopTimer = (timerId) => {

const now = Date.now();

this.setState({

timers: this.state.timers.map((timer) => {

if (timer.id === timerId) {

const lastElapsed = now - timer.runningSince;

return Object.assign({}, timer, {

elapsed: timer.elapsed + lastElapsed,

runningSince: null,

});

} else {

return timer;

}

}),

});

client.stopTimer(

{ id: timerId, stop: now }

);

};

render() {

You might ask: Why do we still manually make the state change within React? Can’t we just inform
the server of the action taken and then update state based on the server, the source of truth? Indeed,
the following implementation is valid:

startTimer: function (timerId) {

const now = Date.now();

client.startTimer(

{ id: timerId, start: now }

).then(loadTimersFromServer);

},

We can chain a .then() to startTimer() as that function returns our original promise object.
The last stage of the startTimer() pipeline would then be invoking the function loadTimers-

FromServer(). So immediately after the server processes our start timer request, we would make a
subsequent request asking for the latest list of timers. This response would contain the now-running
timer. React’s state updates and the running timer would then be reflected in the UI.

WOW! eBook
www.wowebook.org

Components & Servers 131

Again, this is valid. However, the user experience will leave something to be desired. Right now,
clicking the start/stop button gives instantaneous feedback because the state changes locally and
React immediately re-renders. If we waited to hear back from the server, there might be a noticeable
delay between the action (mouse click) and the response (timer starts running). You can try it yourself
locally, but the delay would be most noticeable if the request had to go out over the internet.

What we’re doing here is called optimistic updating. We’re updating the client locally before
waiting to hear from the server. This duplicates our state update efforts, as we perform updates
on both the client and the server. But it makes our app as responsive as possible.

The “optimism” we have here is that the request will succeed and not fail with an error.

Using the same pattern as we did with starts and stops, see if you can implement creates, updates,
and deletes on your own. Come back and compare your work with the next section.

Optimistic updating: Validations
Whenever we optimistic update, we always try to replicate whatever restrictions the server would
have. This way, our client state changes under the same conditions as our server state.

For example, imagine if our server enforced that a timer’s title cannot contain symbols. But the
client did not enforce such a restriction. What would happen?

A user has a timer named Gardening. He feels a bit cheeky and renames it Gardening :P. The UI
immediately reflects his changes, displaying Gardening :P as the new name of the timer. Satisfied,
the user is about to get up and grab his shears. But wait! His timer’s name suddenly snaps back to
Gardening.

To successfully pull off eager updating, we must diligently replicate the code that manages state
changes on both the client and the server. Furthermore, in a production app we should surface any
errors the request to the server returns in the event that there is an inconsistency in the code or a
fluke (the server is down).

Sending creates, updates, and deletes to the server

WOW! eBook
www.wowebook.org

Components & Servers 132

time_tracking_app/public/js/app-complete.js

// Inside TimersDashboard

// ...

createTimer = (timer) => {

const t = helpers.newTimer(timer);

this.setState({

timers: this.state.timers.concat(t),

});

client.createTimer(t);

};

updateTimer = (attrs) => {

this.setState({

timers: this.state.timers.map((timer) => {

if (timer.id === attrs.id) {

return Object.assign({}, timer, {

title: attrs.title,

project: attrs.project,

});

} else {

return timer;

}

}),

});

client.updateTimer(attrs);

};

deleteTimer = (timerId) => {

this.setState({

timers: this.state.timers.filter(t => t.id !== timerId),

});

client.deleteTimer(

{ id: timerId }

);

};

startTimer = (timerId) => {

Recall that, in createTimer() and updateTimer() respectively, the timer and attrs objects contain

WOW! eBook
www.wowebook.org

Components & Servers 133

an id property, as required by the server.

For creates, we need to send a full timer object. It should have an id, a title, and a project. For
updates, we can send an id along with just whatever attributes are being updated. Right now, we
always send along title and project regardless of what has changed. But it’s worth noting this
difference as it’s reflected in the variable names that we are using (timer vs attrs).

Give it a spin

We are now sending all of our state changes to the server. Save app.js and reload the app. Add
some timers, start some timers, and refresh and note that everything is persisted. You can even
make changes to your app in one browser tab and see the changes propagate to another tab.

Next up

We’ve worked through a reusable methodology for building React apps and now have an under-
standing of how we connect a React app to a web server. Armed with these concepts, you’re already
equipped to build a variety of dynamic web applications.

In imminent chapters, we’ll cover a variety of different component types that you encounter across
the web (like forms and date pickers). We’ll also explore state management paradigms for more
complex applications.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM
React Uses a Virtual DOM

React works differently than many earlier front-end JavaScript frameworks in that instead of
working with the browser’s DOM, it builds a virtual representation of the DOM. By virtual,
we mean a tree of JavaScript objects that represent the “actual DOM”. More on this in a minute.

In React, we do not directly manipulate the actual DOM. Instead, we must manipulate the virtual
representation and let React take care of changing the browser’s DOM.

As we’ll see in this chapter, this is a very powerful feature but it requires us to think differently
about how we build web apps.

Why Not Modify the Actual DOM?

It’s worth asking: why do we need a Virtual DOM? Can’t we just use the “actual-DOM”?

When we do “classic-“ (e.g. jQuery-) style web development, we would typically:

1. locate an element (using document.querySelector or document.getElementById) and then
2. modify that element directly (say, by calling .innerHTML() on the element).

This style of development is problematic in that:

• It’s hard to keep track of changes - it can become difficult keep track of current (and prior)
state of the DOM to manipulate it into the form we need

• It can be slow - modifying the actual-DOM is a costly operation, and modifying the DOM
on every change can cause poor performance

What is a Virtual DOM?

The Virtual DOM was created to deal with these issues. But what is the Virtual DOM anyway?

The Virtual DOM is a tree of JavaScript objects that represents the actual DOM.

One of the interesting reasons to use the Virtual DOM is the API it gives us. When using the Virtual
DOM we code as if we’re recreating the entire DOM on every update.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 135

This idea of re-creating the entire DOM results in an easy-to-comprehend development model:
instead of the developer keeping track of all DOM state changes, the developer simply returns the
DOM they wish to see. React takes care of the transformation behind the scenes.

This idea of re-creating the Virtual DOM every update might sound like a bad idea: isn’t it going
to be slow? In fact, React’s Virtual DOM implementation comes with important performance
optimizations that make it very fast.

The Virtual DOM will:

• use efficient diffing algorithms, in order to know what changed
• update subtrees of the DOM simultaneously
• batch updates to the DOM

All of this results in an easy-to-use and optimized way to build web apps.

Virtual DOM Pieces

Again, when building a web app in React, we’re not working directly with the browser’s “actual
DOM” directly, but instead a virtual representation of it. Our job is to provide React with enough
information to build a JavaScript object that represents what the browser will render.

But what does this Virtual DOM JavaScript object actually consist of?

React’s Virtual DOM is a tree of ReactElements.

Understanding the Virtual DOM, ReactElements, and how they interact with the “actual DOM” is
a lot easier to understand by working through some examples, which we’ll do below.

Q: Virtual DOM vs. Shadow DOM, are they the same thing? (A: No)

Maybe you’ve heard of the “Shadow DOM” and you’re wondering, is the Shadow DOM
the same thing as the Virtual DOM? The answer is no.

The Virtual DOM is a tree of JavaScript objects that represent the real DOM elements.

The Shadow DOM is a form of encapsulation on our elements. Think about using the
<video> tag in your browser. In a video tag, your browser will create a set of video controls
such as a play button, a timecode number, a scrubber progress bar etc. These elements aren’t
part of your “regular DOM”, but instead, part of the “Shadow DOM”.

Talking about the Shadow DOM is outside the scope of this chapter. But if you want to
learn more about the Shadow DOM checkout this article: Introduction to Shadow DOM43

43http://webcomponents.org/articles/introduction-to-shadow-dom/

WOW! eBook
www.wowebook.org

http://webcomponents.org/articles/introduction-to-shadow-dom/
http://webcomponents.org/articles/introduction-to-shadow-dom/

JSX and the Virtual DOM 136

ReactElement

A ReactElement is a representation of a DOM element in the Virtual DOM.

React will take these ReactElements and place them into the “actual DOM” for us.

One of the best ways to get an intuition about ReactElement is to play around with it in our browser,
so let’s do that now.

Experimenting with ReactElement

Try this in your browser

For this section, open up the file code/jsx/basic/index.html (from the code
download) in your browser.

Then open up your developer console and type commands into the console. You
can access the console in Chrome by right-clicking and picking “Inspect” and then
clicking on “Console” in the inspector.

Basic Console

We’ll start by using a simple HTML template that includes one <div> element with an id tag:

1 <div id='root' />

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 137

Root Element

Let’s walk through how we render a tag in our (actual) DOM using React. Of course, we
are not going to create a tag directly in the DOM (like we might if we were using jQuery).

Instead, React expects us to provide a Virtual DOM tree. That is, we’re going to give React a set of
JavaScript objects which React will turn into a real DOM tree.

The objects that make up the tree will be ReactElements. To create a ReactElement, we use the
createElement method provided by React.

For instance, to create a ReactElement that represents a (bold) element in React, type the
following in the browser console:

1 var boldElement = React.createElement('b');

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 138

boldElement is a ReactElement

Our boldElement above is an instance of a ReactElement. Now, we have this boldElement, but it’s
not visible without giving it to React to render in the actual DOM tree.

Rendering Our ReactElement

In order to render this element to the actual DOM tree we need to use ReactDOM.render() (which
we cover in more detail a bit later in this chapter. ReactDOM.render() requires two things:

1. The root of our virtual tree
2. the mount location where we want React write to the actual browser DOM

In our simple template we want to get access to the div tag with an id of root. To get a reference
to our actual DOM root element, we use one of the following:

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 139

1 // Either of these will work

2 var mountElement = document.getElementById('root');

3 var mountElement = document.querySelector('#root');

4

5 // if we were using jQuery this would work too

6 var mountElement = $('#root')

With our mountElement retrieved from the DOM, we can give React a point to insert it’s own
rendered DOM.

1 var boldElement = React.createElement('b');

2 var mountElement = document.querySelector('#root');

3 // Render the boldElement in the DOM tree

4 ReactDOM.render(boldElement, mountElement);

Despite the fact that nothing appears in the DOM, a new empty element has been inserted into the
document as a child of the mountElement.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 140

If we click the “Elements” tab in the Chrome inspector, we can see that a b tag was created
in the actual DOM.

Adding Text (with children)

Although we now have a b tag in our DOM, it would be nice if we could add some text in the tag.
Because text is in-between the opening and closing b tags, adding text is a matter of creating a child
of the element.

Above, we used React.createElement with only a single argument ('b' for the b tag), however the
React.createElement() function accepts three arguments:

1. The DOM element type
2. The element props
3. The children of the element

We’ll walk through props in detail later in this section, so for now we’ll set this parameter to null.

The children of the DOM element must be a ReactNode object, which is any of the following:

1. ReactElement

2. A string or a number (a ReactText object)
3. An array of ReactNodes

For example, to place text in our boldElement, we can pass a string as the third argument in the
createElement() function from above:

1 var mountElement = document.querySelector('#root');

2 // Third argument is the inner text

3 var boldElement = React.createElement('b', null, "Text (as a string)");

4 ReactDOM.render(boldElement, mountElement);

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 141

ReactDOM.render()

Aswe’ve seen, we use a React renderer places the virtual tree into a “hard” browser view (the “actual”
DOM).

But there’s a neat side effect of React using it’s own virtual representation of the view-tree: it can
render this tree in multiple types of canvases.

That is, not only can React render into the browser’s DOM, but it can also be used to render views
in other frameworks such as mobile apps. In React Native (which we talk about later in this book),
this tree is rendered into native mobile views.

That said, in this section we’ll spendmost of our time in the DOM, so we’ll use the ReactDOM renderer
to manage elements in the browser DOM.

As we’ve seen ReactDOM.render() is the way we get our React app into the DOM:

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 142

1 // ...

2 const component = ReactDOM.render(boldElement, mountElement);

We can call the ReactDOM.render() function multiple times and it will only perform updates
(mutations) to the DOM as necessary.

The ReactDOM.render function accepts a 3rd argument: a callback argument that is executed after
the component is rendered/updated. We can use this callback as a way to run functions after our
app has started:

1 ReactDOM.render(boldElement, mountElement, function() {

2 // The React app has been rendered/updated

3 });

JSX

JSX Creates Elements

When we created our ReactElement earlier, we used React.createElement like this:

1 var boldElement = React.createElement('b', null, "Text (as a string)");

This works fine as we had a small component, but if we had many nested components the syntax
could get messy very quickly. Our DOM is hierarchical and our React component tree is hierarchical
as well.

We can think of it this way: to describe pages to our browser we write HTML; the HTML is parsed
by the browser to create HTML Elements which become the DOM.

HTML works very well for specifying tag hierarchies. It would be nice to represent our React
component tree using markup, much like we do for HTML.

This is the idea behind JSX.

When using JSX, creating the ReactElement objects are handled for us. Instead of calling Re-

act.createElement for each element, the equivalent structure in JSX is:

1 var boldElement = Text (as a string);

2 // => boldElement is now a ReactElement

The JSX parser will read that string and call React.createElement for us.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 143

JSX stands for JavaScript Syntax Extension, and it is a syntax React provides that looks a lot like
HTML/XML. Rather than building our component trees using normal JavaScript directly, we write
our components almost as if we were writing HTML.

JSX provides a syntax that is similar to HTML. However, in JSX we can create our own tags (which
encapsulate functionality of other components).

Although it has a scary-sounding name, writing JSX is not much more difficult than writing HTML.
For instance, here is a JSX component:

1 const element = <div>Hello world</div>;

One difference between React components and HTML tags is in the naming. HTML tags start with
a lowercase letter, while React components start with an uppercase. For example:

1 // html tag

2 const htmlElement = (<div>Hello world</div>);

3

4 // React component

5 const Message = props => (<div>{props.text}</div>)

6

7 // Use our React component with a `Message` tag

8 const reactComponent = (<Message text="Hello world" />);

We often surround JSXwith parenthesis (). Although this is not always technically required, it helps
us set apart JSX from JavaScript.

Our browser doesn’t know how to read JSX, so how is JSX possible?

JSX is transformed into JavaScript by using a pre-processor build-tool before we load it with
the browser.

When we write JSX, we pass it through a “compiler” (sometimes we say the code is transpiled) that
converts the JSX to JavaScript. The most common tool for this is a plugin to babel, which we’ll cover
later.

Besides being able to write HTML-like component trees, JSX provides another advantage: we can
mix JavaScript with our JSX markup. This lets us add logic inline with our views.

We’ve seen basic examples of JSX several times in this book already. What is different in this section
is that we’re going to take a more structured look at the different ways we can use JSX. We’ll cover
tips for using JSX and then talk about how to handle some tricky cases.

Let’s look at:

• attribute expressions
• child expressions
• boolean attributes
• and comments

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 144

JSX Attribute Expressions

In order to use a JavaScript expression in a component’s attribute, we wrap it in curly braces {}
instead of quotes "".

1 // ...

2 const warningLevel = 'debug';

3 const component = (<Alert

4 color={warningLevel === 'debug' ? 'gray' : 'red'}

5 log={true} />)

This example uses the ternary operator44 on the color prop.

If the warningLevel variable is set to debug, then the color prop will be 'gray', otherwise it will
be 'red'.

JSX Conditional Child Expressions

Another common pattern is to use a boolean checking expression and then render another element
conditionally.

For instance, if we’re building a menu that shows options for an admin user, we might write:

1 // ...

2 const renderAdminMenu = function() {

3 return (<MenuLink to="/users">User accounts</MenuLink>)

4 }

5 // ...

6 const userLevel = this.props.userLevel;

7 return (

8

9 Menu

10 {userLevel === 'admin' && renderAdminMenu()}

11

12)

We can also use the ternary operator to render one component or another.

For instance, if we want to show a <UserMenu> component for a logged in user and a <LoginLink>
for an anonymous user, we can use this expression:

44https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

JSX and the Virtual DOM 145

1 const Menu = ({loggedInUser ? <UserMenu /> : <LoginLink />})

JSX Boolean Attributes

In HTML, the presence of some attributes sets the attribute to true. For instance, a disabled <input>

HTML element can be defined:

1 <input name='Name' disabled />

In React we need to set these as booleans. That is, we need to pass a true or false explicitly as an
attribute:

1 // Set the boolean in brackets directly

2 <input name='Name' disabled={true} />

3

4 // ... or use JavaScript variables

5 let formDisabled = true;

6 <input name='Name' disabled={formDisabled} />

If we ever need to enable the input above, then we set formDisabled to false.

JSX Comments

We can define comments inside of JSX by using the curly braces ({}) with comment delimiters (/*
*/):

let userLevel = 'admin';

{/*

Show the admin menu if the userLevel is 'admin'

*/}

{userLevel === 'admin' && <AdminMenu />}

JSX Spread Syntax

Sometimes when we have many props to pass to a component, it can be cumbersome to list each
one individually. Thankfully, JSX has a shortcut syntax that makes this easier.

For instance, if we have a props object that has two keys:

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 146

const props = {msg: "Hello", recipient: "World"}

We could pass each prop individually like this:

<Component msg={"Hello"} recipient={"World"} />

But by using the JSX spread syntax we can do it like this instead:

<Component {...props} />

<!-- essentially the same as this: -->

<Component msg={"Hello"} recipient={"World"} />

JSX Gotchas

Although JSX mimics HTML, there are a few important differences to pay attention to.

Here’s a few things to keep in mind:

JSX Gotcha: class and className

When we want to set the CSS class of an HTML element, we normally use the class attribute in
the tag:

1 <div class='box'></div>

Since JSX is so closely tied to JavaScript, we cannot use identifiers that JavaScript uses in our tag
attributes. Attributes such as for and class conflict with the JavaScript keywords for and class.

Instead of using class to identify a class, JSX uses className:

1 <!-- Same as <div class='box'></div> -->

2 <div className='box'></div>

The className attributes works similarly to the class attribute in HTML. It expects to receive a
string that identifies the class (or classes) associated with a CSS class.

To pass multiple classes in JSX, we can join an array to convert it to a string:

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 147

1 var cssNames = ['box', 'alert']

2 // and use the array of cssNames in JSX

3 (<div className={cssNames.join(' ')}></div>)

Tip: Managing className with classnames

The classnames npm package45 is a great extension that we use to help manage css classes. It can
take a list of strings or objects and allows us to conditionally apply classes to an element.

The classnames package takes the arguments, converts them to an object and conditionally applies
a CSS class if the value is truthy.

code/jsx/basic/app.js

class App extends React.Component {

render() {

const klass = classnames({

box: true, // always apply the box class

alert: this.props.isAlert, // if a prop is set

severity: this.state.onHighAlert, // with a state

timed: false // never apply this class

});

return (<div className={klass} />)

}

}

The package readme46 provides alternate examples for more complex environments.

JSX Gotcha: for and htmlFor

For the same reasonwe cannot use the class attribute, we cannot apply the for attribute to a <label>
element. Instead, we must use the attribute htmlFor. The property is a pass-through property in that
it applies the attribute as for:

1 <!-- ... -->

2 <label htmlFor='email'>Email</label>

3 <input name='email' type='email' />

4 <!-- ... -->

JSX Gotcha: HTML Entities and Emoji

Entities are reserved characters in HTML which include characters such as less-than <, greater-than
>, the copyright symbol, etc. In order to display entities, we can just place the entity code in literal
text.

45https://www.npmjs.com/package/classnames
46https://github.com/JedWatson/classnames/blob/master/README.md

WOW! eBook
www.wowebook.org

https://www.npmjs.com/package/classnames
https://github.com/JedWatson/classnames/blob/master/README.md
https://www.npmjs.com/package/classnames
https://github.com/JedWatson/classnames/blob/master/README.md

JSX and the Virtual DOM 148

1

2 phone: ☎

3 star: ☆

4

In order to display entities in dynamic data, we need to surround them in a string inside of curly
braces ({}). Using unicode directly in JS works as expected. Just as we can send our JS to the browser
as UTF-8 text directly. Our browser knows how to display UTF-8 code natively.

Alternatively, instead of using the entity character code, we can use unicode version instead.

1 return (

2

3 phone: {'\u0260e'}

4 star: {'\u2606'}

5

6)

Emoji are just unicode character sequences, so we can add emoji the same way:

1 return(

2

3 dolphin: {'\uD83D\uDC2C'}

4 dolphin: {'\uD83D\uDC2C'}

5 dolphin: {'\uD83D\uDC2C'}

6

7)

Everyone needs more dolphins

JSX Gotcha: data-anything

If we want to apply our own attributes that the HTML spec does not cover, we have to prefix the
attribute key with the string data-.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 149

1 <div className='box' data-dismissible={true} />

2

This requirements only applies to DOM components that are native to HTML and does not mean
custom components cannot accept arbitrary keys as props. That is, we can accept any attribute on a
custom component:

1 <Message dismissible={true} />

2 <Note highlight={true} />

There are a standard set of web accessibility47 attributes48 and its a good idea to use them because
there are many people who will have a hard time using our site without them. We can use any of
these attribute on an element with the key prepended with the string aria-. For instance, to set the
hidden attribute:

1 <div aria-hidden={true} />

JSX Summary

JSX isn’t magic. The key thing to keep inmind is that JSX is syntactic sugar to call React.createElement.

JSX is going to parse the tags we write and then create JavaScript objects. JSX is a convenience
syntax to help build the component tree.

As we saw earlier, when we use JSX tags in our code, it gets converted to a ReactElement:

1 var boldElement = Text (as a string);

2 // => boldElement is now a ReactElement

We can pass that ReactElement to ReactDOM.render and see our code rendered on the page.

There’s one problem though: ReactElement is stateless and immutable. If we want to add interac-
tivity (with state) into our app, we need another piece of the puzzle: ReactComponent.

In the next chapter, we’ll talk about ReactComponents in depth.

47https://www.w3.org/WAI/intro/aria
48https://www.w3.org/TR/wai-aria/

WOW! eBook
www.wowebook.org

https://www.w3.org/WAI/intro/aria
https://www.w3.org/TR/wai-aria/
https://www.w3.org/WAI/intro/aria
https://www.w3.org/TR/wai-aria/

JSX and the Virtual DOM 150

References

Here are some places to read more about JSX and the Virtual DOM:

• JSX in Depth49 - (Facebook)
• If-Else in JSX50 - (Facebook)
• React (Virtual) DOM Terminology51 - (Facebook)
• What is Virtual DOM52 - (Jack Bishop)

49https://facebook.github.io/react/docs/jsx-in-depth.html
50https://facebook.github.io/react/tips/if-else-in-JSX.html
51https://facebook.github.io/react/docs/glossary.html
52http://jbi.sh/what-is-virtual-dom/

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/jsx-in-depth.html
https://facebook.github.io/react/tips/if-else-in-JSX.html
https://facebook.github.io/react/docs/glossary.html
http://jbi.sh/what-is-virtual-dom/
https://facebook.github.io/react/docs/jsx-in-depth.html
https://facebook.github.io/react/tips/if-else-in-JSX.html
https://facebook.github.io/react/docs/glossary.html
http://jbi.sh/what-is-virtual-dom/

Advanced Component Configuration
with props, state, and children

Unlike the rest of the chapters in this book, this chapter is intended on being read as
an in-depth, deep dive into the different features of React, from an encylopedia-like
perspective. For this reason, we did not include a step-by-step follow-along style project
in this section of the book.

Intro

In this chapter we’re going to dig deep into the configuration of components.

A ReactComponent is a JavaScript object that, at a minimum, has a render() function. render() is
expected to return a ReactElement.

Recall that ReactElement is a representation of a DOM element in the Virtual DOM.

In the chapter on JSX and the Virtual DOM we talked about ReactElement extensively.
Checkout that chapter if you want to understand ReactElement better.

The goal of a ReactComponent is to

• render() a ReactElement (which will eventually become the real DOM) and
• attach functionality to this section of the page

“Attaching functionality” is a bit ambiguous; it includes attaching event handlers, managing state,
interacting with children, etc. In this chapter we’re going to cover:

• render() - the one required function on every ReactComponent

• props - the “input parameters” to our components
• context - a “global variable” for our components
• state - a way to hold data that is local to a component (that affects rendering)
• Stateless components - a simplified way to write reusable components
• children - how to interact and manipulate child components
• statics - how to create “class methods” on our components

Let’s get started!

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 152

How to use this chapter

This chapter is built using a specific tool called styleguidist. In the code includedwith this course is
a section called components-cookbook, which accompanies this chapter with the styleguidist tool
bundled in with it. To use the styleguidist tool, which allows introspection into the components
themselves, we can boot up the section through the chapter.

In order to get it started, change into the directory in terminal and issue the following commands.
First, we’ll need to get the dependencies for the project using npm install:

1 npm install

To start the application, issue the npm start command:

1 npm start

Once the server is running, we can navigate to our browser and head to the URL of http://localhost:3000.
We’ll see the styleguide running with all the components exposed by this chapter, where we can
navigate through running examples of the components executing in real-time.

ReactComponent

Creating ReactComponents - createClass or ES6 Classes

As discussed in the first chapter, there are two ways to define a ReactComponent instance:

1. React.createClass() or
2. ES6 classes

As we’ve seen, the two methods of creating components are roughly equivalent:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 153

advanced-components/components-cookbook/src/components/Component/CreateClassApp.js

import React from 'react'

// React.createClass

const App = React.createClass({

render: function() {} // required method

});

export default App

and

advanced-components/components-cookbook/src/components/Component/Components.js

import React from 'react'

// ES6 class-style

class App extends React.Component {

render() {} // required

}

export default App

Regardless of the method we used to define the ReactComponent, React expects us to define the
render() function.

render() Returns a ReactElement Tree

The render() method is the only required method to be defined on a ReactComponent.

After the component is mounted and initialized, render() will be called. The render() function’s
job is to provide React a virtual representation of a native DOM component.

An example of using React.createClass with the render function might look like this

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 154

advanced-components/components-cookbook/src/components/Component/CreateClassHeading.js

3 const CreateClassHeading = React.createClass({

4 render: function() {

5 return (

6 <h1>Hello</h1>

7)

8 }

9 });

Or with ES6 class-style components:

advanced-components/components-cookbook/src/components/Component/Header.js

3 class Heading extends React.Component {

4 render() {

5 return (

6 <h1>Hello</h1>

7)

8 }

9 };

The above code should look familiar. It describes a Heading component class with a single render()
method that returns a simple, single Virtual DOM representation of a <h1> tag.

Remember that this render()method returns a ReactElementwhich isn’t part of the “actual DOM”,
but instead a description of the Virtual DOM.

React expects the method to return a single child element. It can be a virtual representation of a
DOM component or can return the falsy value of null or false. React handles the falsy value by
rendering an empty element (a <noscript /> tag). This is used to remove the tag from the page.

Keeping the render() method side-effect free provides an important optimization and makes our
code easier to understand.

Getting Data into render()

Of course, while render is the only required method, it isn’t very interesting if the only data we can
render is known at compile time. That is, we need a way to:

• input “arguments” into our components and
• maintain state within a component.

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 155

React provides ways to do both of these things, with props and state, respectively.

Understanding these are crucial to making our components dynamic and useable within a larger
app.

In React, props are immutable pieces of data that are passed into child components from parents
(if we think of our component as the “function” we can think of props as our component’s
“arguments”).

Component state is where we hold data, local to a component. Typically, when our component’s
state changes, the component needs to be re-rendered. Unlike props, state is private to a component
and is mutable.

We’ll look at both props and state in detail below. Along the way we’ll also talk about context, a
sort of “implicit props” that gets passed through the whole component tree.

Let’s look at each of these in more detail.

props are the parameters

props are the inputs to your components. If we think of our component as a “function”, we can think
of the props as the “parameters”.

Let’s look at an example:

1 <div>

2 <Header headerText="Hello world" />

3 </div>

In the example code, we’re creating both a <div> and a <Header> element, where the <div> is a usual
DOM element, while <Header> is an instance of our Header component.

In this example, we’re passing data from the component (the string "Hello world") through the
attribute headerText to the component.

Passing data through attributes to the component is often called passing props.

When we pass data to a component through an attribute it becomes available to the component
through the this.props property. So in this case, we can access our headerText through the property
this.props.headerText:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 156

import React from 'react';

export class Header extends React.Component {

render() {

return (

<h1>{this.props.headerText}</h1>

);

}

}

While we can access the headerText property, we cannot change it.

By using props we’ve taken our static component and allowed it to dynamically render whatever
headerText is passed into it. The <Header> component cannot change the headerText, but it can
use the headerText itself or pass it on to its children.

We can pass any JavaScript object through props. We can pass primitives, simple JavaScript objects,
atoms, functions etc. We can even pass other React elements and Virtual DOM nodes.

We can document the functionality of our components using props and we can specify the type of
each prop by using PropTypes.

PropTypes

PropTypes are a way to validate the values that are passed in through our props. Well-defined
interfaces provide us with a layer of safety at the run time of our apps. They also provide a layer of
documentation to the consumer of our components.

We include the prop-types package in our package.json.

We define PropTypes by setting a static (class) property propTypes. This object should be a map of
prop-name keys to PropTypes values:

class Map extends React.Component {

static propTypes = {

lat: PropTypes.number,

lng: PropTypes.number,

zoom: PropTypes.number,

place: PropTypes.object,

markers: PropTypes.array,

};

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 157

If using createClass, we define PropTypes by passing them as an option to createClass():

const Map = React.createClass({

propTypes: {

lat: PropTypes.number,

lng: PropTypes.number

// ...

},

})

In the example above, our component will validate that name is a string and that totalCount is a
number.

There are a number of built-in PropTypes, and we can define our own.

We’ve written a code example for many of the PropTypes validators here in the appendix on
PropTypes. For more details on PropTypes, check out that appendix.

For now, we need to know that there are validators for scalar types:

• string

• number

• boolean

We can also validate complex types such as:

• function

• object

• array

• arrayOf - expects an array of a particular type
• node

• element

We can also validate a particular shape of an input object, or validate that it is an instanceOf a
particular class.

Checkout the appendix on PropTypes for more details and code examples on PropTypes

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 158

Default props with getDefaultProps()

Sometimes we want our props to have defaults. We can use the static property defaultProps to do
this.

For instance, create a Counter component definition and tell the component that if no initialValue
is set in the props to set it to 1 using defaultProps:

class Counter extends React.Component {

static defaultProps = {

initialValue: 1

};

// ...

};

Now the component can be used without setting the initialValue prop. The two usages of the
component are functionally equivalent:

<Counter />

<Counter initialValue={1} />

context

Sometimes we might find that we have a prop which we want to expose “globally”. In this case, we
might find it cumbersome to pass this particular prop down from the root, to every leaf, through
every intermediate component.

Instead, specifying context allows us to automatically pass down variables from component to
component, rather than needing to pass down our props at every level,

The context feature is experimental and it’s similar to using a global variable to handle
state in an application - i.e. minimize the use of context as relying on it too frequently is
a code smell.

That is, context works best for things that truly are global, such as the central store in
Redux.

When we specify a context, React will take care of passing down context from component to
component so that at any point in the tree hierarchy, any component can reach up to the “global”
context where it’s defined and get access to the parent’s variables.

In order to tell React we want to pass context from a parent component to the rest of its children we
need to define two attributes in the parent class:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 159

• childContextTypes and
• getChildContext

To retrieve the context inside a child component, we need to define the contextTypes in the child.

To illustrate, let’s look at a possible message reader implementation:

class Messages extends React.Component {

static propTypes = {

users: PropTypes.array.isRequired,

messages: PropTypes.array.isRequired

};

render() {

return (

<div>

<ThreadList />

<ChatWindow />

</div>

)

}

});

// ThreadList and ChatWindow are also React.Components

Without context, our Messages will have to pass the users along with the messages to the two child
components (which in turn pass them to their children). Let’s set up our hierarchy to accept context
instead of needing to pass down this.props.users and this.props.messages along with every
component.

In the Messages component, we’ll define the two required properties. First, we need to tell React
what the types of our context.

We define this with the childContextTypes key. Similar to propTypes, the childContextTypes is a
key-value object that lists the keys as the name of a context item and the value is a PropType.

Implementing childContextTypes in our Messages component looks like the following:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 160

advanced-components/components-cookbook/src/components/Messages/Messages.js

class Messages extends React.Component {

static propTypes = {

users: PropTypes.array.isRequired,

initialActiveChatIdx: PropTypes.number,

messages: PropTypes.array.isRequired,

};

static childContextTypes = {

users: PropTypes.array,

userMap: PropTypes.object,

};

Just like propTypes, the childContextTypes doesn’t populate the context, it just defines it. In
order to fill data the this.context object, we need to define the second required function:
getChildContext().

With getChildContext() we can set the initial value of our context with the return value of the
function. Back in our Messages component, we will set our users context object to the value of the
this.props.users given to the component.

advanced-components/components-cookbook/src/components/Messages/Messages.js

class Messages extends React.Component {

// ...

static childContextTypes = {

users: PropTypes.array,

userMap: PropTypes.object,

};

// ...

getChildContext() {

return {

users: this.getUsers(),

userMap: this.getUserMap(),

};

}

// ...

}

Since the state and props of a component can change, the context can change as well. The
getChildContext() method in the parent component gets called every time the state or props

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 161

change on the parent component. If the context is updated, then the childrenwill receive the updated
context and will subsequently be re-rendered.

With the two required properties set on the parent component, React automatically passes the object
down it’s subtree where any component can reach into it. In order to grab the context in a child
component, we need to tell React we want access to it. We communicate this to React using the
contextTypes definition in the child.

Without the contextTypes property on the child React component, React won’t know what to send
our component. Let’s give our child components access to the context of our Messages.

advanced-components/components-cookbook/src/components/Messages/ThreadList.js

class ThreadList extends React.Component {

// ...

static contextTypes = {

users: PropTypes.array,

};

// ...

}

advanced-components/components-cookbook/src/components/Messages/ChatWindow.js

class ChatWindow extends React.Component {

// ...

static contextTypes = {

userMap: PropTypes.object,

};

// ...

}

advanced-components/components-cookbook/src/components/Messages/ChatMessage.js

class ChatMessage extends React.Component {

// ...

static contextTypes = {

userMap: PropTypes.object,

};

// ...

}

Now anywhere in any one of our child components (that have contextTypes defined), we can reach
into the parent and grab the users without needing to pass them along manually via props. The
context data is set on the this.context object of the component with contextTypes defined.

For instance, our complete ThreadList might look something like:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 162

advanced-components/components-cookbook/src/components/Messages/ThreadList.js

class ThreadList extends React.Component {

// ...

render() {

return (

<div className={styles.threadList}>

<ul className={styles.list}>

{this.context.users.map((u, idx) => {

return (

<UserListing

onClick={this.props.onClick}

key={idx}

index={idx}

user={u}

/>

);

})}

</div>

);

}

If contextTypes is defined on a component, then several of it’s lifecycle methods will get passed an
additional argument of nextContext:

advanced-components/components-cookbook/src/components/Messages/ThreadList.js

class ThreadList extends React.Component {

// ...

static contextTypes = {

users: PropTypes.array,

};

// ...

componentWillReceiveProps(nextProps, nextContext) {

// ...

}

// ...

shouldComponentUpdate(nextProps, nextState, nextContext) {

// ...

}

// ...

componentWillUpdate(nextProps, nextState, nextContext) {

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 163

// ...

}

// ...

componentDidUpdate(prevProps, prevState, prevContext) {

// ...

}

In a functional stateless component, context will get passed as the second argument:

We talk about stateless components below

advanced-components/components-cookbook/src/components/Messages/ChatHeader.js

const ChatHeader = (props, context) => {

// ...

};

Using global variables in JavaScript is usually a never good idea and context is usually best reserved
for limited situations where a global variable needs to be retrieved, such as a logged-in user. We err
on the side of caution in terms of using context in our production apps and tend to prefer props.

state

The second type of data we’ll deal with in our components is state. To know when to apply state,
we need to understand the concept of stateful components. Any time a component needs to hold on
to a dynamic piece of data, that component can be considered stateful.

For instance, when a light switch is turned on, that light switch is holding the state of “on.” Turning
a light off can be described as flipping the state of the light to “off.”

In building our apps, we might have a switch that describe a particular setting, such as an input that
requires validation, or a presence value for a particular user in a chat application. These are all cases
for keeping state about a component within it.

We’ll refer to components that hold local-mutable data as stateful components. We’ll talk a bit more
below about when we should use component state. For now, know that it’s a good idea to have
as few stateful components as possible. This is because state introduces complexity and makes
composing components more difficult. That said, sometimes we need component-local state, so let’s
look at how to implement it, and we’ll discuss when to use it later..

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 164

Using state: Building a Custom Radio Button

In this example, we’re going to use internal state to build a radio button to switch between payment
methods. Here’s what the form will look like when we’re done:

Simple Switch

Let’s look at how to make a component stateful:

advanced-components/components-cookbook/src/components/Switch/steps/Switch1.js

3 class Switch extends React.Component {

4 state = {};

5

6 render() {

7 return <div>Template will be here</div>;

8 }

9 }

10

11 module.exports = Switch;

That’s it! Of course, just setting state on the component isn’t all that interesting. To use the state on
our component, we’ll reference it using this.state.

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 165

advanced-components/components-cookbook/src/components/Switch/steps/Switch2.js

3 const CREDITCARD = 'Creditcard';

4 const BTC = 'Bitcoin';

5

6 class Switch extends React.Component {

7 state = {

8 payMethod: BTC,

9 };

10

11 render() {

12 return (

13 <div className='switch'>

14 <div className='choice'>Creditcard</div>

15 <div className='choice'>Bitcoin</div>

16 Pay with: {this.state.payMethod}

17 </div>

18);

19 }

20 }

21

22 module.exports = Switch;

In our render function, we can see the choices our users can pick from (although we can’t change
a method of payment yet) and their current choice stored in the component’s state. This Switch
component is now stateful as it’s keeping track of the user’s preferred method of payment.

Our payment switch isn’t yet interactive; we cannot change the state of the component. Let’s hook
up our first bit of interactivity by adding an event handler to run when our user selects a different
payment method.

In order to add interaction, we’ll want to respond to a click event. To add a callback handler to any
component, we can use the onClick attribute on a component. The onClick handler will be fired
anytime the component it’s defined on is clicked.

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 166

advanced-components/components-cookbook/src/components/Switch/steps/Switch3.js

21 return (

22 <div className='switch'>

23 <div

24 className='choice'

25 onClick={this.select(CREDITCARD)} // add this

26 >Creditcard</div>

27 <div

28 className='choice'

29 onClick={this.select(BTC)} // ... and this

30 >Bitcoin</div>

31 Pay with: {this.state.payMethod}

32 </div>

33);

Using the onClick attribute, we’ve attached a callback handler that will be called every time either
one of the <div> elements are clicked.

The onClick handler expects to receive a function that it will call when the click event occurs. Let’s
look at the select function:

advanced-components/components-cookbook/src/components/Switch/steps/Switch3.js

6 class Switch extends React.Component {

7 state = {

8 payMethod: BTC,

9 };

10

11 select = (choice) => {

12 return (evt) => {

13 // <-- handler starts here

14 this.setState({

15 payMethod: choice,

16 });

17 };

18 };

Notice two things about select:

1. It returns a function
2. It uses setState

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 167

Returning a New Function

Notice something interesting about select and onClick: the attribute onClick expects a function
to be passed in, but we’re calling a function first. That’s because the select function will return a
function itself.

This is a common pattern for passing arguments to handlers. We close over the choice argument
when we call select. select returns a new function that will call setState with the appropriate
choice.

When one of the child <div> elements are clicked, the handler function will be called. Note that
select is actually called during render, and it’s the return value of select that gets called onClick.

Updating the State

When the handler function is called, the component will call setState on itself. Calling setState

triggers a refresh, which means the render function will be called again, and we’ll be able to see the
current state.payMethod in our view.

setState has performance implications

Since the setState method triggers a refresh, we want to be careful about how often we
call it.

Modifying the actual-DOM is slow so we don’t want to cause a cascade of setStates to
be called, as that could result it poor performance for our user.

Viewing the Choice

In our component we don’t (yet) have a way to indicate which choice has been selected other than
the accompanying text.

It would be nice if the choice itself had a visual indication of being the selected one. We usually do
this with CSS by applying an active class. In our example, we use the className attribute.

In order to do this, we’ll need to add some logic around which CSS classes to add depending upon
the current state of the component.

But before we add too much logic around the CSS, let’s refactor component to use a function to
render each choice:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 168

advanced-components/components-cookbook/src/components/Switch/steps/Switch4.js

21 <div className='choice' onClick={this.select(choice)}>

22 {choice}

23 </div>

24);

25 };

26

27 render() {

28 return (

29 <div className='switch'>

30 {this.renderChoice(CREDITCARD)}

31 {this.renderChoice(BTC)}

32 Pay with: {this.state.payMethod}

33 </div>

34);

35 }

36 }

37

38 module.exports = Switch;

Now, instead of putting all render code into render() function, we isolate the choice rendering into
it’s own function.

Lastly, let’s add the .active class to the <div> choice component.

advanced-components/components-cookbook/src/components/Switch/steps/Switch5.js

22 const cssClasses = [];

23

24 if (this.state.payMethod === choice) {

25 cssClasses.push(styles.active); // add .active class

26 }

27

28 return (

29 <div

30 className='choice'

31 onClick={this.select(choice)}

32 className={cssClasses}

33 >

34 {choice}

35 </div>

36);

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 169

37 };

38

39 render() {

40 return (

41 <div className='switch'>

42 {this.renderChoice(CREDITCARD)}

43 {this.renderChoice(BTC)}

44 Pay with: {this.state.payMethod}

45 </div>

46);

47 }

Notice that we push the style styles.active onto the cssClassses array. Where did
styles come from?

For this code example, we’re using a webpack loader to import the CSS. Diving in to how
webpack works is beyond the scope of this chapter. But just so you know how we’re using
it, there are two things to know:

1. We’re importing the styles like this: import styles from '../Switch.css';

2. This means all of the styles in that file are accessible like an object - e.g.
styles.active gives us a reference to the .active class from Switch.css

We do it this way because it’s a form of CSS encapsulation. That is, the actual CSS class
won’t actually be .active, which means we won’t conflict with other components that
might use the same class name.

Stateful components

Defining state on our component requires us to set an instance variable called this.state in the
object prototype class. In order to do this, it requires us to set the state in one of two places, either
as a property of the class or in the constructor.

Setting up a stateful component in this way allows us to:

1. It allows us to define the initial state of our component.
2. It tells React that our component will be stateful. Without this method defined, our component

will be considered to be stateless.

For a component, this looks like:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 170

advanced-components/components-cookbook/src/components/InitialState/Component.js

class InitialStateComponent extends React.Component {

// ...

constructor(props) {

super(props)

this.state = {

currentValue: 1,

currentUser: {

name: 'Ari'

}

}

}

// ...

}

In this example, the state object is just a JavaScript object, but we can return anything in this
function. For instance, we may want to set it to a single value:

advanced-components/components-cookbook/src/components/InitialState/Component.js

class Counter extends React.Component {

constructor(props) {

super(props)

this.state = 0

}

}

Setting props inside of our component is usually always a bad idea. Setting the initial value of the
state property is the only time we should ever use props when dealing with a component’s state.
That is, if we ever want to set the value of a prop to the state, we should do it here.

For instance, if we have a component where the prop indicates a value of the component, we should
apply that value to the state in the constructor() method. A better name for the value as a prop
is initialValue, indicating that the initial state of the value will be set.

For example, consider a Counter component that displays some count and contains an increment
and decrement button. We can set the initial value of the counter like this:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 171

advanced-components/components-cookbook/src/components/Counter/CounterWrapper.js

const CounterWrapper = props => (

<div>

<Counter initialValue={125} />

</div>

)

From the usage of the <Counter> component, we know that the value of the Counter will change
simply by the name initialValue. The Counter component can use this prop in constructor(),
like so:

advanced-components/components-cookbook/src/components/Counter/Counter.js

class Counter extends Component {

constructor(props) {

super(props);

this.state = {

value: this.props.initialValue

};

}

// ...

}

Since the constructor is run once and only once before the component itself is mounted, we can use
it to establish our initial state.

State updates that depend on the current state

Counter has buttons for incrementing and decrementing the count:

The Counter component

When the “-“ button is pressed, React will invoke decrement(). decrement() will subtract 1 from
state’s value. Something like this would appear to be sufficient:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 172

advanced-components/components-cookbook/src/components/Counter/Counter1.js

decrement = () => {

// Appears correct, but there is a better way

const nextValue = this.state.value - 1;

this.setState({

value: nextValue,

});

}

However, whenever a state update depends on the current state, it is preferable to pass a
function to setState(). We can do so like this:

advanced-components/components-cookbook/src/components/Counter/Counter.js

decrement = () => {

this.setState(prevState => {

return {

value: prevState.value - 1,

};

});

}

setState() will invoke this function with the previous version of the state as the first argument.

Why is setting state this way necessary? Because setState() is asynchronous.

Here’s an example. Let’s say we’re using the first decrement() method where we pass an object
to setState(). When we invoke decrement() for the first time, value is 125. We’d then invoke
setState(), passing an object with a value of 124.

However, the state will not necessarily be updated immediately. Instead, React will add our
requested state update to its queue.

Let’s say that the user is particularly fast with her mouse and her computer is particularly slow
with its processing. The user manages to click the decrement button again before React gets around
to our previous state update. Responding to user interactions are high-priority, so React invokes
decrement(). The value in state is still 125. So, we enqueue another state update, again setting
value to 124.

React then commits both state updates. To the dismay of our astute and quick-fingered user, instead
of the correct value of 123 the app shows a count of 124.

In our simple example, there’s a thin chance this bug would occur. But as a React app grows in
complexity, React might encounter periods where it is overloaded with high-priority work, like

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 173

animations. And it is conceivable that state updates might be queued for consequential lengths of
time.

Whenever a state transition depends on the current state, using a function to set the state helps to
avoid the chance for such enigmatic bugs to materialize.

For further reading on this topic, see our own Sophia Shoemaker’s post Using a function
in setState instead of an object53.

Thinking About State

Spreading state throughout our app can make it difficult to reason about. When building stateful
components, we should be mindful about what we put in state and why we’re using state.

Generally, we want to minimize the number of components in our apps that keep component-local
state.

If we have a component that has UI states which:

1. cannot be “fetched” from outside or
2. cannot be passed into the component,

that’s usually a case for building state into the component.

However, any data that can be passed in through props or by other components is usually best to
leave untouched. The only information we should ever put in state are values that are not computed
and do not need to be sync’d across the app.

The decision to put state in our components or not is deeply related to the tension between “object-
oriented programming” and “functional programming”.

In functional programming, if you have a pure function, then calling the same function, with the
same arguments, will always return the same value for a given set of inputs. This makes the
behavior of a pure function easy to reason about, because the output is consistent at all times,
with respect to the inputs.

In object-oriented programming you have objects which hold on to state within that object. The
object state then becomes implicit parameters to the methods on the object. The state can change
and so calling the same function, with the same arguments, at different times in your program can
return different answers.

This is related to props and state in React components because you can think of props as
“arguments” to our components and state as “instance variables” to an object.

If our component uses only props for configuring a component (and it does not use state or any

53https://medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1

WOW! eBook
www.wowebook.org

https://medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1
https://medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1
https://medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1

Advanced Component Configuration with props, state, and children 174

other outside variables) then we can easily predict how a particular component will render.

However, if we use mutable, component-local state then it becomes more difficult to understand
what a component will render at a particular time.

Sowhile carrying “implicit arguments” through state can be convenient, it can alsomake the system
difficult to reason about.

That said, state can’t be avoided entirely. The real world has state: when you flip a light switch the
world has now changed - our programs have to be able to deal with state in order to operate in the
real world.

The good news is that there are a variety of tools and patterns that have emerged for dealing with
state in React (notably Flux and its variants), which we talk about elsewhere in the book. The rule
of thumb you should work with is to minimize the number of components with state.

Keeping state is usually good to enforce and maintain consistent UI that wouldn’t otherwise be
updated. Additionally, one more thing to keep in mind is that we should try to minimize the amount
of information we put into our state. The smaller and more serializable we can keep it (i.e. can we
easily turn it into JSON), the better. Not only will our app be the faster, but it will be easier to reason
about. It’s usually a red-flag when our state gets large and/or unmanageable.

One way that we can mitigate and minimize the complex states is by building our apps with a single
stateful component composed of stateless components: components that do not keep state.

Stateless Components

An alternative approach to building stateful components would be to use stateless components.
Stateless components are intended to be lightweight components that do not need any special
handling around the component.

Stateless components are React’s lightweight way of building components that only need the
render() method.

Let’s look an example of a stateless component:

advanced-components/components-cookbook/src/components/Header/StatelessHeader.js

const Header = function(props) {

return (<h1>{props.headerText}</h1>)

}

Notice that we don’t reference this when accessing our props as they are simply passed into the
function. In fact, the stateless component here isn’t actually a class in the sense that it isn’t a
ReactElement.

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 175

Functional, stateless components do not have a this property to reference. In fact, when we use
a stateless component, the React rendering processes does not introduce a new ReactComponent

instance, but instead it is null. They are just functions and do not have a backing instance. These
components cannot contain state and do not get called with the normal component lifecycle
methods. We cannot use refs (described below), cannot reference the DOM, etc.

React does allow us to use propTypes and defaultProps on stateless components

With so many constraints, why would we want to use stateless components? There are two reasons:

• Minimizing stateful components and
• Performance

As we discussed above, stateful components often spread complexity throughout a system. A
component being stateless, when used properly, can help contain the state in fewer locations, which
can make our programs easier to reason about.

Also, since React doesn’t have to keep track of component instance inmemory, do any dirty checking
etc., we can get a significant performance increase.

A good rule of thumb is to use stateless components as much as we can. If we don’t need any lifecycle
methods and can get away with only a rendering function, using a stateless component is a great
choice.

Switching to Stateless

Can we convert our Switch component above to a stateless component? Well, the currently selected
payment choice is state and so it has to be kept somewhere.

While we can’t remove state completely, we could at least isolate it. This is a common pattern in
React apps: try to pull the state into a few parent components.

In our Switch component we pulled each choice out into the renderChoice function. This indicates
that this is a good candidate for pulling into it’s own stateless component. There’s one problem:
renderChoice is the function that calls select, which means that it indirectly is the function that
calls setState. Let’s take a look at how to handle this issue:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 176

advanced-components/components-cookbook/src/components/Switch/steps/Switch6.js

7 const Choice = function (props) {

8 const cssClasses = [];

9

10 if (props.active) {

11 // <-- check props, not state

12 cssClasses.push(styles.active);

13 }

14

15 return (

16 <div

17 className='choice'

18 onClick={props.onClick}

19 className={cssClasses}

20 >

21 {props.label} {/* <-- allow any label */}

Here we’ve created a Choice function which is a stateless component. But we have a problem: if our
component is stateless then we can’t read from state. What do we do instead? Pass the arguments
down through props.

In Choice we make three changes (which is marked by comments in the code above):

1. We determine if this choice is the active one by reading props.active

2. When a Choice is clicked, we call whatever function that is on props.onClick

3. The label is determined by props.label

All of these changes mean that Choice is decoupled from the Switch statement. We could now
conceivably use Choice anywhere, as long as we pass active, onClick, and label through the props.

Let’s look at how this changes Switch:

advanced-components/components-cookbook/src/components/Switch/steps/Switch6.js

38 render() {

39 return (

40 <div className='switch'>

41 <Choice

42 onClick={this.select(CREDITCARD)}

43 active={this.state.payMethod === CREDITCARD}

44 label='Pay with Creditcard'

45 />

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 177

46

47 <Choice

48 onClick={this.select(BTC)}

49 active={this.state.payMethod === BTC}

50 label='Pay with Bitcoin'

51 />

52

53 Paying with: {this.state.payMethod}

Here we’re using our Choice component and passing the three props (parameters) active, onClick,
and label. What’s neat about this is that we could easily:

1. Change what happens when we click this choice by changing the input to onClick

2. Change the condition bywhich a particular choice is considered active by changing the active
prop

3. Change what the label is to any arbitrary string

By creating a stateless component Choicewe’re able to make Choice reusable and not be tied to any
particular state.

Stateless Encourages Reuse

Stateless components are a great way to create reusable components. Because stateless components
need to have all of their configuration passed from the outside, we can often reuse stateless
components in nearly any project, provided that we supply the right hooks.

Now that we’ve covered both props, context, and state we’re going to cover a couple more
advanced features we can use with components.

Our components exist in a hierarchy and sometimes we need to communicate (or manipulate) the
children components. The the next section, we’re going to discuss how to do this.

Talking to Children Components with props.children

While we generally specify props ourselves, React provides provides some special props for us. In
our components, we can refer to child components in the tree using this.props.children.

For instance, say we have a Newspaper component that holds an Article:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 178

advanced-components/components-cookbook/src/components/Article/Newspaper.js

3 const Newspaper = props => {

4 return (

5 <Container>

6 <Article headline="An interesting Article">

7 Content Here

8 </Article>

9 </Container>

10)

11 }

The container component above contains a single child, the Article component. Howmany children
does the Article component contain? It contains a single child, the text Content Here.

In the Container component, say that we want to add markup around whatever the Article

component renders. To do this, we write our JSX in the Container component, and then place
this.props.children:

advanced-components/components-cookbook/src/components/Article/Container.js

1 class Container extends React.Component {

2 // ...

3 render() {

4 return (

5 <div className='container'>

6 {this.props.children}

7 </div>

8)

9 }

The Container component above will create a divwith class='container' and the children of this
React tree will render within that div.

Generally, React will pass the this.props.children prop as a list of components if there aremultiple
children, whereas it will pass a single element if there is only one component.

Now that we know how this.props.children works, we should rewrite the previous Container
component to use propTypes to document the API of our component. We can expect that our
Container is likely to contain multiple Article components, but it might also contain only a single
Article. So let’s specify that the children prop can be either an element or an array.

If PropTypes.oneOfType seems unfamiliar, checkout the appendix on PropTypes which
explains how it works

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 179

advanced-components/components-cookbook/src/components/Article/DocumentedContainer.js

1 class Container extends React.Component {

2 static propTypes = {

3 children: PropTypes.oneOf([

4 PropTypes.element,

5 PropTypes.array

6])

7 }

8 // ...

9 render() {

10 return (

11 <div className="container">

12 {this.props.children}

13 </div>

14)

15 }

16 }

It can become cumbersome to check what type our children prop is every time we want to use
children in a component. We can handle this a few different ways:

1. Require children to be a single child every time (e.g., wrap our children in their own element).
2. Use the Children helper provided by React.

The first method of requiring a child to be a single element is straightforward. Rather than defining
the children above as oneOfType(), we can set the children to a be a single element.

advanced-components/components-cookbook/src/components/Article/SingleChildContainer.js

1 class Container extends React.Component {

2 static propTypes = {

3 children: PropTypes.element.isRequired,

4 }

5 // ...

6 render() {

7 return (

8 <div className="container">

9 {this.props.children}

10 </div>

11)

12 }

13 }

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 180

Inside the Container component we can deal with the children always being able to be rendered as
a single leaf of the hierarchy.

The second method of is to use the React.Children utility helper for dealing with the child
components. There are a number of helper methods for handling children, let’s look at them now.

React.Children.map() & React.Children.forEach()

The most common operation we’ll use on children is mapping over the list of them. We’ll often use
a map to call React.cloneElement() or React.createElement() along the children.

map() and forEach()

Both the map() and forEach() function execute a provided function once per each element
in an iterable (either an object or array).

[1, 2, 3].forEach(function(n) {

console.log("The number is: " + n);

return n; // we won't see this

})

[1, 2, 3].map(function(n) {

console.log("The number is: " + n);

return n; // we will get these

})

The difference between map() and forEach() is that the return value of map() is an array
of the result of the callback function, whereas forEach() does not collect results.

So in this case, while both map() and forEach() will print the console.log statements,
map() will return the array [1, 2, 3] whereas forEach() will not.

Let’s rewrite the previous Container to allow a configurable wrapper component for each child.
The idea here is that this component takes:

1. A prop component which is going to wrap each child
2. A prop children which is the list of children we’re going to wrap

To do this, we call React.createElement() to generate a new ReactElement for each child:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 181

advanced-components/components-cookbook/src/components/Article/MultiChildContainer.js

1 class Container extends React.Component {

2 static propTypes = {

3 component: PropTypes.element.isRequired,

4 children: PropTypes.element.isRequired

5 }

6 // ...

7 renderChild = (childData, index) => {

8 return React.createElement(

9 this.props.component,

10 {}, // <~ child props

11 childData // <~ child's children

12)

13 }

14 // ...

15 render() {

16 return (

17 <div className='container'>

18 {React.Children.map(

19 this.props.children,

20 this.renderChild

21)}

22 </div>

23)

24 }

25 }

Again, the difference between React.Children.map() and React.Children.forEach() is that the
former creates an array and returns the result of each function and the latter does not. We’ll mostly
use .map() when we render a child collection.

React.Children.toArray()

props.children returns a data structure that can be tricky to work with. Often when dealing with
children, we’ll want to convert our props.children object into a regular array, for instance when
we want to re-sort the ordering of the children elements. React.Children.toArray() converts the
props.children data structure into an array of the children.

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 182

advanced-components/components-cookbook/src/components/Article/ArrayContainer.js

1 class Container extends React.Component {

2 static propTypes = {

3 component: PropTypes.element.isRequired,

4 children: PropTypes.element.isRequired

5 }

6 // ...

7 render() {

8 const arr =

9 React.Children.toArray(this.props.children);

10

11 return (

12 <div className="container">

13 {arr.sort((a, b) => a.id < b.id)}

14 </div>

15)

16 }

17 }

Summary

By using props and context we get data in to our components and by using PropTypes we can
specify clear expectations about what we require that data to be.

By using state we hold on to component-local data, and we tell our components to re-render
whenever that state changes. However state can be tricky! One technique to minimize stateful
components is to use stateless, functional components.

Using these tools we can create powerful interactive components. However there is one important
set of configurations that we did not cover here: lifecycle methods.

Lifecycle methods like componentDidMount and componentWillUpdate provide us with powerful
hooks into the application process. In the next chapter, we’re going to dig deep into component
lifecycle and show how we can use those hooks to validate forms, hook in to external APIs, and
build sophisticated components.

References

• React Top-Level API Docs54

• React Component API Docs55

54https://facebook.github.io/react/docs/top-level-api.html
55https://facebook.github.io/react/docs/component-api.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/top-level-api.html
https://facebook.github.io/react/docs/component-api.html
https://facebook.github.io/react/docs/top-level-api.html
https://facebook.github.io/react/docs/component-api.html

Forms
Forms 101

Forms are one of the most crucial parts of our application. While we get some interaction through
clicks and mouse moves, it’s really through forms where we’ll get the majority of our rich input
from our users.

In a sense, it’s where the rubber meets the road. It’s through a form that a user can add their payment
info, search for results, edit their profile, upload a photo, or send a message. Forms transform your
web site into a web app.

Forms can be deceptively simple. All you really need are some input tags and a submit tag wrapped
up in a form tag. However, creating a rich, interactive, easy to use form can often involve a significant
amount of programming:

• Form inputs modify data, both on the page and the server.
• Changes often have to be kept in sync with data elsewhere on the page.
• Users can enter unpredictable values, some that we’ll want to modify or reject outright.
• The UI needs to clearly state expectations and errors in the case of validation failures.
• Fields can depend on each other and have complex logic.
• Data collected in forms is often sent asynchronously to a back-end server, and we need to
keep the user informed of what’s happening.

• We want to be able to test our forms.

If this sounds daunting, don’t worry! This is exactly why React was created: to handle the
complicated forms that needed to be built at Facebook.

We’re going to explore how to handle these challenges with React by building a sign up app. We’ll
start simple and add more functionality in each step.

Preparation

Inside the code download that came with this book, navigate to forms:

$ cd forms

This folder contains all the code examples for this chapter. To view them in your browser install the
dependencies by running npm install (or npm i for short):

WOW! eBook
www.wowebook.org

Forms 184

$ npm i

Once that’s finished, you can start the app with npm start:

$ npm start

You should expect to see the following in your terminal:

$ npm start

Compiled successfully!

The app is running at:

http://localhost:3000/

You should now be able to see the app in your browser if you go to http://localhost:3000.

This app is powered by Create React App, which we cover in the next chapter.

The Basic Button

At their core, forms are a conversation with the user. Fields are the app’s questions, and the values
that the user inputs are the answers.

Let’s ask the user what they think of React.

We could present the user with a text box, but we’ll start even simpler. In this example, we’ll constrain
the response to just one of two possible answers. We want to know whether the user thinks React is
either “great” or “amazing”, and the simplest way to do that is to give them two buttons to choose
from.

Here’s what the first example looks like:

Basic Buttons

To get our app to this stage we create a component with a render()method that returns a div with
three child elements: an h1 with the question, and two button elements for the answers. This will
look like the following:

WOW! eBook
www.wowebook.org

Forms 185

forms/src/01-basic-button.js

17 render() {

18 return (

19 <div>

20 <h1>What do you think of React?</h1>

21

22 <button

23 name='button-1'

24 value='great'

25 onClick={this.onGreatClick}

26 >

27 Great

28 </button>

29

30 <button

31 name='button-2'

32 value='amazing'

33 onClick={this.onAmazingClick}

34 >

35 Amazing

36 </button>

37 </div>

38);

39 }

So far this looks a lot like how you’d handle a form with vanilla HTML. The important part to pay
attention to is the onClick prop of the button elements. When a button is clicked, if it has a function
set as its onClick prop, that function will be called. We’ll use this behavior to know what our user’s
answer is.

To know what our user’s answer is, we pass a different function to each button. Specifically,
we’ll create function onGreatClick() and provide it to the “Great” button and create function
onAmazingClick() and provide it to the “Amazing” button.

Here’s what those functions look like:

WOW! eBook
www.wowebook.org

Forms 186

forms/src/01-basic-button.js

9 onGreatClick = (evt) => {

10 console.log('The user clicked button-1: great', evt);

11 };

12

13 onAmazingClick = (evt) => {

14 console.log('The user clicked button-2: amazing', evt);

15 };

When the user clicks on the “Amazing” button, the associated onClick functionwill run (onAmazingClick()
in this case). If, instead, the user clicked the “Great” button, onGreatClick() would be run instead.

Notice that in the onClick handler we pass this.onGreatClick and not
this.onGreatClick().

What’s the difference?

In the first case (without parens), we’re passing the function onGreatClick, whereas in the
second case we’re passing the result of calling the function onGreatClick (which isn’t what
we want right now).

This becomes the foundation of our app’s ability to respond to a user’s input. Our app can do different
things depending on the user’s response. In this case, we log different messages to the console.

Events and Event Handlers

Note that our onClick functions (onAmazingClick() and onGreatClick()) accept an argument, evt.
This is because these functions are event handlers.

Handling events is central to working with forms in React. When we provide a function to an
element’s onClick prop, that function becomes an event handler. The function will be called when
that event occurs, and it will receive an event object as its argument.

In the above example, when the button element is clicked, the corresponding event handler function
is called (onAmazingClick() or onGreatClick()) and it is provided with a mouse click event object
(evt in this case). This object is a SyntheticMouseEvent. This SyntheticMouseEvent is just a cross-
browser wrapper around the browser’s native MouseEvent, and you’ll be able to use it the same way
you would a native DOM event. In addition, if you need the original native event you can access it
via the nativeEvent attribute (e.g. evt.nativeEvent).

Event objects contain lots of useful information about the action that occurred. A MouseEvent for
example, will let you see the x and y coordinates of the mouse at the time of the click, whether or
not the shift key was pressed, and (most useful for this example) a reference to the element that was
clicked. We’ll use this information to simplify things in the next section.

WOW! eBook
www.wowebook.org

Forms 187

Instead, if we were interested in mouse movement, we could have created an event
handler and provided it to the onMouseMove prop. In fact, there are many such element
props that you can provide mouse event handlers to:, onClick, onContextMenu,
onDoubleClick, onDrag, onDragEnd, onDragEnter, onDragExit, onDragLeave, onDragOver,
onDragStart, onDrop, onMouseDown, onMouseEnter, onMouseLeave, onMouseMove,
onMouseOut, onMouseOver, and onMouseUp.

And those are only the mouse events. There are also clipboard, composition, keyboard,
focus, form, selection, touch, ui, wheel, media, image, animation, and transition event
groups. Each group has its own types of events, and not all events are appropriate for
all elements. For example, here we will mainly work with the form events, onChange and
onSubmit, which are related to form and input elements.

For more information on events in React, see React’s documentation on the Event System56.

Back to the Button

In the previous section, we were able to perform different actions (log different messages) depending
on the action of the user. However, the way that we set it up, we’d need to create a separate function
for each action. Instead, it would be much cleaner if we provided the same event handler to both
buttons, and used information from the event itself to determine our response.

To do this, we replace the two event handlers onGreatClick() and onAmazingClick() with a new
single event handler, onButtonClick().

forms/src/02-basic-button.js

9 onButtonClick = (evt) => {

10 const btn = evt.target;

11 console.log(`The user clicked ${btn.name}: ${btn.value}`);

12 };

Our click handler function receives an event object, evt. evt has an attribute target that is a
reference to the button that the user clicked. This way we can access the button that the user clicked
without creating a function for each button. We can then log out different messages for different
user behavior.

Next we update our render() function so that our button elements both use the same event handler,
our new onButtonClick() function.

56https://facebook.github.io/react/docs/events.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/events.html
https://facebook.github.io/react/docs/events.html

Forms 188

forms/src/02-basic-button.js

14 render() {

15 return (

16 <div>

17 <h1>What do you think of React?</h1>

18

19 <button

20 name='button-1'

21 value='great'

22 onClick={this.onButtonClick}

23 >

24 Great

25 </button>

26

27 <button

28 name='button-2'

29 value='amazing'

30 onClick={this.onButtonClick}

31 >

32 Amazing

33 </button>

34 </div>

35);

36 }

One Event Handler for Both Buttons

WOW! eBook
www.wowebook.org

Forms 189

By taking advantage of the event object and using a shared event handler, we could add 100 new
buttons, and we wouldn’t have to make any other changes to our app.

Text Input

In the previous example, we constrained our user’s response to only one of two possibilities. Now
that we know how to take advantage of event objects and handlers in React, we’re going to accept
a much wider range of responses and move on to a more typical use of forms: text input.

To showcase text input we’ll create a “sign-up sheet” app. The purpose of this app is to allow a user
to record a list of names of people who want to sign up for an event.

The app presents the user a text field where they can input a name and hit “Submit”. When they
enter a name, it is added to a list, that list is displayed, and the text box is cleared so they can enter
a new name.

Here’s what it will look like:

Sign-Up Adding to a List

Accessing User Input With refs

We want to be able to read the contents of the text field when the user submits the form. A simple
way to do this is to wait until the user submits the form, find the text field in the DOM, and finally
grab its value.

To begin we’ll start by creating a form element with two child elements: a text input field and a
submit button:

WOW! eBook
www.wowebook.org

Forms 190

forms/src/03-basic-input.js

14 render() {

15 return (

16 <div>

17 <h1>Sign Up Sheet</h1>

18

19 <form onSubmit={this.onFormSubmit}>

20 <input

21 placeholder='Name'

22 ref='name'

23 />

24

25 <input type='submit' />

26 </form>

27 </div>

28);

29 }

This is very similar to the previous example, but instead of two button elements, we now have a
form element with two child elements: a text field and a submit button.

There are two things to notice. First, we’ve added an onSubmit event handler to the form element.
Second, we’ve given the text field a ref prop of 'name'.

By using an onSubmit event handler on the form element this example will behave a little differently
than before. One change is that the handler will be called either by clicking the “Submit” button, or
by pressing “enter”/”return” while the form has focus. This is more user-friendly than forcing the
user to click the “Submit” button.

However, because our event handler is tied to the form, the event object argument to the handler is
less useful than it was in the previous example. Before, we were able to use the target prop of the
event to reference the button and get its value. This time, we’re interested in the text field’s value.
One option would be to use the event’s target to reference the form and from there we could find
the child input we’re interested in, but there’s a simpler way.

In React, if we want to easily access a DOM element in a component we can use refs (references).
Above, we gave our text field a ref property of 'name'. Later when the onSubmit handler is called,
we have the ability to access this.refs.name to get a reference to that text field. Here’s what that
looks like in our onFormSubmit() event handler:

WOW! eBook
www.wowebook.org

Forms 191

forms/src/03-basic-input.js

9 onFormSubmit = (evt) => {

10 evt.preventDefault();

11 console.log(this.refs.name.value);

12 };

Use preventDefault() with the onSubmit handler to prevent the browser’s default action
of submitting the form.

As you can see, by using this.refs.name we gain a reference to our text field element and we can
access its value property. That value property contains the text that was entered into the field.

Logging The Name

With just the two functions render() and onFormSubmit(), we should now be able to see the value
of the text field in our console when we click “Submit”. In the next step we’ll take that value and
display it on the page.

Using User Input

Now that we’ve shown that we can get user submitted names, we can begin to use this information
to change the app’s state and UI.

The goal of this example is to show a list with all of the names that the user has entered. React makes
this easy. We will have an array in our state to hold the names, and in render() we will use that
array to populate a list.

WOW! eBook
www.wowebook.org

Forms 192

When our app loads, the array will be empty, and each time the user submits a new name, we will
add it to the array. To do this, we’ll make a few additions to our component.

First, we’ll create a names array in our state. In React, when we’re using ES6 component classes we
can set the initial value of our state object by defining a property of state.

Here’s what that looks like:

forms/src/04-basic-input.js

6 module.exports = class extends React.Component {

7 static displayName = "04-basic-input";

8 state = { names: [] }; // <-- initial state

static belongs to the class

Notice in this component we have the line:

1 static displayName = "04-basic-input";

This means that this component class has a static property displayName. When a property
is static, that means it is a class property (instead of an instance property). In this case, we’re
going to use this displayNamewhen we show the list of examples on the demo listing page.

Next, we’ll modify render() to show this list. Below our form element, we’ll create a new div. This
new container div will hold a heading, h3, and our names list, a ul parent with a li child for each
name. Here’s our updated render() method:

forms/src/04-basic-input.js

18 render() {

19 return (

20 <div>

21 <h1>Sign Up Sheet</h1>

22

23 <form onSubmit={this.onFormSubmit}>

24 <input

25 placeholder='Name'

26 ref='name'

27 />

28

29 <input type='submit' />

30 </form>

31

WOW! eBook
www.wowebook.org

Forms 193

32 <div>

33 <h3>Names</h3>

34

35 { this.state.names.map((name, i) => <li key={i}>{name}) }

36

37 </div>

38 </div>

39);

40 }

ES2015 gives us a compact way to insert li children. Since this.state.names is an array, we can
take advantage of its map() method to return a li child element for each name in the array. Also,
by using “arrow” syntax, for our iterator function in map(), the li element is returned without us
explicitly using return.

One other thing to note here is that we provide a key prop to the li element. React will
complain when we have children in an array or iterator (like we do here) and they don’t
have a key prop. React wants this information to keep track of the child and make sure that
it can be reused between render passes.

We won’t be removing or reordering the list here, so it is sufficient to identify each child
by its index. If we wanted to optimize rendering for a more complex use-case, we could
assign an immutable id to each name that was not tied to its value or order in the array.
This would allow React to reuse the element even if its position or value was changed.

See React’s documentation on Multiple Components and Dynamic Children57 for more
information.

Now that render() is updated, the onFormSubmit()method needs to update the statewith the new
name. To add a name to the names array in our state we might be tempted to try to do something
like this.state.names.push(name). However, React relies on this.setState() tomutate our state
object, which will then trigger a new call to render().

The way to do this properly is to:

1. create a new variable that copies our current names
2. add our new name to that array, and finally
3. use that variable in a call to this.setState().

We also want to clear the text field so that it’s ready to accept additional user input. It would not
be very user friendly to require the user to delete their input before adding a new name. Since we
already have access to the text field via refs, we can set its value to an empty string to clear it.

This is what onFormSubmit() should look like now:
57https://facebook.github.io/react/docs/multiple-components.html#dynamic-children

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/multiple-components.html#dynamic-children
https://facebook.github.io/react/docs/multiple-components.html#dynamic-children

Forms 194

forms/src/04-basic-input.js

10 onFormSubmit = (evt) => {

11 const name = this.refs.name.value;

12 const names = [...this.state.names, name];

13 this.setState({ names: names });

14 this.refs.name.value = '';

15 evt.preventDefault();

16 };

At this point, our sign-up app is functional. Here’s a rundown of the application flow:

1. User enters a name and clicks “Submit”.
2. onFormSubmit is called.
3. this.refs.name is used to access the value of the text field (a name).
4. The name is added to our names list in the state.
5. The text field is cleared so that it is ready for more input.
6. render is called and displays the updated list of names.

So far so good! In the next sections we’ll improve it further.

Uncontrolled vs. Controlled Components

In the previous sections we took advantage of refs to access the user’s input. When we created our
render()method we added an input field with a ref attribute. We later used that attribute to get a
reference to the rendered input so that we could access and modify its value.

We covered using refs with forms because it is conceptually similar to how one might deal with
forms without React. However, by using refs this way, we opt out of a primary advantage of using
React.

In the previous example we access the DOM directly to retrieve the name from the text field, as well
as manipulate the DOM directly by resetting the field after a name has been submitted.

With React we shouldn’t have to worry about modifying the DOM to match application state. We
should concentrate only on altering state and rely on React’s ability to efficiently manipulate the
DOM to match. This provides us with the certainty that for any given value of state, we can predict
what render() will return and therefore know what our app will look like.

In the previous example, our text field is what we would call an “uncontrolled component”. This is
another way of saying that React does not “control” how it is rendered – specifically its value. In
other words, React is hands-off, and allows it to be freely influenced by user interaction. This means
that knowing the application state is not enough to predict what the page (and specifically the input

WOW! eBook
www.wowebook.org

Forms 195

field) looks like. Because the user could have typed (or not typed) input into the field, the only way
to know what the input field looks like is to access it via refs and check its value.

There is another way. By converting this field to a “controlled component”, we give React control
over it. It’s value will always be specified by render() and our application state. When we do this,
we can predict how our application will look by examining our state object.

By directly tying our view to our application state we get certain features for very little work. For
example, imagine a long form where the user must answer many questions by filling out lots of
input fields. If the user is halfway through and accidentally reloads the page that would ordinarily
clear out all the fields. If these were controlled components and our application state was persisted to
localStorage, we would be able to come back exactly where they left off. Later, we’ll get to another
important feature that controlled components pave the way for: validation.

Accessing User Input With state

Converting an uncontrolled input component to a controlled one requires three things. First, we
need a place in state to store its value. Second, we provide that location in state as its value prop.
Finally, we add an onChange handler that will update its value in state. The flow for a controlled
component looks like this:

1. The user enters/changes the input.
2. The onChange handler is called with the “change” event.
3. Using event.target.value we update the input element’s value in state.
4. render() is called and the input is updated with the new value in state.

Here’s what our render() looks like after converting the input to a controlled component:

forms/src/05-state-input.js

24 render() {

25 return (

26 <div>

27 <h1>Sign Up Sheet</h1>

28

29 <form onSubmit={this.onFormSubmit}>

30 <input

31 placeholder='Name'

32 value={this.state.name}

33 onChange={this.onNameChange}

34 />

35

36 <input type='submit' />

WOW! eBook
www.wowebook.org

Forms 196

37 </form>

38

39 <div>

40 <h3>Names</h3>

41

42 { this.state.names.map((name, i) => <li key={i}>{name}) }

43

44 </div>

45 </div>

46);

47 }

The only difference in our input is that we’ve removed the ref prop and replaced it with both a
value and an onChange prop.

Now that the input is “controlled”, its value will always be set equal to a property of our state. In
this case, that property is name, so the value of the input is this.state.name.

While not strictly necessary, it’s a good habit to provide sane defaults for any properties of state
that will be used in our component. Because we now use state.name for the value of our input,
we’ll want to choose what value it will have before the user has had a chance to provide one. In our
case, we want the field to be empty, so the default value will be an empty string, '':

forms/src/05-state-input.js

9 state = {

10 name: '',

11 names: [],

12 };

If we had just stopped there, the inputwould effectively be disabled. No matter what the user types
into it, its valuewouldn’t change. In fact, if we left it like this, React would give us a warning in our
console.

To make our input operational, we’ll need to listen to its onChange events and use those to update
the state. To achieve this, we’ve created an event handler for onChange. This handler is responsible
for updating our state so that state.name will always be updated with what the user has typed
into the field. We’ve created the method onNameChange() for that purpose.

Here’s what onNameChange() looks like now:

WOW! eBook
www.wowebook.org

Forms 197

forms/src/05-state-input.js

20 onNameChange = (evt) => {

21 this.setState({ name: evt.target.value });

22 };

onNameChange() is a very simple function. Like we did in a previous section, we use the event passed
to the handler to reference the field and get its value. We then update state.name with that value.

Now the controlled component cycle is complete. The user interacts with the field. This triggers an
onChange event which calls our onNameChange() handler. Our onNameChange() handler updates the
state, and this in turn triggers render() to update the field with the new value.

Our app still needs one more change, however. When the user submits the form, onFormSubmit()
is called, and we need that method to add the entered name (state.name) to the names list
(state.names). When we last saw onFormSubmit() it did this using this.refs. Since we’re no longer
using refs, we’ve updated it to the following:

forms/src/05-state-input.js

14 onFormSubmit = (evt) => {

15 const names = [...this.state.names, this.state.name];

16 this.setState({ names: names, name: '' });

17 evt.preventDefault();

18 };

Notice that to get the current entered name, we simply access this.state.name because it will
be continually updated by our onNameChange() handler. We then append that to our names list,
this.state.names and update the state. We also clear this.state.name so that the field is empty
and ready for a new name.

While our app didn’t gain any new features in this section, we’ve both paved the way for better
functionality (like validation and persistence) while also taking greater advantage of the React
paradigm.

Multiple Fields

Our sign-up sheet is looking good, but what would happen if we wanted to add more fields? If our
sign-up sheet is like most projects, it’s only a matter of time before we want to add to it. With forms,
we’ll often want to add inputs.

If we continue our current approach and create more controlled components, each with a corre-
sponding state property and an onChange handler, our component will become quite verbose. Having
a one-to-one-to-one relationship between our inputs, state, and handlers is not ideal.

WOW! eBook
www.wowebook.org

Forms 198

Let’s explore how we can modify our app to allow for additional inputs in a clean, maintainable
way. To illustrate this, let’s add email address to our sign-up sheet.

In the previous section our input field has a dedicated property on the root of our state object. If
we were to do that here, we would add another property, email. To avoid adding a property for each
input on state, let’s instead add a fields object to store the values for all of our fields in one place.
Here’s our new initial state:

forms/src/06-state-input-multi.js

9 state = {

10 fields: {

11 name: '',

12 email: ''

13 },

14 people: [],

15 };

This fields object can store state for as many inputs as we’d like. Here we’ve specified that we
want to store fields for name and email. Now, we will find those values at state.fields.name and
state.fields.email instead of state.name and state.email.

Name and Email Fields

Of course, those values will need to be updated by an event handler. We could create an event
handler for each field we have in the form, but that would involve a lot of copy/paste and needlessly
bloat our component. Also it would make maintainability more difficult, as any change to a form
would need to be made in multiple places.

Instead of creating an onChange handler for each input, we can create a single method that accepts
change events from all of our inputs. The trick is to write this method in such a way that it updates

WOW! eBook
www.wowebook.org

Forms 199

the correct property in state depending on the input field that triggered the event. To pull this
off, the method uses the event argument to determine which input was changed and update our
state.fields object accordingly. For example, if we have an input field and we were to give it a
name prop of "email", when that field triggers an event, we would be able to know that it was email
field, because event.target.name would be "email".

To see what this looks like in practice, here’s the updated render():

forms/src/06-state-input-multi.js

38 render() {

39 return (

40 <div>

41 <h1>Sign Up Sheet</h1>

42

43 <form onSubmit={this.onFormSubmit}>

44 <input

45 placeholder='Name'

46 name='name'

47 value={this.state.fields.name}

48 onChange={this.onInputChange}

49 />

50

51 <input

52 placeholder='Email'

53 name='email'

54 value={this.state.fields.email}

55 onChange={this.onInputChange}

56 />

57

58 <input type='submit' />

59 </form>

60

61 <div>

62 <h3>People</h3>

63

64 { this.state.people.map(({ name, email }, i) =>

65 <li key={i}>{name} ({ email })

66) }

67

68 </div>

69 </div>

70);

71 }

WOW! eBook
www.wowebook.org

Forms 200

There are a several things to note: first, we’ve added a second input to handle email addresses.

Second, we’ve changed the value prop of the input fields so that they don’t access attributes on the
root of the state object. Instead they access the attributes of state.fields. Looking at the code
above, the input for name now has its value set to this.state.fields.name.

Third, both input fields have their onChange prop set to the same event handler, onInputChange().
We’ll see below how we modified onNameChange() to be a more general event handler that can
accept events from any field, not just “name”.

Fourth, our input fields now have a name prop. This is related to the last point. To allow our general
event handler, onInputChange(), to be able to tell where the change event came from and where we
should store it in our state (e.g. if the change comes from the “email” input the new value should be
stored at state.fields.email), we provide that name prop so that it can be pulled off of the event
via its target attribute.

Finally, we modify how our people list is rendered. Because it’s no longer just a list of names, we
modify our li element to display both the previous name attribute as well as the new email data we
plan to have.

To make sure that all the data winds up in the right place, we’ll need to make sure that our event
handlers are properly modified. Here’s what the onInputChange() event handler (that gets called
when any field’s input changes) should look like:

forms/src/06-state-input-multi.js

32 onInputChange = (evt) => {

33 const fields = this.state.fields;

34 fields[evt.target.name] = evt.target.value;

35 this.setState({ fields });

36 };

At its core this is similar to what we did before in onNameChange() in the last section. The two key
differences are that:

1. we are updating a value nested in the state (e.g. updating state.fields.email instead of
state.email), and

2. we’re using evt.target.name to informwhich attribute of state.fields needs to be updated.

To properly update our state, we first grab a local reference to state.fields. Then, we use
information from the event (evt.target.name and evt.target.value) to update the local reference.
Lastly, we setState() with the modified local reference.

To get concrete, let’s go through what would happen if the user enters “someone@somewhere.com”
into the “email” field.

WOW! eBook
www.wowebook.org

Forms 201

First, onInputChange()would be called with the evt object as an argument. evt.target.namewould
be "email" (because "email" is set as its name prop in render()) and evt.target.value would be
"someone@somewhere.com" (because that’s what they entered into the field).

Next, onInputChange() would grab a local reference to state.fields. If this is the first time there
was input, state.fields and our local reference will be the default fields in state, { name: '',

email: '' }. Then, the local reference would be modified so that it becomes { name: '', email:

"someone@somewhere.com" }.

And finally, setState() is called with that change.

At this point, this.state.fieldswill always be in sync with any text in the input fields. However,
onFormSubmit() will need to be changed to get that information into the list of people who have
signed up. Here’s what the updated onFormSubmit() looks like:

forms/src/06-state-input-multi.js

17 onFormSubmit = (evt) => {

18 const people = [

19 ...this.state.people,

20 this.state.fields,

21];

22 this.setState({

23 people,

24 fields: {

25 name: '',

26 email: ''

27 }

28 });

29 evt.preventDefault();

30 };

In onFormSubmit() we first obtain a local reference to the list of people who have signed up,
this.state.people. Then, we add our this.state.fields object (an object representing the name
and email currently entered into the fields) onto the people list. Finally, we use this.setState()

to simultaneously update our list with the new information and clear all the fields by returning
state.fields to the empty defaults, { name: '', email: '' }.

The great thing about this is that we can easily add as many input fields as we want with very
minimal changes. In fact, only the render() method would need to change. For each new field, all
we would have to do is add another input field and change how the list is rendered to display the
new field.

For example, if we wanted to add a field for phone number, we would add a new input with appro-
priate name and value props: name would be phone and value would be this.state.fields.phone.
onChange, like the others, would be our existing onInputChange() handler.

WOW! eBook
www.wowebook.org

Forms 202

After doing that our state will automatically keep track of the phone field and will add it to the
state.people array and we could change how the view (e.g. the li) displays the information.

At this point we have a functional app that’s well situated to be extended and modified as
requirements evolve. However, it is missing one crucial aspect that almost all forms need: validation.

On Validation

Validation is so central to building forms that it’s rare to have a form without it. Validation can be
both on the level of the individual field and on the form as a whole.

When you validate on an individual field, you’re making sure that the user has entered data that
conforms to your application’s expectations and constraints as it relates to that piece of data.

For example, if we want a user to enter an email address, we expect their input to look like a valid
email address. If the input does not look like an email address, they might have made a mistake and
we’re likely to run into trouble down the line (e.g. they won’t be able to activate their account). Other
common examples are making sure that a zip code has exactly five (or nine) numerical characters
and enforcing a password length of at least some minimum length.

Validation on the form as a whole is slightly different. Here is where you’ll make sure that all
required fields have been entered. This is also a good place to check for internal consistency. For
example you might have an order form where specific options are required for specific products.

Additionally, there are trade-offs for “how” and “when” we validate. On some fields we might want
to give validation feedback in real-time. For example, we might want to show password strength
(by looking at length and characters used) while the user is typing. However, if we want to validate
the availability of a username, we might want to wait until the user has finished typing before we
make a request to the server/database to find out.

We also have options for how we display validation errors. We might style the field differently (e.g.
a red outline), show text near the field (e.g. “Please enter a valid email.”), and/or disable the form’s
submit button to prevent the user from progressing with invalid information.

As for our app, we can begin with validation of the form as a whole and

1. make sure that we have both a name and email and
2. make sure that the email is a valid address.

Adding Validation to Our App

To add validation to our sign-up app we’ve made some changes. At a high level these changes are

1. add a place in state to store validation errors if they exist,
2. change our render()method will show validation error messages (if they exist) with red text

next to each field,

WOW! eBook
www.wowebook.org

Forms 203

3. add a new validate() method that takes our fields object as an argument and returns a
fieldErrors object, and

4. onFormSubmit() will call the new validate() method to get the fieldErrors object, and if
there are errors it will add them to the state (so that they can be shown in render()) and
return early without adding the “person” to the list, state.people.

First, we’ve changed our initial state:

forms/src/07-basic-validation.js

10 state = {

11 fields: {

12 name: '',

13 email: '',

14 },

15 fieldErrors: {},

16 people: [],

17 };

The only change here is that we’ve created a default value for the fieldErrors property. This is
where we’ll store errors for each of the field if they exist.

Next, here’s what the updated render() method looks like:

forms/src/07-basic-validation.js

51 render() {

52 return (

53 <div>

54 <h1>Sign Up Sheet</h1>

55

56 <form onSubmit={this.onFormSubmit}>

57

58 <input

59 placeholder='Name'

60 name='name'

61 value={this.state.fields.name}

62 onChange={this.onInputChange}

63 />

64

65 { this.state.fieldErrors.name }

66

67

68

WOW! eBook
www.wowebook.org

Forms 204

69 <input

70 placeholder='Email'

71 name='email'

72 value={this.state.fields.email}

73 onChange={this.onInputChange}

74 />

75

76 { this.state.fieldErrors.email }

77

78

79

80 <input type='submit' />

81 </form>

82

83 <div>

84 <h3>People</h3>

85

86 { this.state.people.map(({ name, email }, i) =>

87 <li key={i}>{name} ({ email })

88) }

89

90 </div>

91 </div>

92);

93 }

The only differences here are two new span elements, one for each field. Each span will look in the
appropriate place in state.fieldErrors for an error message. If one is found it will be displayed in
red next to the field. Next up, we’ll see how those error messages can get into the state.

It is after the user submits the form that we will check the validity of their input. So the appropriate
place to begin validation is in the onFormSubmit() method. However, we’ll want to create a
standalone function for that method to call. We’ve created the pure function, validate() method
for this:

WOW! eBook
www.wowebook.org

Forms 205

forms/src/07-basic-validation.js

43 validate = (person) => {

44 const errors = {};

45 if (!person.name) errors.name = 'Name Required';

46 if (!person.email) errors.email = 'Email Required';

47 if (person.email && !isEmail(person.email)) errors.email = 'Invalid Email';

48 return errors;

49 };

Our validate() method is pretty simple and has two goals. First, we want to make sure that both
name and email are present. By checking their truthiness we can know that they are defined and
not empty strings. Second, we want to know that the provided email address looks valid. This is
actually a bit of a thorny issue, so we rely on validator58 to let us know. If any of these conditions
are not met, we add a corresponding key to our errors object and set an error message as the value.

Afterwards, we’ve updated our onFormSubmit() to use this new validate()method and act on the
returned error object:

forms/src/07-basic-validation.js

19 onFormSubmit = (evt) => {

20 const people = [...this.state.people];

21 const person = this.state.fields;

22 const fieldErrors = this.validate(person);

23 this.setState({ fieldErrors });

24 evt.preventDefault();

25

26 if (Object.keys(fieldErrors).length) return;

27

28 this.setState({

29 people: people.concat(person),

30 fields: {

31 name: '',

32 email: '',

33 },

34 });

35 };

To use the validate()method, we get the current values of our fields from this.state.fields and
provide it as the argument. validate() will either return an empty object if there are no issues, or

58http://npm.im/validator

WOW! eBook
www.wowebook.org

http://npm.im/validator
http://npm.im/validator

Forms 206

if there are issues, it will return an object with keys corresponding to each field name and values
corresponding to each error message. In either case, we want to update our state.fieldErrors
object so that render() can display or hide the messages as necessary.

If the validation errors object has any keys (Object.keys(fieldErrors).length > 0) we know
there are issues. If there are no validation issues, the logic is the same as in previous sections –
we add the new information and clear the fields. However, if there are any errors, we return early.
This prevents the new information from being added to the list.

Email Required

Email Invalid

At this point we’ve covered the fundamentals of creating a form with validation in React. In the
next section we’ll take things a bit further and show how we can validate in real-time at the field
level and we’ll create a Field component to improve the maintainability when an app has multiple
fields with different validation requirements.

Creating the Field Component

In the last section we added validation to our form. However, our form component is responsible
for running the validations on the form as a whole as well as the individual validation rules for
each field.

It would be ideal if each field was responsible for identifying validation errors on its own input,
and the parent form was only responsible for identifying issues at the form-level. This comes with
several advantages:

1. an email field created in this way could check the format of its input while the user types in
real-time.

WOW! eBook
www.wowebook.org

Forms 207

2. the field could incorporate its validation error message, freeing the parent form from having
to keep track of it.

To do this we’re first going to create a new separate Field component, and we will use it instead of
input elements in the form. This will let us combine a normal input with both validation logic and
error messaging.

Before we get into the creation of this new component, it will be useful to think of it at a high
level in terms of inputs and outputs. In other words, “what information do we need to provide this
component?”, and “what kinds of things would we expect in return?”

These inputs are going to become this component’s props and the output will be used by any event
handlers we pass into it.

Because our Field component will contain a child input, we’ll need to provide the same baseline
information so that it can be passed on. For example, if we want a Field component rendered with
a specific placeholder prop on its child input, we’ll have to provide it as a prop when we create
the Field component in our form’s render() method.

Two other props we’ll want to provide are name, and value. name will allow us to share an event
handler between components like we’ve done before, and value allows the parent form to pre-
populate Field as well as keep it updated.

Additionally, this new Field component is responsible for its own validation. Therefore we’ll need
to provide it rules specific to data it contains. For example, if this is the “email” Field, we’ll provide
it a function as its validate prop. Internally it will run this function to determine if its input is a
valid email address.

Lastly, we’ll provide an event handler for onChange events. The function we provide as the onChange
prop will be called every time the input in the Field changes, and it will be called with an event
argument that we get to define. This event argument should have three properties that we’re
interested in: (1) the name of the Field, (2) the current value of the input, and (3) the current
validation error (if present).

To quickly review, for the new Field component to do its job it will need the following:

• placeholder: This will be passed straight through to the input child element. Similar to a
label, this tells the user what data to the Field expects.

• name: We want this for the same reason we provide name to input elements: we’ll use this in
the event handler decide where to store input data and validation errors.

• value: This is how our parent form can initialize the Field with a value, or it can use this to
update the Fieldwith a new value. This is similar to how the value prop is used on an input.

• validate: A function that returns validation errors (if any) when run.
• onChange: An event handler to be run when the Field changes. This function will accept an
event object as an argument.

Following this, we’re able to set up propTypes on our new Field component:

WOW! eBook
www.wowebook.org

Forms 208

forms/src/08-field-component-field.js

5 static propTypes = {

6 placeholder: PropTypes.string,

7 name: PropTypes.string.isRequired,

8 value: PropTypes.string,

9 validate: PropTypes.func,

10 onChange: PropTypes.func.isRequired,

11 };

Next, we can think about the state that Field will need to keep track of. There are only two pieces
of data that Field will need, the current value and error. Like in previous sections where our form
component needed that data for its render()method, so too does our Field component. Here’s how
we’ll set up our initial state:

forms/src/08-field-component-field.js

13 state = {

14 value: this.props.value,

15 error: false,

16 };

One key difference is that our Field has a parent, and sometimes this parent will want to
update the value prop of our Field. To allow this, we’ll need to create a new lifecycle method,
componentWillReceiveProps() to accept the new value and update the state. Here’s what that
looks like:

forms/src/08-field-component-field.js

18 componentWillReceiveProps(update) {

19 this.setState({ value: update.value });

20 }

The render() method of Field should be pretty simple. It’s just the input and the corresponding
span that will hold the error message:

WOW! eBook
www.wowebook.org

Forms 209

forms/src/08-field-component-field.js

32 render() {

33 return (

34 <div>

35 <input

36 placeholder={this.props.placeholder}

37 value={this.state.value}

38 onChange={this.onChange}

39 />

40 { this.state.error }

41 </div>

42);

43 }

For the input element, the placeholder will be passed in from the parent and is available from
this.props.placeholder. As mentioned above, the value of the input and the error message in the
span will both be stored in the state. value comes from this.state.value and the error message
is at this.state.error. And lastly, we’ll set an onChange event handler that will be responsible for
accepting user input, validating, updating state, and calling the parent’s event handler as well. The
method that will take care of that is this.onChange:

1 onChange (evt) {

2 const name = this.props.name;

3 const value = evt.target.value;

4 const error = this.props.validate ? this.props.validate(value) : false;

5

6 this.setState({value, error});

7

8 this.props.onChange({name, value, error});

9 }

this.onChange is a pretty efficient function. It handles four different responsibilities in as many
lines. As in previous sections, the event object gives us the current text in the input via its
target.value property. Once we have that, we see if it passes validation. If Field was given a
function for its validate prop, we use it here. If one was not given, we don’t have to validate the
input and error sets to false. Once we have both the value and error we can update our state
so that they both appear in render(). However, it’s not just the Field component that needs to be
updated with this information.

When Field is used by a parent component, it passes in its own event handler in as the onChange
prop. We call this function so that we can pass information up the parent. Here in this.onChange(),

WOW! eBook
www.wowebook.org

Forms 210

it is available as this.props.onChange(), and we call it with three pieces of information: the name,
value, and error of the Field.

This might be a little confusing since “onChange” appears in multiple places. You can think of it as
carrying information in a chain of event handlers. The form contains the Field which contains an
input. Events occur on the input and the information passes first to the Field and finally to the
form.

At this point our Field component is ready to go, and can be used in place of the input and error
message combos in our app.

Using our new Field Component

Now that we’re ready to use our brand new Field component, we can make some changes to our
app. The most obvious change is that Field will take the place of both the input and error message
span elements in our render() method. This is great because Field can take care of validation at
the field level. But what about at the form level?

If you remember, we can employ two different levels of validation, one at the field level, and one at
the form level. Our new Field component will let us validate the format of each field in real-time.
What they won’t do, however, is validate the entire form to make sure we have all the data we need.
For that, we also want form-level validation.

Another nice feature we’ll add here is disabling/enabling the form submit button in real-time as the
form passes/fails validation. This is a nice bit of feedback that can improve a form’s UX and make
it feel more responsive.

Here’s how our update render() looks:

forms/src/08-field-component-form.js

60 render() {

61 return (

62 <div>

63 <h1>Sign Up Sheet</h1>

64

65 <form onSubmit={this.onFormSubmit}>

66

67 <Field

68 placeholder='Name'

69 name='name'

70 value={this.state.fields.name}

71 onChange={this.onInputChange}

72 validate={(val) => (val ? false : 'Name Required')}

73 />

74

WOW! eBook
www.wowebook.org

Forms 211

75

76

77 <Field

78 placeholder='Email'

79 name='email'

80 value={this.state.fields.email}

81 onChange={this.onInputChange}

82 validate={(val) => (isEmail(val) ? false : 'Invalid Email')}

83 />

84

85

86

87 <input type='submit' disabled={this.validate()} />

88 </form>

89

90 <div>

91 <h3>People</h3>

92

93 { this.state.people.map(({ name, email }, i) =>

94 <li key={i}>{name} ({email})

95) }

96

97 </div>

98 </div>

99);

100 }

You can see that Field is a drop-in replacement for input. All the props are the same as they were
on input, except we have one additional prop this time: validate.

Above in the Field component’s onChange()method, wemake a call to the this.props.validate()
function. What we provide as the validate prop to Field, will be that function. Its goal is to take
user provided input as its argument and give a return value that corresponds to the validity of that
input. If the input is not valid, validate should return an error message. Otherwise, it should return
false.

For the “name” Field the validate prop is pretty simple. We’re just checking for a truthy value.
As long as there are characters in the box, validation will pass, otherwise we return the 'Name

Required' error message.

For the “email” Field, we’re going to use the isEmail() function that we imported from the
validator module. If that function returns true, we know it’s a valid-looking email and validation
passes. If not, we return the 'Invalid Email' message.

WOW! eBook
www.wowebook.org

Forms 212

Notice that we left their onChange prop alone, it is still set to this.onInputChange. However, since
Field uses the function differently than input, we must update onInputChange().

Before we move on, notice the only other change that we’ve made to render(): we conditionally
disable the submit button. To do this, we set the value of the disabled prop to the return value of
this.validate(). Because this.validate() will have a truthy return value if there are validation
errors, the button will be disabled if the form is not valid. We’ll show what the this.validate()
function looks like in a bit.

Disabled Submit Button

Asmentioned, both Field components have their onChange props set to this.onInputChange.We’ve
had to make some changes to match the difference between input and our Field. Here’s the updated
version:

forms/src/08-field-component-form.js

38 onInputChange = ({ name, value, error }) => {

39 const fields = this.state.fields;

40 const fieldErrors = this.state.fieldErrors;

41

42 fields[name] = value;

43 fieldErrors[name] = error;

44

45 this.setState({ fields, fieldErrors });

46 };

Previously, the job of onInputChange() was to update this.state.fields with the current user
input values. In other words, when an a text field was edited, onInputChange() would be called
with an event object. That event object had a target property that referenced the input element.
Using that reference, we could get the name and value of the input, and with those, we would update
state.fields.

This time around onInputChange() has the same responsibility, but it is our Field component
that calls this function, not input. In the previous section, we show the onChange() method of

WOW! eBook
www.wowebook.org

Forms 213

Field, and that’s where this.props.onChange() is called. When it is called, it’s called like this: ‘
this.props.onChange({name, value, error})‘.

This means that instead of using evt.target.name or evt.target.value as we did before, we get
name and value directly from the argument object. In addition, we also get the validation error for
each field. This is necessary – for our form component to prevent submission, it will need to know
about field-level validation errors.

Once we have the name, value, and error, we can update two objects in our state, the state.fields
object we used before, and a new object, state.fieldErrors. Soon, wewill showhow state.fieldErrors

will be used to either prevent or allow the form submit depending on the presence or absence of
field-level validation errors.

With both render() and onInputChange() updated, we again have a nice feedback loop set up for
our Field components:

• First, the user types into the Field.
• Then, the event handler of the Field is called, onInputChange().
• Next, onInputChange() updates the state.
• After, the form is rendered again, and the Field passed an updated value prop.
• Then, componentWillReceiveProps() is called in Field with the new value, and its state is
updated.

• Finally, Field.render() is called again, and the text field shows the appropriate input and (if
applicable) validation error.

At this point, our form’s state and appearance are in sync. Next, we need to change how we handle
the submit event. Here’s the updated event handler for the form, onFormSubmit():

forms/src/08-field-component-form.js

21 onFormSubmit = (evt) => {

22 const people = this.state.people;

23 const person = this.state.fields;

24

25 evt.preventDefault();

26

27 if (this.validate()) return;

28

29 this.setState({

30 people: people.concat(person),

31 fields: {

32 name: '',

33 email: '',

34 },

WOW! eBook
www.wowebook.org

Forms 214

35 });

36 };

The objective of onFormSubmit() hasn’t changed. It is still responsible for either adding a person to
the list, or preventing that behavior if there are validation issues. To check for validation errors, we
call this.validate(), and if there are any, we return early before adding the new person to the list.

Here’s what the current version of validate() looks like:

1 validate () {

2 const person = this.state.fields;

3 const fieldErrors = this.state.fieldErrors;

4 const errMessages = Object.keys(fieldErrors).filter((k) => fieldErrors[k])

5

6 if (!person.name) return true;

7 if (!person.email) return true;

8 if (errMessages.length) return true;

9

10 return false

11 },

Put simply, validate() is checking to make sure the data is valid at the form level. For the form to
pass validation at this level it must satisfy two requirements: (1) neither field may be empty and (2)
there must not be any field-level validation errors.

To satisfy the first requirement, we access this.state.fields and ensure that both state.fields.name
and state.fields.email are truthy. These are kept up to date by onInputChange(), so it will always
match what is in the text fields. If either name or email are missing, we return true, signaling that
there is a validation error.

For the second requirement, we look at this.state.fieldErrors. onInputChange() will set any
field-level validation error messages on this object. We use Object.keys and Array.filter to get
an array of all present error messages. If there are any field-level validation issues, there will be
corresponding error messages in the array, and its length will be non-zero and truthy. If that’s the
case, we also return true to signal the existence of a validation error.

validate() is a simple method that can be called at any time to check if the data is valid at the form-
level. We use it both in onFormSubmit() to prevent adding invalid data to the list and in render()

to disable the submit button, providing nice feedback in the UI.

And that’s it. We’re now using our custom Field component to do field-level validation on the fly,
and we also use form-level validation to toggle the submit button in real-time.

WOW! eBook
www.wowebook.org

Forms 215

Remote Data

Our form app is coming along. A user can sign up with their name and email, and we validate their
information before accepting the input. But now we’re going to kick it up a notch. We’re going to
explore how to allow a user to select from hierarchical, asynchronous options.

The most common example is to allow the user to select a car by year, make, and model. First the
user selects a year, then the manufacturer, then the model. After choosing an option in one select,
the next one becomes available. There are two interesting facets to building a component like this.

First, not all combinations make sense. There’s no reason to allow your user to choose a 1965 Tesla
Model T. Each option list (beyond the first) depends on a previously selected value.

Second, we don’t want to send the entire database of valid choices to the browser. Instead, the
browser only knows the top level of choices (e.g. years in a specific range). When the user makes a
selection, we provide the selected value to the server and ask for next level (e.g. manufacturers
available for a given year). Because the next level of options come from the server, this is an
asynchronous.

Our app won’t be interested in the user’s car, but we will want to know what they’re signing up for.
Let’s make this an app for users to learn more JavaScript by choosing a NodeSchool59 workshop to
attend.

A NodeSchool workshop can be either “core” or “elective”. We can think of these as “departments” of
NodeSchool. Therefore, depending on which department the user is interested in, we can allow them
to choose a corresponding workshop. This is similar to the above example where a user chooses a
car’s year before its manufacturer.

If a user chooses the core department, we would enable them to choose from a list of core workshops
like learnyounode and stream-adventure. If instead, they choose the elective department, we would
allow them to pick workshops like Functional JavaScript or Shader School. Similar to the car
example, the course list is provided asynchronously and depends on which department was selected.

The simplest way to achieve this is with two select elements, one for choosing the department and
the other for choosing the course. However, we will hide the second select until: (1) the user has
selected a department, and (2) we’ve received the appropriate course list from the server.

Instead of building this functionality directly into our form. We’ll create a custom component to
handle both the hierarchical and asynchronous nature of these fields. By using a custom component,
our form will barely have to change. Any logic specific to the workshop selection will be hidden in
the component.

Building the Custom Component

The purpose of this component is to allow the user to select a NodeSchool course. From now on
we’ll refer to it as our CourseSelect component.

59http://nodeschool.io

WOW! eBook
www.wowebook.org

http://nodeschool.io/
http://nodeschool.io/

Forms 216

However, before starting on our new CourseSelect component, we should think about howwewant
it to communicate with its form parent. This will determine the component’s props.

The most obvious prop is onChange(). The purpose of this component is to help the user make a
department/course selection and to make that data available to the form. Additionally, we’ll want to
be sure that onChange() to be called with the same arguments we’re expecting from the other field
components. That way we don’t have to create any special handling for this component.

We also want the form to be able to set this component’s state if need be. This is particularly useful
when we want to clear the selections after the user has submitted their info. For this we’ll accept
two props. One for department and one for course.

And that’s all we need. This component will accept three props. Here’s how they’ll look in our new
CourseSelect component:

forms/src/09-course-select.js

13 static propTypes = {

14 department: PropTypes.string,

15 course: PropTypes.string,

16 onChange: PropTypes.func.isRequired,

17 };

Next, we can think about the state that CourseSelect will need to keep track of. The two most
obvious pieces of state are department and course. Those will change when the user makes
selections, and when the form parent clears them on a submit.

CourseSelect will also need to keep track of available courses for a given department. When a user
selects a department, we’ll asynchronously fetch the corresponding course list. Once we have that
list we’ll want to store it in our state as courses.

Lastly, when dealing with asynchronous fetching, it’s nice to inform the user that data is loading
behind the scenes. We will also keep track of whether or not data is “loading” in our state as
_loading.

The underscore prefix of _loading is just a convention to highlight that it is purely
presentational. Presentational state is only used for UI effects. In this case it will be used
to hide/show the loading indicator image.

Here’s what our initial state looks like:

WOW! eBook
www.wowebook.org

Forms 217

forms/src/09-course-select.js

19 state = {

20 department: null,

21 course: null,

22 courses: [],

23 _loading: false,

24 };

As mentioned above, this component’s form parent will want to update the department and course

props. Our componentWillReceiveProps()method will use the update to appropriately modify the
state:

forms/src/09-course-select.js

26 componentWillReceiveProps(update) {

27 this.setState({

28 department: update.department,

29 course: update.course,

30 });

31 }

Now that we have a good idea of what our data looks like, we can get into how the component
is rendered. This component is a little more complicated than our previous examples, so we take
advantage of composition to keep things tidy. You will notice that our render() method is mainly
composed of two functions, renderDepartmentSelect() and renderCourseSelect():

forms/src/09-course-select.js

103 render() {

104 return (

105 <div>

106 { this.renderDepartmentSelect() }

107

108 { this.renderCourseSelect() }

109 </div>

110);

111 }

Aside from those two functions, render() doesn’t have much. But this nicely illustrates the two
“halves” of our component: the “department” half and the “course” half. Let’s first take a look at the
“department” half. Starting with renderDepartmentSelect():

WOW! eBook
www.wowebook.org

Forms 218

forms/src/09-course-select.js

106 { this.renderDepartmentSelect() }

This method returns a select element that displays one of three options. The currently displayed
option depends on the value prop of the select. The option whose value matches the select will
be shown. The options are:

• “Which department?” (value: empty string)
• “NodeSchool: Core” (value: "core")
• “NodeSchool: Electives” (value: "electives")

The value of select is this.state.department || ''. In other words, if this.state.department
is falsy (it is by default), the value will be an empty string and will match “Which department?”.
Otherwise, if this.state.department is either "core" or "electives", it will display one of the
other options.

Because this.onSelectDepartment is set as the onChange prop of the select, when the user changes
the option, onSelectDepartment() is called with the change event. Here’s what that looks like:

forms/src/09-course-select.js

33 onSelectDepartment = (evt) => {

34 const department = evt.target.value;

35 const course = null;

36 this.setState({ department, course });

37 this.props.onChange({ name: 'department', value: department });

38 this.props.onChange({ name: 'course', value: course });

39

40 if (department) this.fetch(department);

41 };

When the department is changed, we want three things to happen. First, we want to update state to
match the selected department option. Second, we want to propagate the change via the onChange
handler provided in the props of CourseSelect. Third, we want to fetch the available courses for
the department.

When we update the state, we update it to the value of the event’s target, the select. The value of
the select is the value of the chosen option, either '', "core", or "electives". After the state is set
with a new value, render() and renderDepartmentSelect() are run and a new option is displayed.

Notice that we also reset the course. Each course is only valid for its department. If the department
changes, it will no longer be a valid choice. Therefore, we set it back to its initial value, null.

WOW! eBook
www.wowebook.org

Forms 219

After updating state, we propagate the change to the component’s change handler, this.props.onChange.
Because we use the arguments as we have previously, this component can be used just like Field
and can be given the same handler function. The only trick is that we need to call it twice, once for
each input.

Finally, if a department was selected, we fetch the course list for it. Here’s the method it calls,
fetch():

forms/src/09-course-select.js

49 fetch = (department) => {

50 this.setState({ _loading: true, courses: [] });

51 apiClient(department).then((courses) => {

52 this.setState({ _loading: false, courses: courses });

53 });

54 };

The responsibility of this method is to take a department string, use it to asynchronously get the
corresponding course list, courses, and update the state with it. However, we also want to be sure
to affect the state for a better user experience.

We do this by updating the state before the apiClient call. We know that we’ll be waiting for the
response with the new course list, and in that time we should show the user a loading indicator.
To do that, we need our state to reflect our fetch status. Right before the apiClient call, we set
the state of _loading to true. Once the operation completes, we set _loading back to false and
update our course list.

Previously, wementioned that this component had two “halves” illustrated by our render()method:

forms/src/09-course-select.js

103 render() {

104 return (

105 <div>

106 { this.renderDepartmentSelect() }

107

108 { this.renderCourseSelect() }

109 </div>

110);

111 }

We’ve already covered the “department” half. Let’s now take a look at the “course” half starting with
renderCourseSelect():

WOW! eBook
www.wowebook.org

Forms 220

forms/src/09-course-select.js

108 { this.renderCourseSelect() }

The first thing that you’ll notice is that renderCourseSelect() returns a different root element
depending on particular conditions.

If state._loading is true, renderCourseSelect() only returns a single img: a loading indica-
tor. Alternatively, if we’re not loading, but a department has not been selected (and therefore
state.department is falsy), an empty span is returned – effectively hiding this half of the
component.

However, if we’re not loading, and the user has selected a department, renderCourseSelect()
returns a select similar to renderDepartmentSelect().

The biggest difference between renderCourseSelect() and renderDepartmentSelect() is that
renderCourseSelect() dynamically populates the option children of the select.

The first option in this select is “Which course?” which has an empty string as its value. If the user
has not yet selected a course, this is what they should see (just like “Which department?” in the
other select). The options that follow the first come from the course list stored in state.courses.

To provide all the child option elements to the select at once, the select is given a single array
as its child. The first item in the array is an element for our “Which course?” option. Then, we use
the spread operator combined with map() so that from the second item on, the array contains the
course options from state.

Each item in the array is an option element. Like before, each element has text that it displays
(like “Which course?”) as well as a value prop. If the value of the select matches the value of the
option, that option will be displayed. By default, the value of the select will be an empty string,
so it will match the “Which course?” option. Once the user chooses a course and we are able to
update state.course, the corresponding course will be shown.

This is a dynamic collection, we must also provide a key prop to each option to avoid
warnings from React.

Lastly, we provide a change handler function, onSelectCourse() to the select prop onChange.
When the user chooses a course, that function will be called with a related event object. We will
then use information from that event to update the state and notify the parent.

Here’s onSelectCourse():

WOW! eBook
www.wowebook.org

Forms 221

forms/src/09-course-select.js

43 onSelectCourse = (evt) => {

44 const course = evt.target.value;

45 this.setState({ course });

46 this.props.onChange({ name: 'course', value: course });

47 };

Like we’ve done before, we get the value of the target element from the event. This value is the
value of whichever option the user picked in the courses select. Once we update state.course

with this value, the select will display the appropriate option.

After the state is updated, we call the change handler provided by the component’s parent. Same
as with the department selection, we provide this.props.onChange() an object argument with the
name/value structure the handler expects.

And that’s it for our CourseSelect component! As we’ll see in next part, integration with the form
requires very minimal changes.

Adding CourseSelect

Now that our new CourseSelect component is ready, we can add it to our form. Only three small
changes are necessary:

1. We add the CourseSelect component to render().
2. We update our “People” list in render() to show the new fields (department and course).
3. Since department and course are required fields, we modify our validate()method to ensure

their presence.

Becausewewere careful to call the change handler fromwithin CourseSelect (this.props.onChange)
with a {name, value} object the way that onInputChange() expects, we’re able to reuse that
handler. When onInputChange() is called by CourseSelect, it can appropriately update state with
the new department and course information – just like it does with calls from the Field components.

Here’s the updated render():

WOW! eBook
www.wowebook.org

Forms 222

forms/src/09-async-fetch.js

67 render() {

68 return (

69 <div>

70 <h1>Sign Up Sheet</h1>

71

72 <form onSubmit={this.onFormSubmit}>

73

74 <Field

75 placeholder='Name'

76 name='name'

77 value={this.state.fields.name}

78 onChange={this.onInputChange}

79 validate={(val) => (val ? false : 'Name Required')}

80 />

81

82

83

84 <Field

85 placeholder='Email'

86 name='email'

87 value={this.state.fields.email}

88 onChange={this.onInputChange}

89 validate={(val) => (isEmail(val) ? false : 'Invalid Email')}

90 />

91

92

93

94 <CourseSelect

95 department={this.state.fields.department}

96 course={this.state.fields.course}

97 onChange={this.onInputChange}

98 />

99

100

101

102 <input type='submit' disabled={this.validate()} />

103 </form>

104

105 <div>

106 <h3>People</h3>

107

WOW! eBook
www.wowebook.org

Forms 223

108 { this.state.people.map(({ name, email, department, course }, i) =>

109 <li key={i}>{[name, email, department, course].join(' - ')}

110) }

111

112 </div>

113 </div>

114);

115 }

When adding CourseSelect we provide three props:

1. The current department from state (if one is present)
2. The current course from state (if one is present)
3. The onInputChange() handler (same function used by Field)

Here it is by itself:

1 <CourseSelect

2 department={this.state.fields.department}

3 course={this.state.fields.course}

4 onChange={this.onInputChange} />

The other change we make in render() is we add the new department and course fields to the
“People” list. Once a user submits sign-up information, they appear on this list. To show the
department and course information, we need to get that data from state and display it:

1 <h3>People</h3>

2

3 { this.state.people.map(({name, email, department, course}, i) =>

4 <li key={i}>{[name, email, department, course].join(' - ')}

5) }

6

This is as simple as pulling more properties from each item in the state.people array.

The only thing left to do is add these fields to our form-level validation. Our CourseSelect controls
the UI to ensure that we won’t get invalid data, so we don’t need to worry about field-level errors.
However, department and course are required fields, we should make sure that they are present
before allowing the user to submit. We do this by updating our validate()method to include them:

WOW! eBook
www.wowebook.org

Forms 224

forms/src/09-async-fetch.js

53 validate = () => {

54 const person = this.state.fields;

55 const fieldErrors = this.state.fieldErrors;

56 const errMessages = Object.keys(fieldErrors).filter((k) => fieldErrors[k]);

57

58 if (!person.name) return true;

59 if (!person.email) return true;

60 if (!person.course) return true;

61 if (!person.department) return true;

62 if (errMessages.length) return true;

63

64 return false;

65 };

Once validate() is updated, our app will keep the submit button disabled until we have both
department and course selected (in addition to our other validation requirements).

Thanks to the power of React and composition our form was able to take on complicated
functionality while keeping high maintainability.

Separation of View and State

Once we’ve received information from the user and we’ve decided that it’s valid, we then need to
convert the information to JavaScript objects. Depending on the form, this could involve casting
input values from strings to numbers, dates, or booleans, or it could be more involved if you need
to impose a hierarchy by corralling the values into arrays or nested objects.

After we have the information as JavaScript objects, we then have to decide how to use them. The
objects might be sent to a server as JSON to be stored in a database, encoded in a url to be used as
a search query, or maybe only used to configure how the UI looks.

The information in those objects will almost always affect the UI and in many cases will also affect
your application’s behavior. It’s up to us to determine how to store that info in our app.

Async Persistence

At this point our app is pretty useful. You could imagine having the app open on a kiosk where people
can come up to it and sign up for things. However, there’s one big shortcoming: if the browser is
closed or reloaded, all data is lost.

WOW! eBook
www.wowebook.org

Forms 225

In most web apps, when a user inputs data, that data should be sent to a server for safe keeping in
a database. When the user returns to the app, the data can be fetched, and the app can pick back up
right where it left off.

In this example, we’ll cover three aspects of persistence: saving, loading, and handling errors.
While we won’t be sending the data to a remote server or storing it in a database (we’ll be using
localStorage instead), we’ll treat it as an asynchronous operation to illustrate how almost any
persistence strategy could be used.

To persist the sign up list (state.people), we’ll only need to make a few changes to our parent form
component. At a high level they are:

1. Modify state to keep track of persistence status. Basically, we’ll want to know if the app is
currently loading, is currently saving, or encountered an error during either operation.

2. Make a request using our API client to get any previously persisted data and load it into our
state.

3. Update our onFormSubmit() event handler to trigger a save.
4. Change our render()method so that the “submit” button both reflects the current save status

and prevents the user from performing an unwanted action like a double-save.

First, we’ll want to modify our state keep track of our “loading” and “saving” status. This is useful
to both accurately communicate the status of persistence and to prevent unwanted user actions. For
example, if we know that the app is in the process of “saving”, we can disable the submit button.
Here’s the updated state method with the two new properties:

forms/src/10-remote-persist.js

16 state = {

17 fields: {

18 name: '',

19 email: '',

20 course: null,

21 department: null

22 },

23 fieldErrors: {},

24 people: [],

25 _loading: false,

26 _saveStatus: 'READY',

27 };

The two new properties are _loading and _saveStatus. As before, we use the underscore prefix
convention to signal that they are private to this component. There’s no reason for a parent or child
component to ever know their values.

WOW! eBook
www.wowebook.org

Forms 226

_saveStatus is initialized with the value "READY", but we will have four possible values: "READY",
"SAVING", "SUCCESS", and "ERROR". If the _saveStatus is either "SAVING" or "SUCCESS", we’ll want
to prevent the user from making an additional save.

Next, when the component has been successfully loaded and is about to be added to the DOM,
we’ll want to request any previously saved data. To do this we’ll add the lifecycle method
componentWillMount() which is automatically called by React at the appropriate time. Here’s what
that looks like:

forms/src/10-remote-persist.js

29 componentWillMount() {

30 this.setState({ _loading: true });

31 apiClient.loadPeople().then((people) => {

32 this.setState({ _loading: false, people: people });

33 });

34 }

Before we start the fetch with apiClient, we set state._loading to true. We’ll use this in render()

to show a loading indicator. Once the fetch returns, we update our state.people list with the
previously persisted list and set _saveStatus back to false.

apiClient is a simple object we created to simulate asynchronous loading and saving. If
you look at the code for this chapter, you’ll see that the “save” and “load” methods are
thin async wrappers around localStorage. In your own apps you could create our own
apiClient with similar methods to perform network requests.

Unfortunately, our app doesn’t yet have a way to persist data. At this point there won’t be any data
to load. However, we can fix that by updating onFormSubmit().

As in the previous sections, we’ll want our user to be able to fill out each field and hit “submit” to
add a person to the list. When they do that, onFormSubmit() is called. We’ll make a change so that
we not only perform the previous behavior (validation, updating state.people), but we also persist
that list using apiClient.savePeople():

WOW! eBook
www.wowebook.org

Forms 227

forms/src/10-remote-persist.js

36 onFormSubmit = (evt) => {

37 const person = this.state.fields;

38

39 evt.preventDefault();

40

41 if (this.validate()) return;

42

43 const people = [...this.state.people, person];

44

45 this.setState({ _saveStatus: 'SAVING' });

46 apiClient.savePeople(people)

47 .then(() => {

48 this.setState({

49 people: people,

50 fields: {

51 name: '',

52 email: '',

53 course: null,

54 department: null

55 },

56 _saveStatus: 'SUCCESS',

57 });

58 })

59 .catch((err) => {

60 console.error(err);

61 this.setState({ _saveStatus: 'ERROR' });

62 });

63 };

In the previous sections, if the data passed validation, we would just update our state.people list
to include it. This time we’ll also add the person to the people list, but we only want to update our
state if apiClient can successfully persist. The order of operations looks like this:

1. Create a new array, people with both the contents of state.people and the new person

object.
2. Update state._saveStatus to "SAVING"

3. Use apiClient to begin persisting the new people array from #1.
4. If apiClient is successful, update state with our new people array, an empty fields object,

and _saveStatus: "SUCCESS". If apiClient is not successful, leave everything as is, but set
state._saveStatus to "ERROR".

WOW! eBook
www.wowebook.org

Forms 228

Put simply, we set the _saveStatus to "SAVING" while the apiClient request is “in-flight”. If the
request is successful, we set the _saveStatus to "SUCCESS" and perform the same actions as before.
If not, the only update is to set _saveStatus to "ERROR". This way, our local state does not get out of
sync with our persisted copy. Also, since we don’t clear the fields, we give the user an opportunity
to try again without having to re-input their information.

For this example we are being conservative with our UI updates. We only add the new
person to the list if apiClient is successful. This is in contrast to an optimistic update, where
we would add the person to the list locally first, and later make adjustments if there was a
failure. To do an optimistic update we could keep track of which person objects were added
before which apiClient calls. Then if an apiClient call fails, we could selectively remove
the particular person object associated with that call. We would also want to display a
message to the user explaining the issue.

Our last change is to modify our render()method so that the UI accurately reflects our status with
respect to loading and saving. As mentioned, we’ll want the user to know if we’re in the middle of
a load or a save, or if there was a problem saving. We can also control the UI to prevent them from
performing unwanted actions such as a double save.

Here’s the updated render() method:

forms/src/10-remote-persist.js

89 render() {

90 if (this.state._loading) {

91 return ;

92 }

93

94 return (

95 <div>

96 <h1>Sign Up Sheet</h1>

97

98 <form onSubmit={this.onFormSubmit}>

99

100 <Field

101 placeholder='Name'

102 name='name'

103 value={this.state.fields.name}

104 onChange={this.onInputChange}

105 validate={(val) => (val ? false : 'Name Required')}

106 />

107

108

109

WOW! eBook
www.wowebook.org

Forms 229

110 <Field

111 placeholder='Email'

112 name='email'

113 value={this.state.fields.email}

114 onChange={this.onInputChange}

115 validate={(val) => (isEmail(val) ? false : 'Invalid Email')}

116 />

117

118

119

120 <CourseSelect

121 department={this.state.fields.department}

122 course={this.state.fields.course}

123 onChange={this.onInputChange}

124 />

125

126

127

128 {{

129 SAVING: <input value='Saving...' type='submit' disabled />,

130 SUCCESS: <input value='Saved!' type='submit' disabled />,

131 ERROR: <input

132 value='Save Failed - Retry?'

133 type='submit'

134 disabled={this.validate()}

135 />,

136 READY: <input

137 value='Submit'

138 type='submit'

139 disabled={this.validate()}

140 />,

141 }[this.state._saveStatus]}

142

143 </form>

144

145 <div>

146 <h3>People</h3>

147

148 { this.state.people.map(({ name, email, department, course }, i) =>

149 <li key={i}>{[name, email, department, course].join(' - ')}

150) }

151

WOW! eBook
www.wowebook.org

Forms 230

152 </div>

153 </div>

154);

155 }

First, we want to show the user a loading indicator while we are loading previously persisted data.
Like the previous section, this is done on the first line of render() with a conditional and an early
return.While we are loading (state._loading is truthy), we won’t render the form, only the loading
indicator:

1 if (this.state._loading) return

Next, we want the submit button to communicate the current save status. If no save request is in-
flight, we want the button to be enabled if the field data is valid. If we are in the process of saving,
we want the button to read “Saving…” to be disabled. The user will know that the app is busy, and
since the button is disabled, they won’t be able to submit duplicate save requests. If the save request
resulted in an error, we use the button text to communicate that and indicate that they can try
again. The button will be enabled if the input data is still valid. Finally, if the save request completed
successfully, we use the button text to communicate that. Here’s how we render the button:

1 {{

2 SAVING: <input value='Saving...' type='submit' disabled />,

3 SUCCESS: <input value='Saved!' type='submit' disabled/>,

4 ERROR: <input value='Save Failed - Retry?' type='submit' disabled={this.valida\

5 te()}/>,

6 READY: <input value='Submit' type='submit' disabled={this.validate()}/>

7 }[this.state._saveStatus]}

What we have here are four different buttons – one for each possible state._saveStatus. Each
button is the value of an object keyed by its corresponding status. By accessing the key of the current
save status, this expression will evaluate to the appropriate button.

The last thing that we have to do is related to the "SUCCESS" case. We want to show the user that
the addition was a success, and we do that by changing the text of the button. However, “Saved!” is
not a call to action. If the user enters another person’s information and wants to add it to the list,
our button would still say “Saved!”. It should say “Submit” to more accurately reflect its purpose.

The easy fix for this is to change our state._saveStatus back to "READY" as soon as they start
entering information again. To do this, we update our onInputChange() handler:

WOW! eBook
www.wowebook.org

Forms 231

forms/src/10-remote-persist.js

65 onInputChange = ({ name, value, error }) => {

66 const fields = this.state.fields;

67 const fieldErrors = this.state.fieldErrors;

68

69 fields[name] = value;

70 fieldErrors[name] = error;

71

72 this.setState({ fields, fieldErrors, _saveStatus: 'READY' });

73 };

Now instead of just updating state.fields and state.fieldErrors, we also set state._saveSta-
tus to 'READY'. This way after the user acknowledges their previous submit was a success and starts
to interact with the app again, the button reverts to its “ready” state and invites the user to submit
again.

At this point our sign-up app is a nice illustration of the features and issues that you’ll want to cover
in your own forms using React.

Redux

In this section we’ll show how you we can modify the form app we’ve built up so that it can work
within a larger app using Redux.

Chronologically we haven’t talked about Redux in this book. The next two chapters are
all about Redux in depth. If you’re unfamiliar with Redux, hop over to those chapters and
come back here when you need to deal with forms in Redux.

Our form, which used to be our entire app, will now become a component. In addition, we’ll adapt
it to fit within the Redux paradigm. At a high level, this involves moving state and functionality
from our form component to Redux reducers and actions. For example, we will no longer call API
functions from within the form component – we use Redux async actions for that instead. Similarly,
data that used to be held as state in our form will become read-only props – it will now be held in
the Redux store.

When building with Redux, it is very helpful to start by thinking about the “shape” your state will
take. In our case, we have a pretty good idea already since our functionality has been built. When
using Redux, you’ll want to centralize state as much as possible – this will be the store, accessible
by all components in the app. Here’s what our initialState should look like:

WOW! eBook
www.wowebook.org

Forms 232

forms/src/11-redux-reducer.js

6 const initialState = {

7 people: [],

8 isLoading: false,

9 saveStatus: 'READY',

10 person: {

11 name: '',

12 email: '',

13 course: null,

14 department: null

15 },

16 };

No surprises here. Our app cares about the list of people who have signed up, the current person
being typed in the form, whether or not we’re loading, and the status of our save attempt.

Now that we know the shape of our state, we can think of different actions that would mutate it. For
example, since we’re keeping track of the list of people, we can imagine one action to retrieve the list
from the server when the app starts. This action would affect multiple properties of our state. When
the request to the server returns with the list, we’ll want to update our state with it, and we’ll also
want to update isLoading. In fact, we’ll want to set isLoading to true when we start the request,
and we’ll want to set it to false when the request finishes. With Redux, it’s important to realize
that we can often split one objective into multiple actions.

For our Redux app, we’ll have five action types. The first two are related to the objective just
mentioned, they are FETCH_PEOPLE_REQUEST and FETCH_PEOPLE_SUCCESS. Here are those action types
with their corresponding action creator functions:

forms/src/11-redux-actions.js

1 /* eslint-disable no-use-before-define */

2 export const FETCH_PEOPLE_REQUEST = 'FETCH_PEOPLE_REQUEST';

3 function fetchPeopleRequest () {

4 return {type: FETCH_PEOPLE_REQUEST};

5 }

6

7 export const FETCH_PEOPLE_SUCCESS = 'FETCH_PEOPLE_SUCCESS';

8 function fetchPeopleSuccess (people) {

9 return {type: FETCH_PEOPLE_SUCCESS, people};

10 }

When we start the request we don’t need to provide any information beyond the action type to the
reducer. The reducer will know that the request started just from the type and can update isLoading

WOW! eBook
www.wowebook.org

Forms 233

to true. When the request is successful, the reducer will know to set it to false, but we’ll need to
provide the people list for that update. This is why people is on the second action, FETCH_PEOPLE_-
SUCCESS.

We skip FETCH_PEOPLE_FAILURE only for expediency, but you’ll want to handle fetch
failures in your own app. See below for how to do that for saving the list.

We can now imagine dispatching these actions and having our state updated appropriately. To get
the people list from the server we would dispatch the FETCH_PEOPLE_REQUEST action, use our API
client to get the list, and finally dispatch the FETCH_PEOPLE_SUCCESS action (with the people list on
it). With Redux, we’ll use an asynchronous action creator, fetchPeople() to perform those actions:

forms/src/11-redux-actions.js

27 export function fetchPeople () {

28 return function (dispatch) {

29 dispatch(fetchPeopleRequest())

30 apiClient.loadPeople().then((people) => {

31 dispatch(fetchPeopleSuccess(people))

32 })

33 }

34 }

Instead of returning an action object, asynchronous action creators return functions that dispatch
actions.

Asynchronous action creators are not supported by default with Redux. To be able to
dispatch functions instead of action objects, we’ll need to use the redux-thunkmiddleware
when we create our store.

We’ll also want to create actions for saving our list to the server. Here’s what they look like:

forms/src/11-redux-actions.js

11 export const SAVE_PEOPLE_REQUEST = 'SAVE_PEOPLE_REQUEST';

12 function savePeopleRequest () {

13 return {type: SAVE_PEOPLE_REQUEST};

14 }

15

16 export const SAVE_PEOPLE_FAILURE = 'SAVE_PEOPLE_FAILURE';

17 function savePeopleFailure (error) {

18 return {type: SAVE_PEOPLE_FAILURE, error};

19 }

WOW! eBook
www.wowebook.org

Forms 234

20

21 export const SAVE_PEOPLE_SUCCESS = 'SAVE_PEOPLE_SUCCESS';

22 function savePeopleSuccess (people) {

23 return {type: SAVE_PEOPLE_SUCCESS, people};

Just like the fetch we have SAVE_PEOPLE_REQUEST and SAVE_PEOPLE_SUCCESS, but we also have
SAVE_PEOPLE_FAILURE. The SAVE_PEOPLE_REQUEST action happens when we start the request, and
like before we don’t need to provide any data besides the action type. The reducer will see this
type and know to update saveStatus to 'SAVING'. Once the request resolves, we can trigger either
SAVE_PEOPLE_SUCCESS or SAVE_PEOPLE_FAILURE depending on the outcome. We will want to pass
additional data with these though – people on a successful save and error on a failure.

Here’s how we use those together within an asynchronous action creator, savePeople():

forms/src/11-redux-actions.js

36 export function savePeople (people) {

37 return function (dispatch) {

38 dispatch(savePeopleRequest())

39 apiClient.savePeople(people)

40 .then((resp) => { dispatch(savePeopleSuccess(people)) })

41 .catch((err) => { dispatch(savePeopleFailure(err)) })

42 }

43 }

Notice that this action creator delegates the ‘work’ of making the API request to our API client. We
can define our API client like this:

forms/src/11-redux-actions.js

45 const apiClient = {

46 loadPeople: function () {

47 return {

48 then: function (cb) {

49 setTimeout(() => {

50 cb(JSON.parse(localStorage.people || '[]'))

51 }, 1000);

52 }

53 }

54 },

55

56 savePeople: function (people) {

57 const success = !!(this.count++ % 2);

WOW! eBook
www.wowebook.org

Forms 235

58

59 return new Promise(function (resolve, reject) {

60 setTimeout(() => {

61 if (!success) return reject({success});

62

63 localStorage.people = JSON.stringify(people);

64 resolve({success});

65 }, 1000);

66 })

67 },

68

69 count: 1

70 }

Now that we’ve defined all of our action creators, we have everything we need for our reducer. By
using the two asynchronous action creators above, the reducer can make all the updates to our state
that our app will need. Here’s what our reducer looks like:

forms/src/11-redux-reducer.js

6 const initialState = {

7 people: [],

8 isLoading: false,

9 saveStatus: 'READY',

10 person: {

11 name: '',

12 email: '',

13 course: null,

14 department: null

15 },

16 };

17

18 export function reducer (state = initialState, action) {

19 switch (action.type) {

20 case FETCH_PEOPLE_REQUEST:

21 return Object.assign({}, state, {

22 isLoading: true

23 });

24 case FETCH_PEOPLE_SUCCESS:

25 return Object.assign({}, state, {

26 people: action.people,

27 isLoading: false

28 });

WOW! eBook
www.wowebook.org

Forms 236

29 case SAVE_PEOPLE_REQUEST:

30 return Object.assign({}, state, {

31 saveStatus: 'SAVING'

32 });

33 case SAVE_PEOPLE_FAILURE:

34 return Object.assign({}, state, {

35 saveStatus: 'ERROR'

36 });

37 case SAVE_PEOPLE_SUCCESS:

38 return Object.assign({}, state, {

39 people: action.people,

40 person: {

41 name: '',

42 email: '',

43 course: null,

44 department: null

45 },

46 saveStatus: 'SUCCESS'

47 });

48 default:

49 return state;

50 }

51 }

By just looking at the actions and the reducer you should be able to see all the ways our state can be
updated. This is one of the great things about Redux. Because everything is so explicit, state becomes
very easy to reason about and test.

Now that we’ve established the shape of our state and how it can change, we’ll create a store. Then
we’ll want to make some changes so that our form can connect to it properly.

Form Component

Now that we’ve created the foundation of our app’s data architecture with Redux, we can adapt our
form component to fit in. In broad strokes, we need to remove any interaction with the API client
(our asynchronous action creators handle this now) and shift dependence from component-level
state to props (Redux state will be passed in as props).

The first thing we need to do is set up propTypes that will align with the data we expect to get from
Redux:

WOW! eBook
www.wowebook.org

Forms 237

forms/src/11-redux-form.js

11 static propTypes = {

12 people: PropTypes.array.isRequired,

13 isLoading: PropTypes.bool.isRequired,

14 saveStatus: PropTypes.string.isRequired,

15 fields: PropTypes.object,

16 onSubmit: PropTypes.func.isRequired,

17 };

We will require one additional prop that is not related to data in our Redux store, onSubmit().
When the user submits a new person, instead of using the API client, our form component will call
this function instead. Later we’ll show how we hook this up to our asynchronous action creator
savePeople().

Next, we limit the amount of data that we’ll keep in state. We keep fields and fieldErrors, but
we remove people, _loading, and _saveStatus – those will come in on props. Here’s the updated
state

forms/src/11-redux-form.js

19 state = {

20 fields: this.props.fields || {

21 name: '',

22 email: '',

23 course: null,

24 department: null

25 },

26 fieldErrors: {},

27 };

state.fieldswill be initialized to props.fields (or the default fields, if not provided). Additionally,
if a new fields object comes in on props, we will update our state:

forms/src/11-redux-form.js

29 componentWillReceiveProps(update) {

30 console.log('this.props.fields', this.props.fields, update);

31

32 this.setState({ fields: update.fields });

33 }

WOW! eBook
www.wowebook.org

Forms 238

Now that our props and state are in order, we can remove any usage of apiClient since that will
be handled by our asynchronous action creators. The two places that we used the API client were
in componentWillMount() and onFormSubmit().

Since the only purpose of componentWillMount() was to use the API client, we have removed it
entirely. In onFormSubmit(), we remove the block related to the API and replace it with a call to
props.onSubmit():

forms/src/11-redux-form.js

35 onFormSubmit = (evt) => {

36 const person = this.state.fields;

37

38 evt.preventDefault();

39

40 if (this.validate()) return;

41

42 this.props.onSubmit([...this.props.people, person]);

43 };

With all of that out of the way, we can make a few minor updates to render(). In fact, the only
modifications we have to make to render() are to replace references to state._loading, state._-
saveStatus, and state.people with their counterparts on props.

forms/src/11-redux-form.js

69 render() {

70 if (this.props.isLoading) {

71 return ;

72 }

73

74 const dirty = Object.keys(this.state.fields).length;

75 let status = this.props.saveStatus;

76 if (status === 'SUCCESS' && dirty) status = 'READY';

77

78 return (

79 <div>

80 <h1>Sign Up Sheet</h1>

81

82 <form onSubmit={this.onFormSubmit}>

83

84 <Field

85 placeholder='Name'

86 name='name'

WOW! eBook
www.wowebook.org

Forms 239

87 value={this.state.fields.name}

88 onChange={this.onInputChange}

89 validate={(val) => (val ? false : 'Name Required')}

90 />

91

92

93

94 <Field

95 placeholder='Email'

96 name='email'

97 value={this.state.fields.email}

98 onChange={this.onInputChange}

99 validate={(val) => (isEmail(val) ? false : 'Invalid Email')}

100 />

101

102

103

104 <CourseSelect

105 department={this.state.fields.department}

106 course={this.state.fields.course}

107 onChange={this.onInputChange}

108 />

109

110

111

112 {{

113 SAVING: <input value='Saving...' type='submit' disabled />,

114 SUCCESS: <input value='Saved!' type='submit' disabled />,

115 ERROR: <input

116 value='Save Failed - Retry?'

117 type='submit'

118 disabled={this.validate()}

119 />,

120 READY: <input

121 value='Submit'

122 type='submit'

123 disabled={this.validate()}

124 />,

125 }[status]}

126

127 </form>

128

WOW! eBook
www.wowebook.org

Forms 240

129 <div>

130 <h3>People</h3>

131

132 {this.props.people.map(({ name, email, department, course }, i) =>

133 <li key={i}>{[name, email, department, course].join(' - ')}

134) }

135

136 </div>

137 </div>

138);

139 }

You may notice that we handle saveStatus a bit differently. In the previous iteration, our
form component was able to control state._saveStatus and could set it to 'READY' on
a field change. In this version, we get that information from props.saveStatus and it is
read-only. The solution is to check if state.fields has any keys – if it does, we know the
user has entered data and we can set the button back to the “ready” state.

Connect the Store

At this point we have our actions, our reducer, and our streamlined form component. All that’s left
is to connect them together.

First, we will use Redux’s createStore() method to create a store from our reducer. Because we
want to be able to dispatch asynchronous actions, wewill also use thunkMiddleware from the redux-
thunk module. To use middleware in our store, we’ll use Redux’s applyMiddleware() method.
Here’s what that looks like:

forms/src/11-redux-app.js

10 const store = createStore(reducer, applyMiddleware(thunkMiddleware));

Next, we will use the connect()method from react-redux to optimize our form component for use
with Redux. We do this by providing it two methods: mapStateToProps and mapDispatchToProps.

When using Redux, we want our components to subscribe to the store. However, with react-

redux it will do that for us. All we need to do is provide a mapStateToProps function that defines
the mapping between data in the store and props for the component. In our app, they line up neatly:

WOW! eBook
www.wowebook.org

Forms 241

forms/src/11-redux-app.js

30 function mapStateToProps(state) {

31 return {

32 isLoading: state.isLoading,

33 fields: state.person,

34 people: state.people,

35 saveStatus: state.saveStatus,

36 };

37 }

From within our form component, we call props.onSubmit()when the user submits and validation
passes. We want this behavior to dispatch our savePeople() asynchronous action creator. To do
this, we provide mapDispatchToProps() to define the connection between the props.onSubmit()

function and the dispatch of our action creator:

forms/src/11-redux-app.js

39 function mapDispatchToProps(dispatch) {

40 return {

41 onSubmit: (people) => {

42 dispatch(savePeople(people));

43 },

44 };

45 }

With both of those functions created, we use the connect() method from react-redux to give us
an optimized ReduxForm component:

forms/src/11-redux-app.js

12 const ReduxForm = connect(mapStateToProps, mapDispatchToProps)(Form);

The final step is to incorporate the store and the ReduxForm into our app. At this point our app is a
very simple component with only two methods, componentWillMount() and render().

In componentWillMount() we dispatch our fetchPeople() asynchronous action to load the people
list from the server:

WOW! eBook
www.wowebook.org

Forms 242

forms/src/11-redux-app.js
17 componentWillMount() {

18 store.dispatch(fetchPeople());

19 }

In render() we use a helpful component Provider that we get from react-redux. Provider will
make the store available to all of its child components. We simply place ReduxForm as a child of
Provider and our app is good to go:

forms/src/11-redux-app.js
21 render() {

22 return (

23 <Provider store={store}>

24 <ReduxForm />

25 </Provider>

26);

27 }

And that’s it! Our form now fits neatly inside a Redux-based data architecture.

After reading this chapter, you should have a good handle on the fundamentals of forms in React.
That said, if you’d like to outsource some portion of your form handling to an external module, there
are several available. Read on for a list of some of the more popular options.

Form Modules

formsy-react

https://github.com/christianalfoni/formsy-react60

formsy-react tries to strike a balance between flexibility and reusability. This is a worthwhile goal
as the author of this module acknowledges that forms, inputs, and validation are handled quite
differently across projects.

The general pattern is that you use the Formsy.Form component as your form element, and provide
your own input components as children (using the Formsy.Mixin). The Formsy.Form component has
handlers like onValidSubmit() and onInvalid() that you can use to alter state on the form’s parent,
and the mixin provides some validation and other general purpose helpers.

react-input-enhancements

http://alexkuz.github.io/react-input-enhancements61

60https://github.com/christianalfoni/formsy-react
61http://alexkuz.github.io/react-input-enhancements

WOW! eBook
www.wowebook.org

https://github.com/christianalfoni/formsy-react
http://alexkuz.github.io/react-input-enhancements
https://github.com/christianalfoni/formsy-react
http://alexkuz.github.io/react-input-enhancements

Forms 243

react-input-enhancements is a collection of five rich components that you can use to augment
forms. This module has a nice demo to showcase how you can use the Autosize, Autocomplete,
Dropdown, Mask, and DatePicker components. The author does make a note that they aren’t quite
ready for production and are more conceptual. That said, they might be useful if you’re looking for
a drop-in datepicker or autocomplete element.

tcomb-form

http://gcanti.github.io/tcomb-form62

tcomb-form is meant to be usedwith tcombmodels (https://github.com/gcanti/tcomb63) which center
around Domain Driven Design. The idea is that once you create a model, the corresponding form
can be automatically generated. In theory, the benefits are that you don’t have to write as much
markup, you get usability and accessibility for free (e.g. automatic labels and inline validation), and
your forms will automatically stay in sync with changes to your model. If tcombmodels seem to be
a good fit for your app, this tcomb-form is worth considering.

winterfell

https://github.com/andrewhathaway/winterfell64

If the idea of defining your forms and fields entirely with JSON, winterfellmight be for you. With
winterfell, you sketch out your entire form in a JSON schema. This schema is a large object where
you can define things like CSS class names, section headers, labels, validation requirements, field
types, and conditional branching. winterfell is organized into “form panels”, “question panels”,
and “question sets”. Each panel has an ID and that ID is used to assign sets to it. One benefit of
this approach is that if you find yourself creating/modifying lots of forms, you could create a UI to
create/modify these schema objects and persist them to a database.

react-redux-form

https://github.com/davidkpiano/react-redux-form65

If Redux ismore your style react-redux-form is a “collection of action creators and reducer creators”
to simplify “building complex and custom forms with React and Redux”. In practice, this module
provides a modelReducer and a formReducer helper to use when creating your Redux store. Then
within your form you can use the provided Form, Field, and Error components to help connect
your label and input elements to the appropriate reducers, set validation requirements, and display
appropriate errors. In short, this is a nice thin wrapper to help you build forms using Redux.

62http://gcanti.github.io/tcomb-form
63https://github.com/gcanti/tcomb
64https://github.com/andrewhathaway/winterfell
65https://github.com/davidkpiano/react-redux-form

WOW! eBook
www.wowebook.org

http://gcanti.github.io/tcomb-form
https://github.com/gcanti/tcomb
https://github.com/andrewhathaway/winterfell
https://github.com/davidkpiano/react-redux-form
http://gcanti.github.io/tcomb-form
https://github.com/gcanti/tcomb
https://github.com/andrewhathaway/winterfell
https://github.com/davidkpiano/react-redux-form

Using Webpack with Create React App
In most of our earlier projects, we loaded React with script tags in our apps’ index.html files:

<script src='vendor/react.js'></script>

<script src='vendor/react-dom.js'></script>

Because we’ve been using ES6, we’ve also been loading the Babel library with script tags:

<script src='vendor/babel-standalone.js'></script>

With this setup we’ve been able to load in any ES6 JavaScript file we wanted in index.html,
specifying that its type is text/babel:

<script type='text/babel' src='./client.js'></script>

Babel would handle the loading of the file, transpiling our ES6 JavaScript to browser-ready ES5
JavaScript.

If you need a refresher on our setup strategy so far, we detail it in Chapter 1.

We began with this setup strategy because it’s the simplest. You can begin writing React components
in ES6 with little setup.

However, this approach has limitations. For our purposes, the most pressing limitation is the lack of
support for JavaScript modules.

JavaScript modules

We saw modules in earlier apps. For instance, the time tracking app had a Client module. That
module’s file defined a few functions, like getTimers(). It then set window.client to an object that
“exposed” each function as a property. That object looked like this:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 245

// `window.client` was set to this object

// Each property is a function

{

getTimers,

createTimer,

updateTimer,

startTimer,

stopTimer,

deleteTimer,

};

This Client module only exposed these functions. These are the Client module’s public methods.
The file public/js/client.js also contained other function definitions, like checkStatus(), which
verifies that the server returned a 2xx response code. While each of the public methods uses
checkStatus() internally, checkStatus() is kept private. It is only accessible from within the
module.

That’s the idea behind a module in software. You have some self-contained component of a software
system that is responsible for some discrete functionality. The module exposes a limited interface to
the rest of the system, ideally theminimum viable interface the rest of the system needs to effectively
use the module.

In React, we can think of each of our individual components as their own modules. Each
component is responsible for some discrete part of our interface. React components might contain
their own state or perform complex operations, but the interface for all of them is the same: they
accept inputs (props) and output their DOM representation (render). Users of a React component
need not know any of the internal details.

In order for our React components to be truly modular, we’d ideally have them live in their own
files. In the upper scope of that file, the component might define a styles object or helper functions
that only the component uses. But we want our component-module to only expose the component
itself.

Until ES6, modules were not natively supported in JavaScript. Developers would use a variety of
different techniques to make modular JavaScript. Some solutions only work in the browser, relying
on the browser environment (like the presence of window). Others only work in Node.js.

Browsers don’t yet support ES6 modules. But ES6 modules are the future. The syntax is intuitive, we
avoid bizarre tactics employed in ES5, and they work both in and outside of the browser. Because
of this, the React community has quickly adopted ES6 modules.

If you look at time_tracking_app/public/js/client.js, you’ll get an idea of how strange
the techniques for creating ES5 JavaScript modules are.

However, due to the complexity of module systems, we can’t simply use ES6’s import/export syntax
and expect it to “just work” in the browser, even with Babel. More tooling is needed.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 246

For this reason and more, the JavaScript community has widely adopted JavaScript bundlers. As
we’ll see, JavaScript bundlers allow us to write modular ES6 JavaScript that works seamlessly in
the browser. But that’s not all. Bundlers pack numerous advantages. Bundlers provide a strategy
for both organizing and distributing web apps. They have powerful toolchains for both iterating in
development and producing production-optimized builds.

While there are several options for JavaScript bundlers, the React community’s favorite isWebpack.

However, bundlers likeWebpack come with a significant trade-off: They add complexity to the setup
of your web application. Initial configuration can be difficult and you ultimately end up with an app
that has more moving pieces.

In response to setup and configuration woes, the community has created loads of boilerplates and
libraries developers can use to get started with more advanced React apps. But the React core team
recognized that as long as there wasn’t a core team sanctioned solution, the community was likely
to remain splintered. The first steps for a bundler-powered React setup can be confusing for novice
and experienced developers alike.

The React core team responded by producing the Create React App project.

Create React App

The create-react-app66 library provides a command you can use to initiate a newWebpack-powered
React app:

$ create-react-app my-app-name

The library will configure a “black box” Webpack setup for you. It provides you with the benefits of
a Webpack setup while abstracting away the configuration details.

Create React App is a great way to get startedwith aWebpack-React app using standard conventions.
Therefore, we’ll use it in all of our forthcoming Webpack-React apps.

In this chapter, we’ll:

• See what a React component looks like when represented as an ES6 module
• Examine the setup of an app managed by Create React App
• Take a close look at how Webpack works
• Explore some of the numerous advantages that Webpack provides for both development and
production use

• Peek under the hood of Create React App
• Figure out how to get a Webpack-React app to work alongside an API

66https://github.com/facebookincubator/create-react-app

WOW! eBook
www.wowebook.org

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app

Using Webpack with Create React App 247

The idea of a “black box” controlling the inner-workings of your app might be scary. This
is a valid concern. Later in the chapter, we’ll explore a feature of Create React App, eject,
which should hopefully assuage some of this fear.

Exploring Create React App

Let’s install Create React App and then use it to initialize a Webpack-React app. We can install it
globally from the command line using the -g flag. You can run this command anywhere on your
system:

$ npm i -g create-react-app@0.5.0

The @0.5.0 above is used to specify a version number and is important.

create-react-app is a very new project. It is moving quickly in its early stages. To avoid
possible discrepancies, be sure to use the same version we have specified here.

Now, anywhere on your system, you can run the create-react-app command to initiate the setup
for a new Webpack-powered React app.

Let’s create a new app. We’ll do this inside of the code download that came with the book. From the
root of the code folder, change into the directory for this chapter:

$ cd webpack

That directory already has three folders:

$ ls

es6-modules/

food-lookup/

heart-webpack-complete/

The completed version of the code for this next section is available in heart-webpack-complete.

Run the following command to initiate a new React app in a folder called heart-webpack:

$ create-react-app heart-webpack

This will create the boilerplate for the new app and install the app’s dependencies. This might take
a while.

When Create React App is finished, cd into the new directory:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 248

$ cd heart-webpack

Before exploring, we want to ensure your react-scripts version is the same as the one we’re using
here in the book. We’ll see what the react-scripts package is in a moment. Run this command
inside heart-webpack to lock in version 0.7.0:

npm install --save-dev --save-exact react-scripts@0.7.0

Now let’s take a look at what’s inside:

$ ls

README.md

node_modules/

package.json

public/

src/

Inside src/ is a sample React app that Create React App has provided for demonstration purposes.
Inside of public/ is an index.html, which we’ll look at first.

public/index.html

Opening public/index.html in a text editor:

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">

<!--

... comment omitted ...

-->

<title>React App</title>

</head>

<body>

<div id="root"></div>

<!--

... comment omitted ...

-->

</body>

</html>

The stark difference from the index.html we’ve used in previous apps: there are no script tags
here. That means this file is not loading any external JavaScript files. We’ll see why this is soon.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 249

package.json

Looking inside of the project’s package.json, we see a few dependencies and some script definitions:

webpack/heart-webpack-complete/package.json

{

"name": "heart-webpack",

"version": "0.1.0",

"private": true,

"devDependencies": {

"react-scripts": "0.9.5"

},

"dependencies": {

"react": "15.5.4",

"react-dom": "15.5.4"

},

"scripts": {

"start": "react-scripts start",

"build": "react-scripts build",

"test": "react-scripts test --env=jsdom",

"eject": "react-scripts eject"

}

}

Let’s break it down.

react-scripts

package.json specifies a single development dependency, react-scripts:

webpack/heart-webpack-complete/package.json

"devDependencies": {

"react-scripts": "0.9.5"

},

Create React App is just a boilerplate generator. That command produced the folder structure of
our new React app, inserted a sample app, and specified our package.json. It’s actually the react-
scripts package that makes everything work.

react-scripts specifies all of our app’s development dependencies, like Webpack and Babel.
Furthermore, it contains scripts that “glue” all of these dependencies together in a conventional
manner.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 250

Create React App is just a boilerplate generator. The react-scripts package, specified in
package.json, is the engine that will make everything work.

Even though react-scripts is the engine, throughout the chapter we’ll continue to refer
to the overall project as Create React App.

react and react-dom

Under dependencies, we see react and react-dom listed:

webpack/heart-webpack-complete/package.json

"dependencies": {

"react": "15.5.4",

"react-dom": "15.5.4"

},

In our first two projects, we loaded in react and react-dom via script tags in index.html. As we
saw, those libraries were not specified in this project’s index.html.

Webpack gives us the ability to use npm packages in the browser. We can specify external
libraries that we’d like to use in package.json. This is incredibly helpful. Not only do we now have
easy access to a vast library of packages. We also get to use npm to manage all the libraries that our
app uses. We’ll see in a bit how this all works.

Scripts

package.json specifies four commands under scripts. Each executes a command with react-

scripts. Over this chapter and the next we’ll cover each of these commands in depth, but at a
high-level:

• start: Boots the Webpack development HTTP server. This server will handle requests from
our web browser.

• build: For use in production, this command creates an optimized, static bundle of all our
assets.

• test: Executes the app’s test suite, if present.
• eject: Moves the innards of react-scripts into your project’s directory. This enables you to
abandon the configuration that react-scripts provides, tweaking the configuration to your
liking.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 251

For those weary of the black box that react-scripts provides, that last command is comforting.
You have an escape hatch should your project “outgrow” react-scripts or should you need some
special configuration.

In a package.json, you can specify which packages are necessary in which environment.
Note that react-scripts is specified under devDependencies.

When you run npm i, npm will check the environment variable NODE_ENV to see if it’s
installing packages in a production environment. In production, npm only installs packages
listed under dependencies (in our case, react and react-dom). In development, npm
installs all packages. This speeds the process in production, foregoing the installation of
unneeded packages like linters or testing libraries.

Given this, youmight wonder:Why is react-scripts listed as a development dependency?
How will the app work in a production environment without it? We’ll see why this is after
taking a look at how Webpack prepares production builds.

src/

Inside of src/, we see some JavaScript files:

$ ls src

App.css

App.js

App.test.js

index.css

index.js

logo.svg

Create React App has created a boilerplate React app to demonstrate how files can be organized.
This app has a single component, App, which lives inside App.js.

App.js

Looking inside src/App.js:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 252

webpack/heart-webpack-complete/src/App.js

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

class App extends Component {

render() {

return (

<div className="App">

<div className="App-header">

<h2>Welcome to React</h2>

</div>

<p className="App-intro">

To get started, edit <code>src/App.js</code> and save to reload.

</p>

</div>

);

}

}

export default App;

There are a few noteworthy features here.

The import statements

We import React and Component at the top of the file:

webpack/heart-webpack-complete/src/App.js

import React, { Component } from 'react';

This is the ES6 module import syntax. Webpack will infer that by 'react' we are referring to the
npm package specified in our package.json.

If ES6 modules are new to you, check out the entry in Appendix B.”

The next two imports may have surprised you:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 253

webpack/heart-webpack-complete/src/App.js

import logo from './logo.svg';

import './App.css';

We’re using import on files that aren’t JavaScript! Webpack has you specify all your dependencies
using this syntax. We’ll see later how this comes into play. Because the paths are relative (they are
preceded with ./), Webpack knows we’re referring to local files and not npm packages.

App is an ES6 module

The App component itself is simple and does not employ state or props. Its return method is just
markup, which we’ll see rendered in a moment.

What’s special about the App component is that it’s an ES6 module. Our App component lives inside
its own dedicated App.js. At the top of this file, it specifies its dependencies and at the bottom it
specifies its export:

webpack/heart-webpack-complete/src/App.js

export default App;

Our React component is entirely self-contained in this module. Any additional libraries, styles,
and images could be specified at the top. Any developer could open this file and quickly reason
what dependencies this component has. We could define helper functions that are private to the
component, inaccessible to the outside.

Furthermore, recall that there is another file in src/ related to App besides App.css: App.test.js.
So, we have three files corresponding to our component: The component itself (an ES6 module), a
dedicated stylesheet, and a dedicated test file.

Create React App has suggested a powerful organization paradigm for our React app. While perhaps
not obvious in our single-component app, you can imagine how this modular component model is
intended to scale well as the number of components grows to the hundreds or thousands.

We know where our modular component is defined. But we’re missing a critical piece: Where is the
component written to the DOM?

The answer lies inside src/index.js.

index.js

Open src/index.js now:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 254

webpack/heart-webpack-complete/src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

import './index.css';

ReactDOM.render(

<App />,

document.getElementById('root')

);

Stepping through this file, we first import both react and react-dom. Because we specified App as
the default export from App.js, we can import it here. Note again that the relative path (./App)
signals to Webpack that we’re referring to a local file, not an npm package.

At this point, we can use our App component just as we have in the past. We make a call to
ReactDOM.render(), rendering the component to the DOM on the root div. This div tag is the
one and only div present in index.html.

This layout is certainly more complicated than the one we used in our first couple of projects. Instead
of just rendering App right below where we define it, we have another file that we’re importing App
into and making the ReactDOM.render() call in. Again, this setup is intended to keep our code
modular. App.js is restricted to only defining a React component. It does not carry the additional
responsibility of rendering that component. Following from this pattern, we could comfortably
import and render this component anywhere in our app.

We now know where the ReactDOM.render() call is located. But the way this new setup works is
still opaque. index.html does not appear to load in any JavaScript. How do our JavaScript modules
make it to the browser?

Let’s boot the app and then explore how everything fits together.

Why do we import React at the top of the file? It doesn’t apparently get referenced
anywhere.

React actually is referenced later in the file, we just can’t see it because of a layer of
indirection. We’re referencing App using JSX. So this line in JSX:

<App />

Is actually this underneath the JSX abstraction:

React.createElement(App, null);

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 255

Booting the app

From the root of heart-webpack, run the start command:

$ npm start

This boots theWebpack development server. We dig into the details of this server momentarily.

Visiting http://localhost:3000/, we see the interface for the sample app that Create React App
has provided:

The sample app

The App component is clearly present on the page. We see both the logo and text that the component
specifies. How did it get there?

Let’s view the source code behind this page. In both Chrome and Firefox, you can type view-

source:http://localhost:3000/ into the address bar to do so:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 256

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="shortcut icon" href="/favicon.ico">

<!--

... comment omitted ...

-->

<title>React App</title>

</head>

<body>

<div id="root"></div>

<!--

... comment omitted ...

-->

<script type="text/javascript" src="/static/js/bundle.js"></script></body>

</html>

This index.html looks the same as the one we looked at earlier, save for one key difference: There
is a script tag appended to the bottom of the body. This script tag references a bundle.js. As
we’ll see, the App component from App.js and the ReactDOM.render() call from index.js both live
inside of that file.

The Webpack development server inserted this line into our index.html. To understand what
bundle.js is, let’s dig into how Webpack works.

This script defaults the server’s port to 3000. However, if it detects that 3000 is occupied,
it will choose another. The script will tell you where the server is running, so check the
console if it appears that it is not on http://localhost:3000/.

If you’re running OS X, this script will automatically open a browser window pointing to
http://localhost:3000/.

Webpack basics

In our first app (the voting app), we used the library http-server to serve our static assets, like
index.html, our JavaScript files, and our images.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 257

In the second app (the timers app), we used a small Node server to serve our static assets.We defined a
server in server.jswhich both provided a set of API endpoints and served all assets under public/.
Our API server and our static asset server were one in the same.

With Create React App, our static assets are served by the Webpack development server that is
booted when we run npm start. At the moment, we’re not working with an API.

As we saw, the original index.html did not contain any references to the React app. Webpack
inserted a reference to bundle.js in index.html before serving it to our browser. If you look around
on disk, bundle.js doesn’t exist anywhere. The Webpack development server produces this file
on the fly and keeps it in memory. When our browser makes a request to localhost:3000/,
Webpack is serving its modified version of index.html and bundle.js from memory.

From the page view-source:http://localhost:3000/, you can click on /static/js/bundle.js to
open that file in your browser. It will probably take a few seconds to open. It’s a gigantic file.

bundle.js contains all the JavaScript code that our app needs to run. Not only does it contain the
entire source for App.js — it contains the entire source for the React library!

You can search for the string ./src/App.js in this file. Webpack demarcates each separate file it has
included with a special comment. What you’ll find is quite messy:

If you do a little hunting, you can see recognizable bits and pieces of App.js amidst the chaos. This
is indeed our component. But it looks nothing like it.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 258

Webpack has performed some transformation on all the included JavaScript. Notably, it used Babel
to transpile our ES6 code to an ES5-compatible format.

If you look at the comment header for App.js, it has a number. In the screenshot above, that number
was 258:

/* 258 */

/*!********************!*\

!*** ./src/App.js ***!

********************/

Your module IDs might be different than the ones here in the text.

The module itself is encapsulated inside of a function that looks like this:

function(module, exports, __webpack_require__) {

// The chaotic `App.js` code here

}

Each module of our web app is encapsulated inside of a function with this signature. Webpack has
given each of our app’s modules this function container as well as a module ID (in the case of App.js,
258).

But “module” here is not limited to JavaScript modules.

Remember how we imported the logo in App.js, like this:

webpack/heart-webpack-complete/src/App.js

import logo from './logo.svg';

And then in the component’s markup it was used to set the src on an img tag:

webpack/heart-webpack-complete/src/App.js

Here’s what the variable declaration of logo looks like inside the chaos of the App.js Webpack
module:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 259

var _logo = __webpack_require__(/*! ./logo.svg */ 259);

This looks quite strange, mostly due to the in-line comment that Webpack provides for debugging
purposes. Removing that comment:

var _logo = __webpack_require__(259);

Instead of an import statement, we have plain old ES5 code. What is this doing though?

To find the answer, search for ./src/logo.svg in this file. (It should appear directly below App.js).
The SVG is represented inside bundle.js, too!

Looking at the header for this module:

/* 259 */

/*!**********************!*\

!*** ./src/logo.svg ***!

**********************/

Note that its module ID is 259, the same integer passed to __webpack_require__() above.

Webpack treats everything as a module, including image assets like logo.svg. We can get an idea
of what’s going on by picking out a path in the mess of the logo.svg module. Your path might be
different, but it will look like this:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 260

static/media/logo.5d5d9eef.svg

If you open a new browser tab and plug in this address:

http://localhost:3000/static/media/logo.5d5d9eef.svg

You should get the React logo:

So Webpack created a Webpack module for logo.svg by defining a function. While the imple-
mentation details of this function are opaque, we know it refers to the path to the SVG on the
Webpack development server. Because of this modular paradigm, it was able to intelligently compile
a statement like this:

import logo from './logo.svg';

Into this ES5 statement:

var _logo = __webpack_require__(259);

__webpack_require__() isWebpack’s special module loader. This call refers to theWebpackmodule
corresponding to logo.svg, number 259. That module returns the string path to the logo’s location
on the Webpack development server, static/media/logo.5d5d9eef.svg:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 261

var _logo = __webpack_require__(259);

console.log(_logo);

// -> "static/media/logo.5d5d9eef.svg"

What about our CSS assets? Yep, everything is a module in Webpack. Search for the string
./src/App.css:

Webpack’s index.html didn’t include any references to CSS. That’s because Webpack is including
our CSS here via bundle.js. When our app loads, this cryptic Webpack module function dumps the
contents of App.css into style tags on the page.

So we know what is happening: Webpack has rolled up every conceivable “module” for our app into
bundle.js. You might be asking: Why?

The first motivation is universal to JavaScript bundlers. Webpack has converted all our ES6 modules
into its own bespoke ES5-compatible module syntax.

Furthermore,Webpack, like other bundlers, consolidated all our JavaScript modules into a single file.
While it could keep JavaScript modules in separate files, having a single file maximizes performance.
The initiation and conclusion of each file transfer over HTTP adds overhead. Bundling up hundreds
or thousands of smaller files into one bigger one produces a notable speed-up.

Webpack takes this module paradigm further than other bundlers, however. As we saw, it applies
the same modular treatment to image assets, CSS, and npm packages (like React and ReactDOM).

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 262

This modular paradigm unleashes a lot of power. We touch on aspects of that power throughout the
rest of this chapter.

With our nascent understanding of howWebpack works, let’s turn our attention back to the sample
app. We’ll make some modifications and see first-hand how the Webpack development process
works.

Making modifications to the sample app

We’ve been checking out the bundle.js produced by the Webpack development server in our
browser. Recall that to boot this server, we ran the following command:

$ npm start

As we saw, this command was defined in package.json:

"start": "react-scripts start",

What exactly is going on here?

The react-scripts package defines a start script. Think of this start script as a special interface to
Webpack that contains some features and conventions provided by Create React App. At a high-
level, the start script:

• Sets up the Webpack configuration
• Provides some nice formatting and coloring for Webpack’s console output
• Launches a web browser if you’re on OS X

Let’s take a look at what the development cycle of our Webpack-powered React app looks like.

Hot reloading

If the server is not already running, go ahead and run the start command to boot it:

$ npm start

Again, our app launches at http://localhost:3000/. The Webpack development server is listening
on this port and serves the development bundle when our server makes a request.

One compelling development feature Webpack gives us is hot reloading. Hot reloading enables
certain files in a web app to be hot-swapped on the fly whenever changes are detected without
requiring a full page reload.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 263

At the moment, Create React App only sets up hot reloading for CSS. This is because the React-
specific hot reloader is not considered stable enough for the default setup.

Hot reloading for CSS is wonderful. With your browser window open, make an edit to App.css and
witness as the app updates without a refresh.

For example, you can change the speed at which the logo spins. Here, we changed it from 20s to 1s:

.App-logo {

animation: App-logo-spin infinite 1s linear;

height: 80px;

}

Or you can change the color of the header’s text. Here, we changed it from white to purple:

.App-header {

background-color: #222;

height: 150px;

padding: 20px;

color: purple;

}

How hot reloading works
Webpack includes client-side code to perform hot reloading inside bundle.js. The Webpack client
maintains an open socket with the server. Whenever the bundle is modified, the client is notified
via this websocket. The client then makes a request to the server, asking for a patch to the bundle.
Instead of fetching the whole bundle, the server will just send the client the code that client needs
to execute to “hot swap” the asset.

Webpack’s modular paradigm makes hot reloading of assets possible. Recall that Webpack inserts
CSS into the DOM inside style tags. To swap out a modified CSS asset, the client removes the
previous style tags and inserts the new one. The browser renders the modification for the user, all
without a page reload.

Auto-reloading

Even though hot reloading is not supported for our JavaScript files, Webpack will still auto-reload
the page whenever it detects changes.

With our browser window still open, let’s make a minor edit to src/App.js. We’ll change the text
in the p tag:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 264

<p className="App-intro">

I just made a change to <code>src/App.js</code>!

</p>

Save the file. You’ll note the page refreshes shortly after you save and your change is reflected.

Because Webpack is at heart a platform for JavaScript development and deployment, there is an
ever-growing ecosystem of plug-ins and tools for Webpack-powered apps.

For development, hot- and auto-reloading are two of the most compelling plug-ins that come
configured with Create React App. In the later section on eject (“Ejecting”), we’ll point to the
Create React App configuration file that sets up Webpack for development so that you can see the
rest.

For deployment, Create React App has configured Webpack with a variety of plug-ins that produce
a production-level optimized build. We’ll take a look at the production build process next.

Creating a production build

So far, we’ve been using the Webpack development server. In our investigation, we saw that this
server produces a modified index.html which loads a bundle.js. Webpack produces and serves
this file from memory — nothing is written to disk.

For production, we want Webpack to write a bundle to disk. We’ll end up with a production-
optimized build of our HTML, CSS, and JavaScript. We could then serve these assets using whatever
HTTP server we wanted. To share our app with the world, we’d just need to upload this build to an
asset host, like Amazon’s S3.

Let’s take a look at what a production build looks like.

Quit the server if it’s running with CTRL+C. From the command line, run the build command that
we saw in package.json earlier:

$ npm run build

When this finishes, you’ll note a new folder is created in the project’s root: build. cd into that
directory and see what’s inside:

$ cd build

$ ls

favicon.ico

index.html

static/

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 265

If you look at this index.html, you’ll note that Webpack has performed some additional processing
that it did not perform in development. Most notably: there are no newlines. The entire file is on a
single line. Newlines are not necessary in HTML and are just extra bytes. We don’t need them in
production.

Here’s what that exact file looks like in a human readable format:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta content="width=device-width,initial-scale=1" name="viewport">

<link href="/favicon.ico?fd73a6eb" rel="shortcut icon">

<title>React App</title>

<link href="/static/css/main.9a0fe4f1.css" rel="stylesheet">

</head>

<body>

<div id="root"></div>

<script src="/static/js/main.590bf8bb.js" type="text/javascript">

</script>

</body>

</html>

Instead of referencing a bundle.js, this index.html references a file in static/ which we’ll look
at momentarily. What’s more, this production index.html now has a link tag to a CSS bundle. As
we saw, in development Webpack inserts CSS via bundle.js. This feature enables hot reloading. In
production, hot reloading capability is irrelevant. Therefore, Webpack deploys CSS normally.

Webpack versions assets. We can see above that our JavaScript bundle has a different name
and is versioned (main.<version>.js).

Asset versioning is useful when dealing with browser caches in production. If a file is
changed, the version of that file will be changed as well. Client browsers will be forced to
fetch the latest version.

Note that your versions (or digests) for the files above may be different.

The static/ folder is organized as follows:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 266

$ ls static

css/

js/

media/

Checking out the folders individually:

$ ls static/css

main.9a0fe4f1.css

main.9a0fe4f1.css.map

$ ls static/js

main.f7b2704e.js

main.f7b2704e.js.map

$ ls static/media

logo.5d5d9eef.svg

Feel free to open up both the .css file and the .js file in your text editor. We refrain from printing
them here in the book due to their size.

Be careful about opening these files — you might crash your editor due to their size!

If you open the CSS file, you’ll see it’s just two lines: The first line is all of our app’s CSS, stripped
of all superfluous whitespace. We could have hundreds of different CSS files in our app and they
would end up on this single line. The second line is a special comment declaring the location of the
map file.

The JavaScript file is even more packed. In development, bundle.js has some structure. You can
pick apart where the individual modules live. The production build does not have this structure.
What’s more, our code has been both minified and uglified. If you’re unfamiliar with minification
or uglification, see the aside “Minification, uglification, and source maps.”

Last, the media folder will contain all of our app’s other static files, like images and videos. This app
only has one image, the React logo SVG file.

Again, this bundle is entirely self-contained and ready to go. If we wanted to, we could install the
same http-server package that we used in the first application and use it to serve this folder, like
this:

http-server ./build -p 3000

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 267

Without the Webpack development server, you can imagine the development cycle would be a bit
painful:

1. Modify the app
2. Run npm run build to generate the Webpack bundle
3. Boot/restart the HTTP server

This is why there is no way to “build” anything other than a bundle intended for production. The
Webpack server services our needs for development.

Minification, uglification, and source maps
For production environments, we can significantly reduce the size of JavaScript files by converting
them from a human-readable format to a more compact one that behaves exactly the same. The
basic strategy is stripping all excess characters, like spaces. This process is calledminification.

Uglification (or obfuscation) is the process of deliberately modifying JavaScript files so that they
are harder for humans to read. Again, the actual behavior of the app is unchanged. Ideally, this
process slows down the ability for outside developers to understand your codebase.

Both the .css and .js files are accompanied by a companion file ending in .map. The .map file
is a source map that provides debugging assistance for production builds. Because they’ve been
minified and uglified, the CSS and JavaScript for a production app are difficult to work with. If you
encounter a JavaScript bug on production, for example, your browser will direct you to a cryptic
line of this obscure code.

Through a source map, you can map this puzzling area of the codebase back to its original, un-
built form. For more info on source maps and how to use them, see the blog post “Introduction to
JavaScript Source Mapsa.”

ahttp://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

Ejecting

When first introducing Create React App at the beginning of this chapter, we noted that the project
provided a mechanism for “ejecting” your app.

This is comforting. You might find yourself in a position in the future where you would like
further control over your React-Webpack setup. An eject will copy all the scripts and configuration
encapsulated in react-scripts into your project’s directory. It opens up the “black box,” handing
full control of your app back over to you.

Performing an eject is also a nice way to strip some of the “magic” from Create React App. We’ll
perform an eject in this section and take a quick look around.

WOW! eBook
www.wowebook.org

http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

Using Webpack with Create React App 268

There is no backing out from an eject. Be careful when using this command. Should you
decide to eject in the future, make sure your app is checked in to source control.

If you’ve been adding to the app inside heart-webpack, you might consider duplicating
that directory before proceeding. For example, you can do this:

cp -r heart-webpack heart-webpack-ejected

The node_modules folder does not behave well when it’s moved wholesale like this, so
you’ll need to remove node_modules and re-install:

cd heart-webpack-ejected

rm -rf node_modules

npm i

You can then perform the steps in this section inside of heart-webpack-ejected and
preserve heart-webpack.

Buckle up

From the root of heart-webpack, run the eject command:

$ npm run eject

Confirm you’d like to eject by typing y and hitting enter.

After all the files are copied from react-scripts into your directory, npm install will run. This
is because, as we’ll see, all the dependencies for react-scripts have been dumped into our
package.json.

When the npm install is finished, take a look at our project’s directory:

$ ls

README.md

build/

config/

node_modules/

package.json

public/

scripts/

src/

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 269

We have two new folders: config/ and scripts/. If you looked inside src/ you’d note that, as
expected, it is unchanged.

Take a look at package.json. There are loads of dependencies. Some of these dependencies are
necessary, like Babel and React. Others — like eslint and whatwg-fetch— are more “nice-to-haves.”
This reflects the ethos of the Create React App project: an opinionated starter kit for the React
developer.

Check out scripts/ next:

$ ls scripts

build.js

start.js

test.js

When we ran npm start and npm run build earlier, we were executing the scripts start.js and
build.js, respectively. We won’t look at these files here in the book, but feel free to peruse them.
While complicated, they are well-annotated with comments. Simply reading through the comments
can give you a good idea of what each of these scripts are doing (and what they are giving you “for
free”).

Finally, check out config/ next:

$ ls config

env.js

jest/

paths.js

polyfills.js

webpack.config.dev.js

webpack.config.prod.js

react-scripts provided sensible defaults for the tools that it provides. In package.json, it specifies
configuration for Babel. Here, it specifies configuration for Webpack and Jest (the testing library we
use in the next chapter).

Of particular noteworthiness are the configuration files for Webpack. Again, we won’t dive into
those here. But these files are well-commented. Reading through the comments can give you a good
idea of what the Webpack development and production pipelines look like and what plug-ins are
used. In the future, if you’re ever curious about how react-scripts has configured Webpack in
development or production, you can refer to the comments inside these files.

Hopefully seeing the “guts” of react-scripts reduces a bit of its mysticism. Testing out eject as we
have here gives you an idea of what the process looks like to abandon react-scripts should you
need to in the future.

So far in this chapter, we’ve covered the fundamentals of Webpack and Create React App’s interface
to it. Specifically, we’ve seen:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 270

• How the interface for Create React App works
• The general layout for a Webpack-powered React app
• How Webpack works (and some of the power it provides)
• How Create React App and Webpack help us generate production-optimized builds
• What an ejected Create React App project looks like

There’s one essential element our demo Webpack-React app is missing, however.

In our second project (the timers app) we had a React app that interfaced with an API. The node
server both served our static assets (HTML/CSS/JS) and provided a set of API endpoints that we
used to persist data about our running timers.

As we’ve seen in this chapter, when using Webpack via Create React App we boot a Webpack
development server. This server is responsible for serving our static assets.

What if we wanted our React app to interface with an API? We’d still want the Webpack
development server to serve our static assets. Therefore, we can imagine we’d boot our API and
Webpack servers separately. Our challenge then is getting the two to cooperate.

Using Create React App with an API server

In this section, we’ll investigate a strategy for running a Webpack development server alongside an
API server. Before digging into this strategy, let’s take a look at the app we’ll be working with.

The completed app

food-lookup-complete is in the root of the book’s code download. Getting there from heart-

webpack:

$ cd ../..

$ cd food-lookup-complete

Take a look at the folder’s structure:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 271

$ ls

README.md

client/

db/

node_modules/

package.json

server.js

start-client.js

start-server.js

In the root of the project is where the server lives. There’s a package.json here along with a
server.js file. Inside of client/ is where the React app lives. The client/ folder was generated
with Create React App.

Look inside of client/ now:

If you’re on macOS or Linux run:

$ ls -a client

Windows users can run:

$ ls client

And you’ll see:

.babelrc

.gitignore

node_modules/

package.json

public/

src/

tests/

In OSX and Unix, the -a flag for the ls command displays all files, including “hidden” files
that are preceded by a . like .babelrc. Windows displays hidden files by default.

So, we have two package.json files. One sits in the root and specifies the packages that the server
needs. And the other lives in client/ and specifies the packages that the React app needs. While
co-existing in this folder, we have two entirely independent apps.

.babelrc

A noteworthy file inside cilent/ is .babelrc. The contents of that file:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 272

// client/.babelrc

{

"plugins": ["transform-class-properties"]

}

As youmay recall, this plugin gives us the property initializer syntax which we used at the end of the
first chapter. In that project, we specified we wanted to use this plugin by setting the data-plugins
attribute on the script tag for app.js, like this:

<script

type="text/babel"

data-plugins="transform-class-properties"

src="./js/app.js"

></script>

Now, for this project, Babel is being included and managed by react-scripts. To specify plugins
we’d like Babel to use for our Create React App projects, we must first include the plugin in our
package.json. It’s already included:

food-lookup-complete/client/package.json

"babel-plugin-transform-class-properties": "6.22.0",

We then just have to specify we’d like Babel to use the plugin in our .babelrc.

Running the app

In order to boot our app, we need to install the packages for both the server and client. We’ll run
npm i inside both directories:

$ npm i

$ cd client

$ npm i

$ cd ..

With the packages for both the server and client installed, we can run the app. Be sure to do this
from the top-level directory of the project (where the server lives):

$ npm start

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 273

As things are booting, you’ll see some console output from both the server and the client. Once the
app is booted, you can visit localhost:3000 to see the app:

The app provides a search field for looking up nutritional info in a food database. Typing a value
into the search field performs a live search. You can click on food items to add them to the top table
of totals:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 274

The app’s components

The app consists of three components:

• App (blue): The parent container for the application.
• SelectedFoods (yellow): A table that lists selected foods. Clicking on a food item removes it.
• FoodSearch (purple): Table that provides a live search field. Clicking on a food item in the
table adds it to the total (SelectedFoods).

In this chapter, we won’t dig into the details of any of these components. Instead, we’re just going
to focus on how we got this existing Webpack-React app to cooperate with a Node server.

How the app is organized

Now that we’ve seen the completed app, let’s see how we got this to work.

Kill the app if it’s running then change to the food-lookup directory (the non-complete version)
inside webpack. Getting there from food-lookup-complete:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 275

cd webpack/food-lookup

Again, we have to install the npm packages for both server and client:

$ npm i

$ cd client

$ npm i

$ cd ..

The server

Let’s boot just the server and see how that works. In the completed version, we used npm start to
start both the server and the client. If you check package.json in this directory, you’ll see that this
command is not yet defined. We can boot just the server with this:

$ npm run server

This server provides a single API endpoint, /api/food. It expects a single parameter, q, the food we
are searching for.

You can give it a whirl yourself. You can use your browser to perform a search or use curl:

$ curl localhost:3001/api/food?q=hash+browns

[

{

"description": "Fast foods, potatoes, hash browns, rnd pieces or patty",

"kcal": 272,

"protein_g": 2.58,

"carbohydrate_g": 28.88,

"sugar_g": 0.56

},

{

"description": "Chick-fil-a, hash browns",

"kcal": 301,

"protein_g": 3,

"carbohydrate_g": 30.51,

"sugar_g": 0.54

},

{

"description": "Denny's, hash browns",

"kcal": 197,

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 276

"protein_g": 2.49,

"carbohydrate_g": 26.59,

"sugar_g": 1.38

},

{

"description": "Restaurant, family style, hash browns",

"kcal": 197,

"protein_g": 2.49,

"carbohydrate_g": 26.59,

"sugar_g": 1.38

}

]

Now that we understand how this endpoint works, let’s take a look at the one area it is called in the
client. Kill the server with CTRL+C.

Client

The FoodSearch component makes the call to /api/foods. It performs a request every time the user
changes the search field. It uses a library, Client, to make the request.

The Client module is defined in client/src/Client.js. It exports an object with one method,
search(). Looking just at the search() function:

webpack/food-lookup/client/src/Client.js
function search(query, cb) {

return fetch(`http://localhost:3001/api/food?q=${query}`, {

accept: 'application/json',

}).then(checkStatus)

.then(parseJSON)

.then(cb);

}

The search() function is the one touch point between the client and the server. search() makes a
call to localhost:3001, the default location of the server.

So, we have two different servers we need to have running in order for our app to work. We
need the API server running (at localhost:3001) and the Webpack development server running (at
localhost:3000). If we have both servers running, they should presumably be able to communicate.

We could use two terminal windows, but there’s a better solution.

If you need a review on the Fetch API, we use it in Chapter 3: Components and Servers.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 277

Concurrently

Concurrently67 is a utility for running multiple processes. We’ll see how it works by implementing
it.

Concurrently is already included in the server’s package.json:

webpack/food-lookup/package.json

},

"devDependencies": {

"concurrently": "3.1.0"

We want concurrently to execute two commands, one to boot the API server and one to boot the
Webpack development server. You boot multiple commands by passing them to concurrently in
quotes like this:

Example of using `concurrently`

$ concurrently "command1" "command2"

If you were writing your app to just work on Mac or Unix machines, you could do something like
this:

$ concurrently "npm run server" "cd client && npm start"

Note the second command for booting the client changes into the client directory and then runs
npm start.

However, the && operator is not cross-platform and won’t work on Windows. As such, we’ve
included a start-client.js script with the project. This script will boot the client from the top-level
directory.

Given this start script, you can boot the client app from the top-level directory like this:

$ babel-node start-client.js

We’ll add a client command to our package.json. That way, the method for booting the server
and the client will look the same:

67https://github.com/kimmobrunfeldt/concurrently

WOW! eBook
www.wowebook.org

https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently

Using Webpack with Create React App 278

Boot the server

$ npm run server

Boot the client

$ npm run client

Therefore, using concurrently will look like this:

$ concurrently "npm run server" "npm run client"

Let’s add the start and client commands to our package.json now:

food-lookup-complete/package.json

"scripts": {

"start": "concurrently \"npm run server\" \"npm run client\"",

"server": "babel-node start-server.js",

"client": "babel-node start-client.js"

},

For start, we execute both commands, escaping the quotes because we’re in a JSON file.

Save and close package.json. Now we can boot both servers by running npm start. Go ahead and
do this now:

$ npm start

You’ll see output for both the server and the client logged to the console. Concurrently has executed
both run commands simultaneously.

When it appears everything has booted, visit localhost:3000. And then start typing some stuff in.
Strangely, nothing appears to happen:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 279

Popping open the developer console, we see that it is littered with errors:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 280

Picking out one of them:

Fetch API cannot load http://localhost:3001/api/food?q=c. No 'Access-Control-All\

ow-Origin' header is present on the requested resource. Origin 'http://localhost\

:3000' is therefore not allowed access. If an opaque response serves your needs,\

set the request's mode to 'no-cors' to fetch the resource with CORS disabled.

Our browser prevented our React app (hosted at localhost:3000) from loading a resource from a
different origin (localhost:3001). We attempted to perform Cross-Origin Resource Sharing (or
CORS). The browser prevents these types of requests from scripts for security reasons.

Note: If this issue didn’t occur for you, you may want to verify your browser security
settings are sound. Not restricting CORS leaves you open to significant security risk.

This is the primary difficulty with our two-server solution. But the two-server setup is common in
development. Common enough that Create React App has a solution readily available for us to use.

Using the Webpack development proxy

Create React App enables you to setup the Webpack development server to proxy requests to your
API. Instead of making a request to the API server at localhost:3001, our React app can make
requests to localhost:3000. We can then have Webpack proxy those requests to our API server.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 281

So, our original approach was to have the user’s browser interact directly with both servers, like
this:

However, we want the browser to just interact with the Webpack development server at local-
host:3000. Webpack will forward along requests intended for the API, like this:

This proxy feature allows our React app to interact exclusively with the Webpack development
server, eliminating any issues with CORS.

To do this, let’s first modify client/src/Client.js. Remove the base URL, localhost:3001:

food-lookup-complete/client/src/Client.js

function search(query, cb) {

return fetch(`/api/food?q=${query}`, {

accept: 'application/json',

}).then(checkStatus)

Now, search() will make calls to localhost:3000.

Next, in our client’s package.json, we can set a special property, proxy. Add this property to
client/package.json now:

// Inside client/package.json

"proxy": "http://localhost:3001/",

Make sure to add that line to the client’s package.json, not the server’s.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 282

This property is special to Create React App, and instructs Create React App to setup our Webpack
development server to proxy API requests to localhost:3001. The Webpack development server
will infer what traffic to proxy. It will proxy a request to our API if the URL is not recognized or if
the request is not loading static assets (like HTML, CSS, or JavaScript).

Try it out

Use Concurrently to boot both processes:

$ npm start

Visiting localhost:3000, we see everything working. Because our browser is interfacing with the
API through localhost:3000, we have no issues with CORS.

Webpack at large

As a platform for JavaScript applications, Webpack packs numerous features. We witnessed some of
these features in this chapter. Webpack’s abilities can be considered more broadly underneath two
categories:

Optimization

Webpack’s optimization toolset for production environments is vast.

One immediate optimization Webpack provides is reducing the number of files the client browser
has to fetch. For large JavaScript apps composed of many different files, serving a handful of bundle
files (like bundle.js) is faster than serving tons of small files.

Code splitting is another optimization which builds off of the concept of a bundle. You can configure
Webpack so that it only serves the JavaScript and CSS assets that are relevant to the page that a user
is viewing. While your multi-page app might have hundreds of React components, you can have
Webpack only serve the necessary components and CSS that the client needs to render whatever
page that they are on.

Tooling

As with optimization, the ecosystem around Webpack’s tooling is vast.

For development, we saw Webpack’s handy hot- and auto-reloading features. In addition, Create
React App configures other niceties in the development pipeline, like auto-linting your JavaScript
code.

For production, we saw how we can configure Webpack to execute plug-ins that optimize our
production build.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 283

When to use Webpack/Create React App

So, given Webpack’s power, you might ask: Should I just use Webpack/Create React App for all my
future React projects?

It depends.

Loading React and Babel in script tags as we did in the first couple of chapters is still a completely
sane approach. For some projects, the simplicity of this setup might be preferable. Plus, you can
always start simple and then move a project to the more complex Webpack setup in the future.

What’s more, if you’re looking to roll React out inside an existing application this simple approach
is your best bet. You don’t have to adopt an entirely new build or deployment pipeline for your app.
Instead, you can roll React components out one-by-one, all by simply ensuring that the React library
is included in your app.

But, for many developers and many types of projects, Webpack is a compelling option with features
that are too good to miss. If you’re planning on writing a sizeable React application with many
different components, Webpack’s support for ES6 modules will help keep your codebase sensible.
Support for npm packages is great. And thanks to Create React App, you get tons of tooling for
development and production for free.

There is one additional deal breaker in favor of Webpack: testing. In the next chapter, we learn how
to write tests for our React apps. As we’ll see, Webpack provides a platform for easily executing our
test suite in the console, outside of a browser.

WOW! eBook
www.wowebook.org

Unit Testing
A robust test suite is a vital constituent of quality software. With a good test suite at his or her
disposal, a developer can more confidently refactor or add features to an application. Test suites are
an upfront investment that pay dividends over the lifetime of a system.

Testing user interfaces is notoriously difficult. Thankfully, testing React components is not. With the
right tools and the right methodology, the interface for your web app can be just as fortified with
tests as every other part of the system.

We’ll begin by writing a small test suite without using any testing libraries. After getting a feel for
a test suite’s essence, we’ll introduce the Jest testing framework to alleviate a lot of boilerplate and
easily allow our tests to be much more expressive.

While using Jest, we’ll see how we can organize our test suite in a behavior-driven style. Once
we’re comfortable with the basics, we’ll take a look at how to approach testing React components
in particular. We’ll introduce Enzyme, a library for working with React components in a testing
environment.

Finally, in the last section of this chapter, we work with a more complex React component that sits
inside of a larger app. We use the concept of a mock to isolate the API-driven component we are
testing.

Writing tests without a framework

If you’re already familiar with JavaScript testing, you can skip ahead to the next section.

However, you might still find this section to be a useful reflection on what testing
frameworks are doing behind the scenes.

The projects for this chapter are located inside of the folder testing that was provided with this
book’s code download.

We’ll start in the basics folder:

$ cd testing/basics

The structure of this project:

WOW! eBook
www.wowebook.org

Unit Testing 285

$ ls

Modash.js

Modash.test.js

complete/

package.json

Inside of complete/ you’ll find files corresponding to each iteration of Modash.test.js as
well as the completed version of Modash.js.

We’ll be using babel-node to run our test suite from the command-line. babel-node is included in
this folder’s package.json. Go ahead and install the packages in package.json now:

$ npm install

In order to write tests, we need to have a library to test. Let’s write a little utility library that we can
test.

Preparing Modash

We’ll write a small library in Modash.js. Modash will have some methods that might prove useful
whenworkingwith JavaScript strings.We’ll write the following threemethods. Each returns a string:

truncate(string, length)

Truncates string if it’s longer than the supplied length. If the string is truncated, it will end with
...:

const s = 'All code and no tests makes Jack a precarious boy.';

Modash.truncate(s, 21);

// => 'All code and no tests...'

Modash.truncate(s, 100);

// => 'All code and no tests makes Jack a precarious boy.'

capitalize(string)

Capitalizes the first letter of string and lower cases the rest:

const s = 'stability was practically ASSURED.';

Modash.capitalize(s);

// => 'Stability was practically assured.'

camelCase(string)

Takes a string of words delimited by spaces, dashes, or underscores and returns a camel-cased
representation:

WOW! eBook
www.wowebook.org

Unit Testing 286

let s = 'started at';

Modash.camelCase(s);

// => 'startedAt'

s = 'started_at';

Modash.camelCase(s);

// => 'startedAt'

The name “Modash” is a play on the popular JavaScript utility library Lodash68.

We’ll write Modash as an ES6 module. For more details on how this works with Babel, see the aside
ES6: Import/export with Babel. If you need a refresher on ES6 modules, refer to the previous chapter
“Using Webpack with create-react-app.”.

Open up Modash.js now. We’ll write our library’s three functions then export our interface at the
bottom of this file.

First, we’ll write the function for truncate(). There are many ways to do this. Here’s one approach:

testing/basics/complete/Modash.js

function truncate(string, length) {

if (string.length > length) {

return string.slice(0, length) + '...';

} else {

return string;

}

}

Next, here’s the implementation for capitalize():

testing/basics/complete/Modash.js

function capitalize(string) {

return (

string.charAt(0).toUpperCase() + string.slice(1).toLowerCase()

);

}

Finally, we’ll write camelCase(). This one’s slightly trickier. Again, there are multiple ways to
implement this but here’s the strategy that follows:

68https://lodash.com/

WOW! eBook
www.wowebook.org

https://lodash.com/
https://lodash.com/

Unit Testing 287

1. Use split to get an array of the words in the string. Spaces, dashes, and underscores will be
considered delimiters.

2. Create a new array. The first entry of this array will be the lower-cased version of the first
word. The rest of the entries will be the capitalized version of each subsequent word.

3. Join that array with join.

That looks like this:

testing/basics/complete/Modash.js

function camelCase(string) {

const words = string.split(/[\s|\-|_]+/);

return [

words[0].toLowerCase(),

...words.slice(1).map((w) => capitalize(w)),

].join('');

}

String’s split() splits a string into an array of strings. It accepts as an argument the
character(s) you would like to split on. The argument can be either a string or a regular
expression. You can read more about split() here69.

Array’s join() combines all the members of an array into a string. You can read more
about join() here70.

With those three functions defined in Modash.js, we’re ready to export our module.

At the bottom of Modash.js, we first create the object that encapsulates our methods:

testing/basics/complete/Modash.js

const Modash = {

truncate,

capitalize,

camelCase,

};

And then we export it:

69https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
70https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join

Unit Testing 288

testing/basics/complete/Modash.js

export default Modash;

We’ll write our testing code for this section inside of the file Modash.test.js. Open up that file in
your text editor now.

ES6: Import/export with Babel
Our package.json already includes Babel. In addition, we’re including a Babel plug-in, babel-plugin-transform-class-properties.

This package will let us use the ES6 import/export syntax. Importantly, we specify it as a Babel
plugin inside the project’s .babelrc:

// basics/.babelrc

{

"plugins": ["transform-class-properties"]

}

With this plugin in place, we can now export a module from one file and import it into another.

However, note that this solutionwon’t work in the browser. It works locally in the Node runtime,
which is fine for the purposes of writing tests for our Modash library. But to support this in the
browser requires additional tooling. As we mentioned in the last chapter, ES6 module support in
the browser is one of our primary motivations for using Webpack.

Writing the first spec

Our test suite will import the library we’re writing tests for, Modash. We’ll call methods on that
library and make assertions on how the methods should behave.

At the top of Modash.test.js, let’s first import our library:

testing/basics/complete/Modash.test-1.js

import Modash from './Modash';

Our first assertion will be for the method truncate. We’re going to assert that when given a string
over the supplied length, truncate returns a truncated string.

First, we setup the test:

WOW! eBook
www.wowebook.org

Unit Testing 289

testing/basics/complete/Modash.test-1.js

const string = 'there was one catch, and that was CATCH-22';

const actual = Modash.truncate(string, 19);

const expected = 'there was one catch...';

We’re declaring our sample test string, string. We then set two variables: actual and expected.
In test suites, actual is what we call the behavior that was observed. In this case, it’s what
Modash.truncate actually returned. expected is the value we are expecting.

Next, we make our test’s assertion. We’ll print a message indicating whether truncate passed or
failed:

testing/basics/complete/Modash.test-1.js

if (actual !== expected) {

console.log(

`[FAIL] Expected \`truncate()\` to return '${expected}', got '${actual}'`

);

} else {

console.log('[PASS] `truncate()`.');

}

Try it out

We can run our test suite at this stage in the command line. Save the file Modash.test.js and run
the following from the testing/basics folder:

./node_modules/.bin/babel-node Modash.test.js

Executing this, we see a [PASS] message printed to the console. If you’d like, you can modify the
truncate function in Modash.js to observe this test failing:

WOW! eBook
www.wowebook.org

Unit Testing 290

Test passing

Example of what it looks like when test fails

The assertEqual() function

Let’s write some tests for the other two methods in Modash.

For all our tests, we’re going to be following a similar pattern. We’re going to have some assertion
that checks if actual equals expected. We’ll print a message to the console that indicates whether
the function under test passed or failed.

To avoid this code duplication, we’ll write a helper function, assertEqual(). assertEqual() will
check equality between both its arguments. The function will then write a console message,
indicating if the spec passed or failed.

At the top of Modash.test.js, below the import statement for Modash, declare assertEqual:

WOW! eBook
www.wowebook.org

Unit Testing 291

testing/basics/complete/Modash.test-2.js

import Modash from './Modash';

function assertEqual(description, actual, expected) {

if (actual === expected) {

console.log(`[PASS] ${description}`);

} else {

console.log(`[FAIL] ${description}`);

console.log(`\tactual: '${actual}'`);

console.log(`\texpected: '${expected}'`);

}

}

A tab is represented as the \t character in JavaScript.

With assertEqual defined, let’s re-write our first test spec. We’re going to re-use the variables
actual, expected, and string throughout the test suite, so we’ll use the let declaration so that we
can redefine them:

testing/basics/complete/Modash.test-2.js

let actual;

let expected;

let string;

string = 'there was one catch, and that was CATCH-22';

actual = Modash.truncate(string, 19);

expected = 'there was one catch...';

assertEqual('`truncate()`: truncates a string', actual, expected);

If you were to run Modash.test.js now, you’d note that things are working just as before. The
console output is just slightly different:

WOW! eBook
www.wowebook.org

Unit Testing 292

Test passing

With our assert function written, let’s write some more tests.

Let’s write one more assertion for truncate. The function should return a string as-is if it’s less than
the supplied length. We’ll use the same string. Write this assertion below the current one:

testing/basics/complete/Modash.test-2.js

actual = Modash.truncate(string, string.length);

expected = string;

assertEqual('`truncate()`: no-ops if <= length', actual, expected);

Next, let’s write an assertion for capitalize. We can continue to use the same string:

testing/basics/complete/Modash.test-2.js

actual = Modash.capitalize(string);

expected = 'There was one catch, and that was catch-22';

assertEqual('`capitalize()`: capitalizes the string', actual, expected);

Given the example string we’re using, this assertion tests both aspects of capitalize: That it
capitalizes the first letter in the string and that it converts the rest to lowercase.

Last, we’ll write our assertions for camelCase. We’ll test this function with two different strings.
One will be delimited by spaces and the other by underscores.

The assertion for spaces:

WOW! eBook
www.wowebook.org

Unit Testing 293

testing/basics/complete/Modash.test-2.js

string = 'customer responded at';

actual = Modash.camelCase(string);

expected = 'customerRespondedAt';

assertEqual('`camelCase()`: string with spaces', actual, expected);

And for underscores:

testing/basics/complete/Modash.test-2.js

string = 'customer_responded_at';

actual = Modash.camelCase(string);

expected = 'customerRespondedAt';

assertEqual('`camelCase()`: string with underscores', actual, expected);

Try it out

Save Modash.test.js. From the console, run the test suite:

./node_modules/.bin/babel-node Modash.test.js

Tests passing

Feel free to tweak either the expected values for each assertion or break the library and watch the
tests fail.

Our miniature assertion framework is clear but limited. It’s hard to imagine how it would be both
maintainable and scalable for a more complex app or module. And while assertEqual()works fine

WOW! eBook
www.wowebook.org

Unit Testing 294

for checking the equality of strings, we’ll want to make more complex assertions when working with
objects or arrays. For instance, we might want to check if an object contains a particular property
or an array a particular element.

What is Jest?

JavaScript has a variety of testing libraries that pack a bunch of great features. These libraries help
us organize our test suite in a robust, maintainable manner. Many of these libraries accomplish the
same domain of tasks but with different approaches.

An example of testing libraries you may have heard of or worked with are Mocha, Jasmine,
QUnit, Chai, and Tape.

We like to think of testing libraries as having three major components:

• The test runner. This is what you execute in the command-line. The test runner is responsible
for finding your tests, running them, and reporting results back to you in the console.

• A domain-specific language for organizing your tests. As we’ll see, these functions help us
perform common tasks like orchestrating setup and teardown before and after tests run.

• An assertion library. The assert functions provided by these libraries help us easily make
otherwise complex assertions, like checking equality between JavaScript objects or the
presence of certain elements in an array.

React developers have the option to use any JavaScript testing framework they’d like for their tests.
In this book, we’ll focus on one in particular: Jest.

Facebook created and maintains Jest. If you’ve used other JavaScript testing frameworks or even
testing frameworks in other programming languages, you’ll likely find Jest quite familiar.

For assertions, Jest uses Jasmine’s assertion library. If you’ve used Jasmine before, you’ll be pleased
to know the syntax is exactly the same.

Later in the chapter, we explore what’s arguably Jest’s biggest difference from other
JavaScript testing frameworks: mocking.

Using Jest

Inside of testing/basics/package.json, you’ll note that Jest is already included.

WOW! eBook
www.wowebook.org

Unit Testing 295

As of Jest 15, Jest will consider any file that ends with *.test.js or *.spec.js a test. Because our
file is named Modash.test.js, we don’t have to do anything special to instruct Jest that this is a test
file.

We’ll rewrite the specs for Modash using Jest.

Jest 15
If you’ve used an older version of Jest before, youmight be surprised that our tests do not have to be
inside a __tests__/ folder. Furthermore, later in the chapter, you’ll notice that Jest’s auto-mocking
appears to be turned off.

Jest 15 shipped new defaults for Jest. These changes were motivated by a desire to make Jest
easier for new developers to begin using while maintaining Jest’s philosophy to require as little
configuration as necessary.

You can read about all the changes in this blog posta. Relevant to this chapter:

• In addition to looking under __tests__/ for test files Jest also looks for files matching
*.test.js or *.spec.js

• Auto-mocking is disabled by default

ahttps://facebook.github.io/jest/blog/2016/09/01/jest-15.html

expect()

In Jest, we use expect() statements to make assertions. As you’ll see, the syntax is different than
the assert function we wrote before.

Because Jest uses the Jasmine assertion library, these matchers are technically a feature
of Jasmine, not Jest. However, to avoid confusion, throughout this chapter we’ll refer to
everything that ships with Jest – including the Jasmine assertion library – as Jest.

Here’s an example of using the expect syntax to assert that true is… true:

expect(true).toBe(true)

toBe is a matcher. Jest ships with a few different matchers. Under the hood, the toBe matcher uses
the === operator to check equality. So these all work as expected:

WOW! eBook
www.wowebook.org

https://facebook.github.io/jest/blog/2016/09/01/jest-15.html
https://facebook.github.io/jest/blog/2016/09/01/jest-15.html

Unit Testing 296

expect(1).toBe(1); // pass

const a = 5;

expect(a).toBe(5); // pass

Because it just uses the === operator, toBe has its limitations. For instance, while we can use toBe
to check if an object is the exact same object:

const a = { espresso: '60ml' };

const b = a;

expect(a).toBe(b); // pass

What if we wanted to check if two different objects were identical?

const a = { espresso: '60ml' };

expect(a).toBe({ espresso: '60ml' }) // fail

Jest has another matcher, toEqual. toEqual is more sophisticated than toBe. For our purposes, it will
allow us to assert that two objects are identical, even if they aren’t the exact same object:

const a = { espresso: '60ml' };

expect(a).toEqual({ espresso: '60ml' }) // pass

We’ll use both toBe and toEqual in this chapter. We tend to use toBe for boolean and numeric
assertions and toEqual for everything else. We could just use toEqual for everything. But we use
toBe in certain situations as we like how it reads in English. It’s a matter of preference. The important
part is that you understand the difference between the two.

With Jest, like in many other test frameworks, we organize our code into describe blocks and it
blocks. To get a feel for this organization, let’s write our first Jasmine test. Replace the contents of
Modash.test.js with the following:

testing/basics/complete/Modash.test-3.js

describe('My test suite', () => {

it('`true` should be `true`', () => {

expect(true).toBe(true);

});

it('`false` should be `false`', () => {

expect(false).toBe(false);

});

});

WOW! eBook
www.wowebook.org

Unit Testing 297

Both describe and it take a string and a function. The string is just a human-friendly description,
which we’ll see printed to the console in a moment.

As we’ll see throughout this chapter, describe is used to organize assertions that all pertain to the
same feature or context. it blocks are our individual assertions or specs.

Jest requires that you always have a top-level describe that encapsulates all your code. Here, our
top-level describe is titled “My test suite.” The two it blocks nested inside of this describe are our
specs. This organization is standard: describe blocks don’t contain assertions, it blocks do.

Throughout the rest of this chapter, an “assertion” refers to a call to expect(). A “spec” is
an it block.

Try it out

Inside of package.json, we already have a test script defined. So we can run the following
command to run our test suite:

$ npm test

Both tests passing

The first Jest test for Modash

Let’s replace this test suite with something useful that tests Modash.

Open Modash.test.js again and clear it out. At the top, import the library:

WOW! eBook
www.wowebook.org

Unit Testing 298

testing/basics/complete/Modash.test-4.js

import Modash from './Modash';

We’ll title our describe block 'Modash':

describe('Modash', () => {

// assertions will go here

});

It’s conventional to title the top-level describe whatever module is currently under test.

Let’s make our first assertion. We’re asserting that truncate() works:

testing/basics/complete/Modash.test-4.js

describe('Modash', () => {

it('`truncate()`: truncates a string', () => {

const string = 'there was one catch, and that was CATCH-22';

expect(

Modash.truncate(string, 19)

).toEqual('there was one catch...');

});

});

We organized our assertion differently, but the logic and end result are the same as before. Note how
expect and toEqual provide a human-readable format for expressing what we are testing and how
we expect it to behave.

Try it out

Save Modash.test.js. Run the single-spec test suite:

$ npm test

WOW! eBook
www.wowebook.org

Unit Testing 299

Test passing

The other truncate() spec

We have a second assertion for truncate(). We assert that truncate() returns the same string if
it’s below the specified length.

Because both of these assertions correspond to the same method on Modash, it makes sense to wrap
them together inside their own describe. Let’s add the next spec, wrapping both our specs inside
of a new describe:

testing/basics/complete/Modash.test-5.js

describe('Modash', () => {

describe('`truncate()`', () => {

const string = 'there was one catch, and that was CATCH-22';

it('truncates a string', () => {

expect(

Modash.truncate(string, 19)

).toEqual('there was one catch...');

});

it('no-ops if <= length', () => {

expect(

Modash.truncate(string, string.length)

).toEqual(string);

});

});

});

WOW! eBook
www.wowebook.org

Unit Testing 300

It’s conventional to group tests using describe blocks like this.

Note that we declared the string under test at the top of the truncate() describe block:

testing/basics/complete/Modash.test-5.js

describe('Modash', () => {

describe('`truncate()`', () => {

const string = 'there was one catch, and that was CATCH-22';

When variables are declared inside describe in this manner, they are in scope for each of the it

blocks.

Furthermore, we slightly changed the title of each spec. We were able to drop the truncate(): at
the beginning. Because these specs are under the describe block titled 'truncate()', if one of these
specs were to fail Jest would present the failure like this:

- Modash > `truncate()` > no-ops if less than length

This gives us all the context we need.

The rest of the specs

We’ll wrap the specs for our other two methods inside their own describe blocks, like this:

describe('Modash', () => {

describe('`truncate()`', () => {

// ... `truncate()` specs

});

describe('`capitalize()`', () => {

// ... `capitalize()` specs

});

describe('`camelCase()`', () => {

// ... `camelCase()` specs

});

});

First, our capitalize() spec:

WOW! eBook
www.wowebook.org

Unit Testing 301

testing/basics/complete/Modash.test-6.js

describe('capitalize()', () => {

it('capitalizes first letter, lowercases rest', () => {

const string = 'there was one catch, and that was CATCH-22';

expect(

Modash.capitalize(string)

).toEqual(

'There was one catch, and that was catch-22'

);

});

});

Note that the string inside the truncate() describe block is not in scope here, so we declare string
at the top of this spec.

Last, our set of camelCase() specs:

testing/basics/complete/Modash.test-6.js

describe('camelCase()', () => {

it('camelizes string with spaces', () => {

const string = 'customer responded at';

expect(

Modash.camelCase(string)

).toEqual('customerRespondedAt');

});

it('camelizes string with underscores', () => {

const string = 'customer_responded_at';

expect(

Modash.camelCase(string)

).toEqual('customerRespondedAt');

});

});

Try it out

Save Modash.test.js. Fire up Jest from the command-line:

$ npm test

WOW! eBook
www.wowebook.org

Unit Testing 302

And you’ll see everything pass:

Tests passing

We’ve covered the basics of assertions, organizing code into describe and it blocks, and using the
Jest test runner. Let’s see how these pieces come together for testing React applications. Along the
way, we’ll dig even deeper into Jest’s assertion library and best practices for behavior-driven test
suite organization.

Testing strategies for React applications

In software testing, there are two primary categories that tests fall into: integration tests and unit
tests.

Integration vs Unit Testing

Integration tests are tests where multiple modules or parts of a software system are tested together.
For a React app, we can think of each component as an individual module. Therefore, an integration
test would involve testing our app as a whole.

Integration tests might go even further. If our React app was communicating with an API server,
integration tests could involve communicating with that server as well. Developers often like to call
these types of integration tests end-to-end tests.

There are a few ways to drive end-to-end tests. One popular method is to use a driver like Selenium
to programatically load your app in a browser and automatically navigate your app’s interface. You
might have your program click on buttons or fill out forms, asserting what the page looks like after
these interactions. Or you might make assertions on the resulting state of the datastore over on the
server.

WOW! eBook
www.wowebook.org

Unit Testing 303

Integration tests are an important component of a comprehensive test suite for a large software
system. However, in this book, we’ll focus exclusively on unit testing for our React applications.

In a unit test, modules of a software system are tested in isolation.

For React components, we’ll make two kinds of assertions:

1. Given a set of inputs (state & props), assert what a component should output (render).
2. Given a user action, assert how the component behaves. The component might make a state

update or call a prop-function passed to it by a parent.

Shallow rendering

When rendered in the browser, our React components are written to the DOM. While we typically
see a DOM visually in a browser, we could load a “headless” one into our test suite. We could use
the DOM’s API to write and read React components as if we were working directly with a browser.
But there’s an alternative: shallow rendering.

Normally, when a React component renders it first produces its virtual DOM representation. This
virtual DOM representation is then used to make updates to an actual DOM.

When a component is shallow rendered, it does not write to a DOM. Instead, it maintains its virtual
DOM representation. You can then make assertions against this virtual DOM much like you would
an actual one.

Furthermore, your component is rendered only one level deep (hence “shallow”). So if the render
function of your component contains children, those children won’t actually be rendered. Instead,
the virtual DOM representation will just contain references to the un-rendered child components.

React provides a library for shallow rendering React components, react-test-renderer. This
library is useful, but is a bit low-level and can be verbose.

Enzyme is a library that wraps react-test-renderer, providing lots of handy functionality that is
helpful for writing React component tests.

Enzyme

Enzyme was initially developed by Airbnb and is gaining widespread adoption among the React
open-source community. In fact, Facebook recommends the utility in its documentation for react-
test-renderer. Following this trend, we’ll be using Enzyme as opposed to react-test-renderer

throughout this chapter.

Enzyme, through react-test-renderer, allows you to shallow render a component. Instead of using
ReactDOM.render() to render a component to a real DOM, you use Enzyme’s shallow() to shallow
render it:

WOW! eBook
www.wowebook.org

Unit Testing 304

const wrapper = Enzyme.shallow(

<App />

);

As we’ll see soon, shallow() returns an EnzymeWrapper object. Nested inside of this object is our
shallow-rendered component in its virtual DOM representation. EnzymeWrapper gives us a bunch of
useful methods for traversing and writing assertions against the component’s virtual DOM.

If you ever want to use react-test-renderer directly in the future, you’ll find knowing
Enzyme helps. Because Enzyme is a lightweight wrapper on top of react-test-renderer,
the APIs have a lot in common.

There are a two primary advantages to shallow rendering:

It tests components in isolation

This is preferable for unit tests. When we are writing tests for a parent component, we don’t have to
worry about dependencies on child components. A change made to a child component might break
the child component’s unit tests but it won’t break that of any parents.

It’s faster

Another nice benefit is that your tests will be faster. Rendering to, manipulating, and reading from
an actual DOM adds overhead. With shallow rendering, you avoid the DOM entirely.

As we’ll see, Enzyme has an API for simulating DOM events for shallow rendered components.
These allow us to, for example, “click” a component even though no DOM is present.

Testing a basic React component with Enzyme

We’ll get familiar with Enzyme by writing tests for a basic React component.

Setup

Inside the folder testing/react-basics is an app created with create-react-app. From the test-

ing/basics folder, cd into that directory:

$ cd ../react-basics

And install the packages:

WOW! eBook
www.wowebook.org

Unit Testing 305

$ npm i

We cover create-react-app in detail in the previous chapter, “Using Webpack with create-
react-app”.

Take a look at the directory:

$ ls

index.html

node_modules/

package.json

src/

And src/:

$ ls src/

App.css

App.js

App.test.js

complete/

index.css

index.js

semantic/

The basic organization of this create-react-app app is the same that we saw in the last chapter. App.js
defines an App component. index.js calls ReactDOM.render(). Semantic UI is included for styling.

The App component

Before looking at App, let’s see it in the browser. Boot the app:

$ npm start

The app is simple. There is a field coupled with a button that adds items to a list. There is no way to
delete items in the list:

WOW! eBook
www.wowebook.org

Unit Testing 306

The completed list app

Open up App.js. As we see in the initialization of state, App has two state properties:

testing/react-basics/src/App.js

class App extends React.Component {

state = {

items: [],

item: '',

};

items is the list of items. item is the state property that is tied to our controlled input, which we’ll
see in a moment.

Inside of render(), App iterates over this.state.items to render all items in a table:

WOW! eBook
www.wowebook.org

Unit Testing 307

testing/react-basics/src/App.js

<tbody>

{

this.state.items.map((item, idx) => (

<tr

key={idx}

>

<td>{item}</td>

</tr>

))

}

</tbody>

The controlled input is standard. It resides inside of a form:

testing/react-basics/src/App.js

<form

className='ui form'

onSubmit={this.addItem}

>

<div className='field'>

<input

className='prompt'

type='text'

placeholder='Add item...'

value={this.state.item}

onChange={this.onItemChange}

/>

For more info on controlled inputs, see the section “Uncontrolled vs. Controlled Compo-
nents” in the Forms chapter.

For the input, onItemChange() sets item in state as expected:

WOW! eBook
www.wowebook.org

Unit Testing 308

testing/react-basics/src/App.js

onItemChange = (e) => {

this.setState({

item: e.target.value,

});

};

For the form, onSubmit calls addItem(). This function adds the new item to state and clears item:

testing/react-basics/src/App.js

addItem = (e) => {

e.preventDefault();

this.setState({

items: this.state.items.concat(

this.state.item

),

item: '',

});

};

Finally, the button:

testing/react-basics/src/App.js

<button

className='ui button'

type='submit'

disabled={submitDisabled}

>

Add item

</button>

We set the attribute disabled on the button. This variable (submitDisabled) is defined at the top of
render and depends on whether or not the input field is populated:

WOW! eBook
www.wowebook.org

Unit Testing 309

testing/react-basics/src/App.js

render() {

const submitDisabled = !this.state.item;

return(

The first spec for App

In order to write our first spec, we need to have two libraries in place: Jest and Enzyme.

In the last chapter, we noted that create-react-app sets up a few commands in package.json. One
of those was test.

react-scripts already specifies Jest as a dependency. To boot Jest, we just need to run npm test.
Like other commands that create-react-app creates for us, test runs a script in react-scripts. This
script configures and executes Jest.

To see all of the packages that react-scripts includes, see the file ./node_-

modules/react-scripts/package.json.

create-react-app sets up a dummy test for us in App.test.js. Let’s execute Jest from inside
testing/react-basics and see what happens:

$ npm test

Jest runs, emitting a well-formatted report of our test suite’s results:

The sample test run

WOW! eBook
www.wowebook.org

Unit Testing 310

react-scripts has provided some additional configuration to Jest. One configuration is booting
Jest in watch mode. In this mode, Jest does not quit after the test suite finishes. Instead, it watches
the whole project for changes. When a change is detected, it re-runs the test suite.

Throughout this chapter, we’ll continue to instruct you to execute the test suite with npm

test. However, you can just keep a console window open with Jest running in watch mode
if you’d like.

react-scripts does not include enzyme. So we’ve included it in our package.json.

enzyme wraps react-test-renderer. As a result, it depends on that package to be installed too.
You’ll see that dependency in the package.json as well.

Let’s replace the spec in App.test.js with something more useful.

Open up App.test.js and clear out the file. At the top of that file, we first import the React
component that is under test:

testing/react-basics/src/complete/App.test.complete-1.js

import App from './App';

Next, we’ll import React from react and shallow() from enzyme:

testing/react-basics/src/complete/App.test.complete-1.js

import React from 'react';

import { shallow } from 'enzyme';

shallow() is the only function we’ll use from Enzyme, so we explicitly specify it in our import. As
you may have guessed, shallow() is the function we’ll use to shallow render components.

If you need a refresher on the ES6 import syntax, refer to the previous chapter “Using
Webpack with create-react-app.”

We’ll title our describe after the module under test:

describe('App', () => {

// assertions will go here

});

Let’s write our first spec. We’ll assert that our table should render with a table header of “Items”:

WOW! eBook
www.wowebook.org

Unit Testing 311

describe('App', () => {

it('should have the `th` "Items"', () => {

// our assertion will go here

});

// the rest of our assertions will go here

});

In order to write this assertion, we’ll need to:

• Shallow render the component
• Traverse the virtual DOM, picking out the first th element
• Assert that that element encloses a text value of “Items”

We first shallow render the component:

testing/react-basics/src/complete/App.test.complete-1.js

it('should have the `th` "Items"', () => {

const wrapper = shallow(

<App />

);

As mentioned earlier, the shallow() function returns what Enzyme calls a “wrapper” object,
ShallowWrapper. This wrapper contains the shallow-rendered component. Remember, there is
no actual DOM here. Instead, the component is kept inside of the wrapper in its virtual DOM
representation.

The wrapper object that Enzyme provides us with has loads of useful methods that we can use to
write our assertions. In general, these helper methods help us traverse and select elements on the
virtual DOM.

Let’s see how this works in practice. One helper method is contains(). We’ll use it to assert the
presence of our table header:

WOW! eBook
www.wowebook.org

Unit Testing 312

testing/react-basics/src/complete/App.test.complete-1.js

it('should have the `th` "Items"', () => {

const wrapper = shallow(

<App />

);

expect(

wrapper.contains(<th>Items</th>)

).toBe(true);

});

contains() accepts a ReactElement, in this case JSX representing an HTML element. It returns a
boolean, indicating whether or not the rendered component contains that HTML.

Try it out

With our first Enzyme spec written, let’s verify everything works. Save App.test.js and run the
test command from the console:

$ npm test

Enzyme spec passes

Let’s write some more assertions, exploring the API for Enzyme in the process.

WOW! eBook
www.wowebook.org

Unit Testing 313

We import React at the top of our test file. Yet, we don’t reference React anywhere in the
file. Why do we need it?

You can try removing this import statement and see what happens. You’ll get the following
error:

ReferenceError: React is not defined

We can’t readily see the reference to React, but it’s there. We’re using JSX in our test suite.
When we specify a th component with <th>Items</th> this compiles to:

React.createElement('th', null, 'Items');

More assertions for App

Next, let’s assert that the component contains a button element, the button that says “Add item.”
We might expect we could just do something like this:

wrapper.contains(<button>Add Item</button>)

But, contains()matches all the attributes on an element. Our button inside of render() looks like
this:

testing/react-basics/src/App.js

<button

className='ui button'

type='submit'

disabled={submitDisabled}

>

Add item

</button>

We need to pass contains() a ReactElement that has the exact same set of attributes. But usually
this is excessive. For this spec, it’s sufficient to just assert that the button is on the page.

We can use Enzyme’s containsMatchingElement() method. This will check if anything in the
component’s output looks like the expected element.We don’t have to match attribute-for-attribute.

Using containsMatchingElement(), let’s assert that the rendered component also includes a button
element. Write this spec below the last one:

WOW! eBook
www.wowebook.org

Unit Testing 314

testing/react-basics/src/complete/App.test.complete-2.js

it('should have a `button` element', () => {

const wrapper = shallow(

<App />

);

expect(

wrapper.containsMatchingElement(

<button>Add item</button>

)

).toBe(true);

});

containsMatchingElement() allows us to write a “looser” spec that’s closer to the assertionwewant:
that there’s a button on the page. It doesn’t tie our specs to style attributes like className. While
the attributes onClick and disabled are important, we’ll write specs later that cover these.

Let’s write another assertion with containsMatchingElement(). We’ll assert that the input field is
present as well:

testing/react-basics/src/complete/App.test.complete-2.js

it('should have an `input` element', () => {

const wrapper = shallow(

<App />

);

expect(

wrapper.containsMatchingElement(

<input />

)

).toBe(true);

});

Our specs at this point assert that certain key elements are present in the component’s output
after the initial render. As we’ll see shortly, we’re laying the foundation for the rest of our specs.
Subsequent specs will assert what happens after we make changes to the component, like populating
its input or clicking its button. These fundamental specs assert that the elements we will be
interacting with are present on the page to begin with.

In this initial state, there is one more important assertion we should make: that the button on the
page is disabled. The button should only be enabled if there is text inside the input.

We actually could modify our previous spec to include this particular attribute, like this:

WOW! eBook
www.wowebook.org

Unit Testing 315

expect(

wrapper.containsMatchingElement(

<button disabled={true}>

Add item

</button>

)

).toBe(true);

This spec would then be making two assertions: (1) That the button is present and (2) that it is
disabled.

This is a perfectly valid approach. However, we like to split these two assertions into two different
specs. When you limit the scope of the assertion in a given spec, test failures are much more
expressive. If this dual-assertion spec were to fail, it would not be obvious why. Is the buttonmissing?
Or is the button not disabled?

This discussion on how to limit assertions per spec touches on the art of unit testing.
There are many different strategies and styles for composing unit tests which are highly
dependent on the codebase you’re working with. There is usually more than one “right
way” to structure a test suite.

Throughout this chapter, we’ll be exhibiting our particular style. But as you get comfortable
with unit testing, feel free to experiment to find a style that works best for you or your
codebase. Just be sure to aim to keep your style consistent.

Our three specs so far have asserted that elements are present in the output of our component.
This spec is different. We’ll first “find” the component and then make an assertion on its disabled
attribute. Let’s take a look at it then break it down:

testing/react-basics/src/complete/App.test.complete-2.js

it('`button` should be disabled', () => {

const wrapper = shallow(

<App />

);

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(true);

});

find() is another EnzymeWrapper method. It expects as an argument an Enzyme selector. The
selector in this case is a CSS selector, 'button'. A CSS selector is just one supported type of Enzyme

WOW! eBook
www.wowebook.org

Unit Testing 316

selector. We’ll only use CSS selectors in this chapter, but Enzyme selectors can also refer directly to
React components. For more info on Enzyme selectors, see the Enzyme docs71.

find() returns another Enzyme ShallowWrapper. This object contains a list of all matching elements.
The object behaves a bit like an array, with methods like length. The object has a method, first(),
which we use here to return the first matching element. first() returns another ShallowWrapper
object which we set the variable input to.

As you find and select various elements within a shallow rendered component, all of those elements
will be Enzyme ShallowWrapper objects. That means you can expect the same API of methods to be
available to you, whether you’re working with a shallow-rendered React component or a div tag.

To read the disabled attribute on the button, we use props(). props() returns an object that
specifies either the attributes on an HTML element or the props set on a React component.

CSS selectors

CSS files use selectors to specify which HTML elements a set of styles refers to. JavaScript
applications also use this syntax to select HTML elements on a page. Check out this MDN
section72 for more info on CSS selectors.

Using beforeEach

At this point, our test suite has some repetitious code. We shallow render the component before each
assertion. This is ripe for refactor.

We could just shallow render the component at the top of our describe block:

describe('the "App" component', () => {

const wrapper = shallow(

<App />

);

// specs here ...

})

Due to JavaScript’s scoping rules, wrapper would be available inside of each of our it blocks.

But there are problems that can arise with this approach. For instance, what if one of our specs
modifies the component? We might change the component’s state or simulate an event. This would
cause state to leak between specs. At the start of the next spec, our component’s state would be
unpredictable.

71http://airbnb.io/enzyme/docs/api/selector.html
72https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors

WOW! eBook
www.wowebook.org

http://airbnb.io/enzyme/docs/api/selector.html
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors
http://airbnb.io/enzyme/docs/api/selector.html
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors

Unit Testing 317

It would instead be preferable to re-render the component between each spec, ensuring that each
spec is working with the component in a predictable, fresh state.

In all popular JavaScript test frameworks, there’s a function we can use to aid in test setup:
beforeEach. beforeEach is a block of code that will run before each it block. We can use this
function to render our component before each spec.

When writing a test, you’ll often need to perform some setup to get your environment into the
proper context to make an assertion. In addition to shallow rendering a component as we do above,
we’ll soon write tests that will demand even richer context. By setting up the context inside of a
beforeEach, you guarantee that each spec will receive a fresh set of context.

Setting up fresh context before each spec helps prevent state from leaking between tests.

When writing tests, we strive to keep our individual specs (our it blocks) as terse as possible. We’ll
rely on beforeEach to establish context, like the state or props for a component or even events like
an element being clicked. Our it blocks, then, will almost always contain exclusively assertions.

Let’s use a beforeEach block to render our component. We can then remove the rendering from
each of our assertions:

testing/react-basics/src/complete/App.test.complete-3.js

describe('App', () => {

let wrapper;

beforeEach(() => {

wrapper = shallow(

<App />

);

});

We had to first declare wrapper using a let declaration at the top of the describe block. This is
because if we had declared wrapper inside of the beforeEach block like this:

WOW! eBook
www.wowebook.org

Unit Testing 318

// ...

beforeEach(() => {

const wrapper = shallow(

<App />

);

})

// ...

wrapperwould not have been in scope for our specs. By declaring wrapper at the top of our describe
block, we’ve “hoisted” it up into scope for all of our assertions.

We can now safely remove the declaration of wrapper from each of our assertions:

testing/react-basics/src/complete/App.test.complete-3.js
it('should have the `th` "Items"', () => {

expect(

wrapper.contains(<th>Items</th>)

).toBe(true);

});

it('should have a `button` element', () => {

expect(

wrapper.containsMatchingElement(

<button>Add item</button>

)

).toBe(true);

});

it('should have an `input` element', () => {

expect(

wrapper.containsMatchingElement(

<input />

)

).toBe(true);

});

it('`button` should be disabled', () => {

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(true);

});

Much better. Our it blocks are no longer setting up context and we’ve removed redundant code.

WOW! eBook
www.wowebook.org

Unit Testing 319

Try it out

Save App.test.js. Run the test suite:

$ npm test

All four tests pass:

All four passing tests

While limited, these specs set the foundation for our next set of specs. By asserting the presence of
certain elements in the initial render as we have so far, we’re asserting what the user will see on the
page when the app loads. We asserted that there will be a table header, an input, and a button. We
also asserted that the button should be disabled.

For the rest of this chapter, we’re going to use a behavior-driven style to drive the development of
our test suite.With this style, we’ll use beforeEach to set up some context.We’ll simulate interactions
with the component much like we were a user navigating the interface. We’ll then write assertions
on how the component should have behaved.

After loading the app, the first thing we’d envision a user would do is fill in the input. When the
input is filled, they will click the “Add item” button. We would then expect the new item to be in
state and on the page.

We’ll step through these behaviors, writing assertions about the component after each user
interaction.

Simulating a change

The first interaction the user can have with our app is filling out the input field for adding a new
item. In addition to shallow rendering our component, we want to simulate this behavior before the

WOW! eBook
www.wowebook.org

Unit Testing 320

next set of specs.

While we could perform this setup inside of the it blocks, as we noted before it’s better if we perform
as much of our setup as possible inside of beforeEach blocks. Not only does this help us organize
our code, this practice makes it easy to have multiple specs that rely on the same setup.

However, we don’t need this particular piece of setup for our other four existing specs. What we
should do is declare another describe block inside of our current one. describe blocks are how we
“group” specs that all require the same context:

describe('App', () => {

// ... the assertions we've written so far

describe('the user populates the input', () => {

beforeEach(() => {

// ... setup context

})

// ... assertions

});

});

The beforeEach that we write for our inner describe will be run after the beforeEach declared
in the outer context. Therefore, the wrapper will already be shallow rendered by the time this
beforeEach runs. As expected, this beforeEach will only be run for it blocks inside our inner
describe block.

Here’s what our inner describe with our beforeEach setup looks like for the next spec group:

testing/react-basics/src/complete/App.test.complete-4.js

describe('the user populates the input', () => {

const item = 'Vancouver';

beforeEach(() => {

const input = wrapper.find('input').first();

input.simulate('change', {

target: { value: item }

})

});

We first declare item at the top of describe. As we’ll see soon, this will enable us to reference the
variable in our specs.

WOW! eBook
www.wowebook.org

Unit Testing 321

The beforeEach first uses the find()method on EnzymeWrapper to grab the input. Recall that find()
returns another EnzymeWrapper object, in this case a list with a single item, our input.We call first()
to get the EnzymeWrapper object corresponding to the input element.

We then use simulate() on the input. simulate() is how we simulate user interactions on
components. The method accepts two arguments:

1. The event to simulate (like 'change' or 'click'). This determines which event handler to use
(like onChange or onClick).

2. The event object (optional).

Here, we’re specifying a 'change' event for the input. We then pass in our desired event object.
Note that this event object looks exactly the same as the event object that React passes an onChange

handler. Here’s the method onItemChange on App again, which expects an object of this shape:

testing/react-basics/src/App.js

onItemChange = (e) => {

this.setState({

item: e.target.value,

});

};

With this setup written, we can now write specs related to the context where the user has just
populated the input field. We’ll write two:

1. That the state property item was updated to match the input field
2. That the button is no longer disabled

Here’s what the describe looks like, in full:

testing/react-basics/src/complete/App.test.complete-4.js

describe('the user populates the input', () => {

const item = 'Vancouver';

beforeEach(() => {

const input = wrapper.find('input').first();

input.simulate('change', {

target: { value: item }

})

});

WOW! eBook
www.wowebook.org

Unit Testing 322

it('should update the state property `item`', () => {

expect(

wrapper.state().item

).toEqual(item);

});

it('should enable `button`', () => {

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(false);

});

});

In the first spec, we used wrapper.state() to grab the state object. Note that it is a function and not
a property. Remember, wrapper is an EnzymeWrapper so we’re not interacting with the component
directly. We use the state() method which retrieves the state property from the component.

In the second, we used props() again to read the disabled attribute on the button.

Continuing our behavior-driven approach, we now envision our component in the following state:

Imagined state of the component

The user has filled in the input field. There are two actions the user can take from here that we can
write specs for:

1. The user clears the input field

WOW! eBook
www.wowebook.org

Unit Testing 323

2. The user clicks the “Add item” button

Clearing the input field

When the user clears the input field, we expect the button to become disabled again. We can build
on our existing context for the describe “the user populates the input” by nesting our new describe

inside of it:

describe('App', () => {

// ... initial state assertions

describe('the user populates the input', () => {

// ... populated field assertions

describe('and then clears the input', () => {

// ... assert the button is disabled again

});

});

});

We’ll use beforeEach to simulate a change event again, this time setting value to a blank string.
We’ll write one assertion: that the button is disabled again.

Remember to compose this describe block underneath “the user populates the input.” Our “user
clears the input” describe block, in full:

testing/react-basics/src/complete/App.test.complete-5.js

it('should enable `button`', () => {

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(false);

});

describe('and then clears the input', () => {

beforeEach(() => {

const input = wrapper.find('input').first();

input.simulate('change', {

target: { value: '' }

})

});

WOW! eBook
www.wowebook.org

Unit Testing 324

it('should disable `button`', () => {

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(true);

});

});

});

});

Notice how we’re building on existing context, getting deeper into a workflow through our app.
We’re three layers deep. The app has rendered, the user filled in the input field, and then the user
cleared the input field.

Now’s a good time to verify all our tests pass.

Try it out

Save App.test.js. Running the test suite:

$ npm test

We see everything passes:

Next, we’ll simulate the user submitting the form. This should cause a few changes to our app which
we’ll write assertions for.

WOW! eBook
www.wowebook.org

Unit Testing 325

Simulating a form submission

After the user has submitted the form, we expect the app to look like this:

We’ll assert that:

1. The new item is in state (items)
2. The new item is inside the rendered table
3. The input field is empty
4. The “Add item” button is disabled

To reach this context, we’ll build on the previous context where the user has populated the input.
So we’ll write our describe inside “the user populates the input” as a sibling to “and then clears the
input”:

WOW! eBook
www.wowebook.org

Unit Testing 326

describe('App', () => {

// ... initial state assertions

describe('the user populates the input', () => {

// ... populated field assertions

describe('and then clears the input', () => {

// ... assert the button is disabled again

});

describe('and then submits the form', () => {

// ... upcoming assertions

});

});

});

Our beforeEach will simulate a form submission. Recall that addItem expects an object that has a
method preventDefault():

testing/react-basics/src/App.js

addItem = (e) => {

e.preventDefault();

this.setState({

items: this.state.items.concat(

this.state.item

),

item: '',

});

};

We’ll simulate an event type of submit, passing in an object that has the shape that addItem expects.
We can just set preventDefault to an empty function:

WOW! eBook
www.wowebook.org

Unit Testing 327

testing/react-basics/src/complete/App.test.complete-6.js

describe('and then submits the form', () => {

beforeEach(() => {

const form = wrapper.find('form').first();

form.simulate('submit', {

preventDefault: () => {},

});

});

With our setup in place, we first assert that the new item is in state:

testing/react-basics/src/complete/App.test.complete-6.js

it('should add the item to state', () => {

expect(

wrapper.state().items

).toContain(item);

});

Jest comes with a few special matchers for working with arrays. We use the matcher toContain()
to assert that the array items contains item.

Remember, wrapper is an EnzymeWrapper object with a React component inside.We retrieve
the state with state() (a method).

Next, let’s assert that the item is inside the table. There’s a few ways to do this, here’s one:

testing/react-basics/src/complete/App.test.complete-6.js

it('should render the item in the table', () => {

expect(

wrapper.containsMatchingElement(

<td>{item}</td>

)

).toBe(true);

});

contains() would work for this spec as well, but we tend to use
containsMatchingElement() more often to keep our tests from being too brittle.
For instance, if we added a class to each of our td elements, a spec using
containsMatchingElement() would not break.

WOW! eBook
www.wowebook.org

Unit Testing 328

Next, we’ll assert that the input field has been cleared. We have the option of checking the state
property item or checking the actual input field in the virtual DOM. We’ll do the latter as it’s a bit
more comprehensive:

testing/react-basics/src/complete/App.test.complete-6.js

it('should clear the input field', () => {

const input = wrapper.find('input').first();

expect(

input.props().value

).toEqual('');

});

Finally, we’ll assert that the button is again disabled:

testing/react-basics/src/complete/App.test.complete-6.js

it('should disable `button`', () => {

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(true);

});

Our “and then submits the form” describe, in full:

testing/react-basics/src/complete/App.test.complete-6.js

it('should disable `button`', () => {

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(true);

});

});

describe('and then submits the form', () => {

beforeEach(() => {

const form = wrapper.find('form').first();

form.simulate('submit', {

preventDefault: () => {},

});

});

WOW! eBook
www.wowebook.org

Unit Testing 329

it('should add the item to state', () => {

expect(

wrapper.state().items

).toContain(item);

});

it('should render the item in the table', () => {

expect(

wrapper.containsMatchingElement(

<td>{item}</td>

)

).toBe(true);

});

it('should clear the input field', () => {

const input = wrapper.find('input').first();

expect(

input.props().value

).toEqual('');

});

it('should disable `button`', () => {

const button = wrapper.find('button').first();

expect(

button.props().disabled

).toBe(true);

});

});

});

});

It might appear we have another possible refactor we can do. We have a lot of these declarations
throughout our test suite:

const input = wrapper.find('input').first();

const button = wrapper.find('button').first();

You might wonder if it’s possible to declare these variables at the top of our test suite’s scope,
alongside wrapper. We could then set them in our top-most beforeEach, like this:

WOW! eBook
www.wowebook.org

Unit Testing 330

// Valid refactor?

describe('App', () => {

let wrapper;

let input;

let button;

beforeEach(() => {

wrapper = shallow(

<App />

);

const input = wrapper.find('input').first();

const button = wrapper.find('button').first();

});

// ...

});

Then, you’d be able to reference input and button throughout the test suite without re-declaring
them.

However, if you were to try this, you’d note some test failures. This is because throughout the test
suite, input and button would reference HTML elements from the initial render. When we call a
simulate() event, like this:

input.simulate('change', {

target: { value: item }

});

Under the hood, the React component re-renders. This is what we’d expect. Therefore, an entirely
new virtual DOM object is created with new input and button elements inside. We need to perform
a find() to pick out those elements inside the new virtual DOM object, which we do here.

Try it out

Save App.test.js. Run the test suite:

$ npm test

Everything passes:

WOW! eBook
www.wowebook.org

Unit Testing 331

You might try breaking various parts of App and witness the test suite catch these failures.

Our test suite for App is sufficiently comprehensive. We saw how we can use a behavioral-driven
approach to drive the composition of a test suite. This style encourages completeness. We establish
layers of context based on real-world workflows. And with the context established, it’s easy to assert
the component’s desired behavior.

In total, so far we’ve covered:

• The basics of assertions
• The Jest testing library (with Jasmine assertions)
• Organizing testing code in a behavioral-driven manner
• Shallow rendering with Enzyme
• ShallowWrapper methods for traversing the virtual DOM
• Jest/Jasmine matchers for writing different kinds of assertions (like toContain() for arrays)

In the next section, we’ll advance our understanding ofwriting React unit tests with Jest and Enzyme.
We’ll write specs for a component that exists inside of a larger React app. Specifically, we’ll cover:

• What happens when an app has multiple components
• What happens when an app relies on a web request to an API
• Some additional methods for both Jest and Enzyme

WOW! eBook
www.wowebook.org

Unit Testing 332

Writing tests for the food lookup app

In the previous chapter onWebpack and create-react-app, we set up aWebpack-powered food lookup
app:

The food lookup app

We’ll work inside the completed version of this app. It’s in the top-level folder food-lookup-

complete. To get to it from the testing/react-basics folder, run the following command:

$ cd ../../food-lookup-complete

It’s not necessary that you’ve completed the chapter on Webpack to proceed. We describe
this app’s layout and the FoodSearch component before writing our specs.

Install the npm packages for both the server and the client if they are not installed already:

$ npm i

$ cd client

$ npm i

$ cd ..

And start up the app to play around with it if you’d like with:

WOW! eBook
www.wowebook.org

Unit Testing 333

$ npm start

We’ll be writing tests for just the component FoodSearch in this chapter. We won’t dig into the code
for the other components in the app. Instead, it’s sufficient to understand how the app is broken
down into components at a high-level:

• App (blue): The parent container for the application.
• SelectedFoods (yellow): A table that lists selected foods. Clicking on a food item removes it.
• FoodSearch (purple): Table that provides a live search field. Clicking on a food item in the
table adds it to the total (SelectedFoods).

Kill the app if you started it. Change into the client/ directory. We’ll be working solely in this
directory for this chapter:

WOW! eBook
www.wowebook.org

Unit Testing 334

$ cd client

For this app, instead of having the tests alongside the components in srcwe’ve placed them inside a
dedicated folder, tests. Inside of tests, you’ll see that tests already exist for the other components
in our app:

$ ls tests/

App.test.js

SelectedFoods.test.js

complete/

Feel free to peruse the other tests after we’ve finished writing tests for FoodSearch. All the other
tests re-use the same concepts that we use for testing FoodSearch.

Before writing tests for the component, let’s walk through how FoodSearch works. You can pop
open the FoodSearch component and follow along if you’d like (src/FoodSearch.js).

complete/ contains each version of the completed FoodSearch.test.js that we write in
this section, for your reference.

FoodSearch

The FoodSearch component has a search field. As the user types, a table of matching foods is updated
below the search field:

The FoodSearch component

When the search field is changed, the FoodSearch component makes a request to the app’s API
server. If the user has typed in the string truffle, the request to the server looks like this:

GET localhost:3001/api/food?q=truffle

The API server then returns an array of matching food items:

WOW! eBook
www.wowebook.org

Unit Testing 335

[

{

"description": "Pate truffle flavor",

"kcal": 327,

"fat_g": 27.12,

"protein_g": 11.2,

"carbohydrate_g": 6.3

},

{

"description": "Candies, truffles, prepared-from-recipe",

"kcal": 510,

"fat_g": 32.14,

"protein_g": 6.21,

"carbohydrate_g": 44.88

},

{

"description": "Candies, m m mars 3 musketeers truffle crisp",

"kcal": 538,

"fat_g": 25.86,

"protein_g": 6.41,

"carbohydrate_g": 63.15

}

]

FoodSearch populates its table with these items.

FoodSearch has three pieces of state:

foods

This is an array of all of the foods returned by the server. It defaults to a blank array.

showRemoveIcon

When the user starts typing into the search field, an X appears next to the field:

The remove icon

This X provides a quick way to clear the search field. When the field is empty, showRemoveIcon
should be false. When the field is populated, showRemoveIcon should be true.

searchValue

searchValue is the state that’s tied to the controlled input, the search field.

WOW! eBook
www.wowebook.org

Unit Testing 336

Exploring FoodSearch

Armed with the knowledge of how FoodSearch behaves and what state it keeps, let’s explore
the actual code. We’ll include the code snippets here, but feel free to follow along by opening
src/FoodSearch.js.

At the top of the component are import statements:

food-lookup-complete/client/src/FoodSearch.js

import React from 'react';

import Client from './Client';

We also have a constant that defines the maximum number of search results to show on the page.
We use this inside of the component:

food-lookup-complete/client/src/FoodSearch.js

const MATCHING_ITEM_LIMIT = 25;

Then we define the component.

state initialization for our three pieces of state:

food-lookup-complete/client/src/FoodSearch.js

class FoodSearch extends React.Component {

state = {

foods: [],

showRemoveIcon: false,

searchValue: '',

};

Let’s step through the interactive elements in the component’s render method along with each
element’s handling function.

The input search field

The input field at the top of FoodSearch drives the search functionality. The table body updates with
search results as the user modifies the input field.

The input element:

WOW! eBook
www.wowebook.org

Unit Testing 337

food-lookup-complete/client/src/FoodSearch.js

<input

className='prompt'

type='text'

placeholder='Search foods...'

value={this.state.searchValue}

onChange={this.onSearchChange}

/>

className is set for SemanticUI styling purposes. value ties this controlled input to this.state.searchValue.

onSearchChange() accepts an event object. Let’s step through the code. Here’s the first half of the
function:

food-lookup-complete/client/src/FoodSearch.js

onSearchChange = (e) => {

const value = e.target.value;

this.setState({

searchValue: value,

});

if (value === '') {

this.setState({

foods: [],

showRemoveIcon: false,

});

We grab the value off of the event object. We then set searchValue in state to this value, following
the pattern for handling the change for a controlled input.

If the value is blank, we set foods to a blank array (clearing the search results table) and set
showRemoveIcon to false (hiding the “X” that’s used to clear the search field).

If the value is not blank, we need to:

• Ensure that the showRemoveIcon is set to true

• Make a call to the server with the latest search value to get the list of matching foods

Here’s that code:

WOW! eBook
www.wowebook.org

Unit Testing 338

food-lookup-complete/client/src/FoodSearch.js

} else {

this.setState({

showRemoveIcon: true,

});

Client.search(value, (foods) => {

this.setState({

foods: foods.slice(0, MATCHING_ITEM_LIMIT),

});

});

}

};

Client uses the Fetch API under the hood, the same web request interface that we used in Chapter 3.
Client.search() makes the web request to the server and then invokes the callback with the array
of matching foods.

If you need a refresher on working with a client library driven by Fetch, see Chapter 3:
Components & Servers.

We then set foods in state to the returned foods, truncating this list so that it’s within the bounds
of MATCHING_ITEM_LIMIT (which is 25).

In full, onSearchChange() looks like this:

food-lookup-complete/client/src/FoodSearch.js

onSearchChange = (e) => {

const value = e.target.value;

this.setState({

searchValue: value,

});

if (value === '') {

this.setState({

foods: [],

showRemoveIcon: false,

});

} else {

this.setState({

WOW! eBook
www.wowebook.org

Unit Testing 339

showRemoveIcon: true,

});

Client.search(value, (foods) => {

this.setState({

foods: foods.slice(0, MATCHING_ITEM_LIMIT),

});

});

}

};

The remove icon

As we’ve seen, the remove icon is the little X that appears next to the search field whenever the field
is populated. Clicking this X should clear the search field.

We perform the logic for whether or not to show the remove icon in-line. The icon element has the
onClick attribute:

food-lookup-complete/client/src/FoodSearch.js

this.state.showRemoveIcon ? (

<i

className='remove icon'

onClick={this.onRemoveIconClick}

/>

) : ''

}

The code for onRemoveIconClick():

food-lookup-complete/client/src/FoodSearch.js

onRemoveIconClick = () => {

this.setState({

foods: [],

showRemoveIcon: false,

searchValue: '',

});

};

We reset everything, including foods.

WOW! eBook
www.wowebook.org

Unit Testing 340

props.onFoodClick

The final bit of interactivity is on each food item. When the user clicks a food item, we add it to the
list of selected foods on the interface:

food-lookup-complete/client/src/FoodSearch.js
<tbody>

{

this.state.foods.map((food, idx) => (

<tr

key={idx}

onClick={() => this.props.onFoodClick(food)}

>

<td>{food.description}</td>

<td className='right aligned'>

{food.kcal}

</td>

<td className='right aligned'>

{food.protein_g}

</td>

<td className='right aligned'>

{food.fat_g}

</td>

<td className='right aligned'>

{food.carbohydrate_g}

</td>

</tr>

))

}

</tbody>

Under the hood, when the user clicks a food itemwe invoke this.props.onFoodClick(). The parent
of FoodSearch (App) specifies this prop-function. It expects the full food object.

As we’ll see, for the purpose of writing unit tests for FoodSearch, we don’t need to know anything
about what the prop-function onFoodClick() actually does. We just care about what it wants (a full
food object).

Shallow rendering helps us achieve this desirable isolation. While this app is relatively small, these
isolation benefits are huge for larger teams with larger codebases.

Writing FoodSearch.test.js

We’re ready to write unit tests for the FoodSearch component.

WOW! eBook
www.wowebook.org

Unit Testing 341

The file client/tests/FoodSearch.test.js contains the scaffold for the test suite. At the top are
the import statements:

food-lookup-complete/client/tests/FoodSearch.test.js

import { shallow } from 'enzyme';

import React from 'react';

import FoodSearch from '../src/FoodSearch';

Next is the scaffolding for the test suite. Don’t be intimidated, we’ll be filling out each of these
describe and beforeEach blocks one-by-one:

food-lookup-complete/client/tests/FoodSearch.test.js

describe('FoodSearch', () => {

// ... initial state specs

describe('user populates search field', () => {

beforeEach(() => {

// ... simulate user typing "brocc" in input

});

// ... specs

describe('and API returns results', () => {

beforeEach(() => {

// ... simulate API returning results

});

// ... specs

describe('then user clicks food item', () => {

beforeEach(() => {

// ... simulate user clicking food item

});

// ... specs

});

describe('then user types more', () => {

beforeEach(() => {

// ... simulate user typing "x"

});

WOW! eBook
www.wowebook.org

Unit Testing 342

describe('and API returns no results', () => {

beforeEach(() => {

// ... simulate API returning no results

});

// ... specs

});

});

});

});

});

As in the previous section, we’ll establish different contexts by using beforeEach to perform setup.
Each of our contexts will be contained inside describe.

In initial state

Our first series of specs will involve the component in its initial state. Our beforeEach will simply
shallow render the component. We’ll then write assertions on this initial state:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-1.js

describe('FoodSearch', () => {

let wrapper;

beforeEach(() => {

wrapper = shallow(

<FoodSearch />

);

});

As in our first round of component tests in the last section, we declare wrapper in the upper scope.
In our beforeEach, we use Enzyme’s shallow() to shallow-render the component.

Let’s write two assertions:

1. That the remove icon is not in the DOM
2. That the table doesn’t have any entries

For our first test, there are multiple ways we can write it. Here’s one:

WOW! eBook
www.wowebook.org

Unit Testing 343

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-1.js

it('should not display the remove icon', () => {

expect(

wrapper.find('.remove.icon').length

).toBe(0);

});

We pass a selector to wrapper’s find() method. If you recall, the remove icon has the following
className attribute:

food-lookup-complete/client/src/FoodSearch.js

<i

className='remove icon'

onClick={this.onRemoveIconClick}

/>

So, we’re selecting it here based on its class. find() returns a ShallowWrapper object. This object
is array-like, containing a list of all matches for the specified selector. Just like an array, it has the
property length which we assert should be 0.

We could also have used one of the contains methods, like this:

it('should not display the remove icon', () => {

expect(

wrapper.containsAnyMatchingElements(

<i className='remove icon' />

)

).toBe(false);

});

We’ll primarily be driving our tests with find() for the rest of this chapter, as we like using the CSS
selector syntax. But it’s a matter of preference.

Next, we’ll assert that in this initial state the table does not have any entries.

For this spec, we can just assert that this component did not output any tr elements inside of tbody,
like so:

WOW! eBook
www.wowebook.org

Unit Testing 344

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-1.js

it('should display zero rows', () => {

expect(

wrapper.find('tbody tr').length

).toEqual(0);

});

If we were to run this test suite now, both of our specs would pass.

However, this doesn’t lend us much assurance that our specs are composed correctly.When asserting
that an element is not present on the DOM, you expose yourself to the error where you’re simply
not selecting the element properly. We’ll address this shortly when we use the exact same selectors
to assert that the elements are present.

How comprehensive should my assertions be?

In the last section, we wrote assertions around the presence of key elements in the
component’s initial output.We asserted that the input field and buttonwere present, setting
the stage for interacting with them later.

In this section, we’re skipping this class of assertions. We omit them here as they are
repetitive. But, in general, you or your team will have to decide how comprehensive you
want your test suite to be. There’s a balance to strike; your test suite is there to service
development of your app. It is possible to go overboard and compose a test suite that
ultimately slows you down.

A user has typed a value into the search field

Guided by our behavior-driven approach, our next step is to simulate a user interaction. We’ll then
write assertions given this new layer of context.

There’s only one interaction the user can have with the FoodSearch component after it loads:
entering a value into the search field. When this happens, there are two further possibilities:

1. The search matches food in the database and the API returns a list of those foods
2. The search does not match any food in the database and the API returns an empty array

This branch happens at the bottom of onSearchChange() when we call Client.search():

WOW! eBook
www.wowebook.org

Unit Testing 345

food-lookup-complete/client/src/FoodSearch.js

Client.search(value, (foods) => {

this.setState({

foods: foods.slice(0, MATCHING_ITEM_LIMIT),

});

});

For our app, the API is queried and results are displayed with every keystroke. Therefore, situation
2 (no results) will almost always happen after situation 1.

We’ll setup our test context to mirror this state transition. We’ll simulate the user typing 'brocc'

into the search field, yielding two results (two kinds of broccoli):

What our component might look like after the user types ‘brocc’

We’ll write assertions against this context.

Next, we’ll build on this context by simulating the user typing an “x” ('broccx'). This will yield no
results:

What our component might look like after the user types ‘brocc’

We’ll then write assertions against this context.

WOW! eBook
www.wowebook.org

Unit Testing 346

There are exceptions to situation 2 always following situation 1. For instance, this
user overestimated the capabilities of our app:

Welp

However, the state transition of foods in state to no foods in state is much more
interesting than verifying that foods in state remained blank after the API returned
empty results.

Regardless of what Client.search() returns, we expect the component to both update searchValue
in state and display the remove icon. Those specs will exist up top inside “user populates search field.”
We’ll start with these, only writing specs for the search field itself and leaving assertions based on
what the API returned for later:

First set of specs focus on the search field

After writing these specs, we’ll see how to establish the context for the API returning results.

We first simulate the user interaction inside a beforeEach. We’ll declare value at the top of the
describe so we can reference it later in our tests:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-2.js

describe('user populates search field', () => {

const value = 'brocc';

beforeEach(() => {

const input = wrapper.find('input').first();

input.simulate('change', {

target: { value: value },

});

});

WOW! eBook
www.wowebook.org

Unit Testing 347

Next, we assert that searchValue has been updated in state to match this new value:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-2.js

it('should update state property `searchValue`', () => {

expect(

wrapper.state().searchValue

).toEqual(value);

});

We assert next that the remove icon is present on the DOM:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-2.js

it('should display the remove icon', () => {

expect(

wrapper.find('.remove.icon').length

).toBe(1);

});

We use the same selector that we used in our earlier assertion that the remove icon was not present
on the DOM. This is important, as it assures us that our earlier assertion is valid and isn’t just using
the wrong selector.

Our assertions for “user populates search field” are in place. Before moving on, let’s save and make
sure our test suite passes.

Try it out

Save FoodSearch.test.js. From your console:

inside client/

$ npm test

Everything should pass:

WOW! eBook
www.wowebook.org

Unit Testing 348

Tests pass

From here, the next layer of context will be the API returning results.

If we were writing integration tests, we’d take one of two approaches. If we wanted a full end-to-
end test, we’d have Client.search() make an actual call to the API. Otherwise, we could use a
Node library to “fake” the HTTP request. There are plenty of libraries that can intercept JavaScript’s
attempt to make an HTTP request. You can supply these libraries with a fake response object to
provide to the caller.

However, as we’re writing unit tests, we want to remove any dependency on both the API and the
implementation details of Client.search(). We’re exclusively testing the FoodSearch component,
a single unit in our application. We only care about how FoodSearch uses Client.search(), nothing
deeper.

As such, we want to intercept the call to Client.search() at the surface. We don’t want Client
to get involved at all. Instead, we want to assert that Client.search() was invoked with the
proper parameter (the value of the search field). And then we want to invoke the callback passed to
Client.search() with our own result set.

What we’d like to do is mock the Client library.

Mocking with Jest

When writing unit tests, we’ll often find that the module we’re testing depends on other modules in
our application. There are multiple strategies for dealing with this, but they mostly center around
the idea of a test double. A test double is a pretend object that “stands in” for a real one.

For instance, we could write a fake version of the Client library for use in our tests. The simplest
version would look like this:

const Client = {

search: () => {},

};

WOW! eBook
www.wowebook.org

Unit Testing 349

We could “inject” this fake Client as opposed to the real one into FoodSearch for testing purposes.
FoodSearch could call Client.search() anywhere it wanted and it would invoke an empty function
as opposed to performing an HTTP request.

We could take it a step further by injecting a fake Client that always returns a certain result. This
would prove even more useful, as we’d be able to assert how the state for FoodSearch updates based
on the behavior of Client:

const Client = {

search: (_, cb) => {

const result = [

{

description: 'Hummus',

kcal: '166',

protein_g: '8',

fat_g: '10',

carbohydrate_g: '14',

},

];

cb(result);

},

};

This test double implements a search() method that immediately invokes the callback passed as
the second argument. It invokes the callback with a hard-coded array that has a single food object.

But the implementation details of the test double are irrelevant. What’s important is that this test
double is mimicking the API returning the same, one-entry result set every time.With this fake client
inserted into the app, we can readily write assertions on how FoodSearch handles this “response”:
that there’s now a single entry in the table, that the description of that entry is “Hummus”, etc.

We use _ as the first argument above to signify that we “don’t care” about this argument.
This is purely a stylistic choice.

It would be even better if our test double allowed us to dynamically specify what result to use.
That way we wouldn’t need to define a completely different double to test what happens if the API
doesn’t return any results. Furthermore, the simple test double above doesn’t care about the search
term passed to it. It would be nice to ensure that FoodSearch is invoking Client.search() with the
appropriate value (the value of the input field).

Jest ships with a generator for a powerful flavor of test doubles: mocks. We’ll use Jest’s mocks as
our test double. The best way to understand mocks is to see them in action.

You generate a Jest mock like this:

WOW! eBook
www.wowebook.org

Unit Testing 350

const myMockFunction = jest.fn();

This mock function can be invoked like any other function. By default, it will not have a return
value:

console.log(myMockFunction()); // undefined

When you invoke a vanilla mock function nothing appears to happen. However, what’s special about
this function is that it will keep track of invocations. Jest’s mock functions have methods you can
use to introspect what happened.

For example, you can ask a mock function how many times it was called:

const myMock = jest.fn();

console.log(myMock.mock.calls.length);

// -> 0

myMock('Paris');

console.log(myMock.mock.calls.length);

// -> 1

myMock('Paris', 'Amsterdam');

console.log(myMock.mock.calls.length);

// -> 2

All of the introspective methods for a mock are underneath the property mock. By calling my-

Mock.mock.calls, we receive an array of arrays. Each entry in the array corresponds to the
arguments of each invocation:

const myMock = jest.fn();

console.log(myMock.mock.calls);

// -> []

myMock('Paris');

console.log(myMock.mock.calls);

// -> [['Paris']]

myMock('Paris', 'Amsterdam');

console.log(myMock.mock.calls);

// -> [['Paris'], ['Paris', 'Amsterdam']]

This simple feature unlocks tons of power that we’ll soon witness. We could declare our own Client
double, using a Jest mock function:

WOW! eBook
www.wowebook.org

Unit Testing 351

const Client = {

search: jest.fn(),

};

But Jest can take care of this for us. Jest has a mock generator for entire modules. By calling this
method:

jest.mock('../src/Client')

Jest will look at our Client module. It will notice that it exports an object with a search() method.
It will then create a fake object – a test double – that has a search()method that is a mock function.
Jest will then ensure that the fake Client is used everywhere in the app as opposed to the real one.

Mocking Client

Let’s use jest.mock() to mock Client. Using the special properties of mock functions, we’ll then
be able to write an assertion that search() was invoked with the proper argument.

At the top of FoodSearch.test.js, below the import statement for FoodSearch, let’s import Client
as we’ll be referencing it later in the test suite. In addition, we tell Jest we’d like to mock it:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-3.js

import FoodSearch from '../src/FoodSearch';

import Client from '../src/Client';

jest.mock('../src/Client');

describe('FoodSearch', () => {

Now, let’s consider what will happen. In our beforeEach block, when we simulate the change:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-3.js

beforeEach(() => {

const input = wrapper.find('input').first();

input.simulate('change', {

target: { value: value },

});

});

This will trigger the call to Client.search() at the bottom of onSearchChange():

WOW! eBook
www.wowebook.org

Unit Testing 352

food-lookup-complete/client/src/FoodSearch.js

Client.search(value, (foods) => {

this.setState({

foods: foods.slice(0, MATCHING_ITEM_LIMIT),

});

});

Except, instead of calling the method on the real Client, it’s calling the method on the mock that
Jest has injected. Client.search() is a mock function and has done nothing except log that it was
called.

Let’s declare a new spec below “should display the remove icon.” Before writing the assertion, let’s
just log a few things out to the console to see what’s happening:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-3.js

it('should display the remove icon', () => {

expect(

wrapper.find('.remove.icon').length

).toBe(1);

});

it('...todo...', () => {

const firstInvocation = Client.search.mock.calls[0];

console.log('First invocation:');

console.log(firstInvocation);

console.log('All invocations: ');

console.log(Client.search.mock.calls);

});

describe('and API returns results', () => {

We read the mock.calls property on the mock function. Each entry in the calls array corresponds
to an invocation of the mock function Client.search().

If youwere to save FoodSearch.test.js and run the test suite, you’d be able to see the log statements
in the console:

WOW! eBook
www.wowebook.org

Unit Testing 353

Log statements in the test run

Picking out the first one:

First invocation:

['brocc', [Function]]

The mock captured the invocation that occurred in the beforeEach block. The first argument of
the invocation is what we’d expect, 'brocc'. And the second argument is our callback function.
Importantly, the callback function has yet to be invoked. search() has captured the function but
not done anything with it.

If you were to fence the call to Client.search() with console.log() statements, like this:

// Example of "fencing" `Client.search()`

console.log('Before `search()`');

Client.search(value, (foods) => {

console.log('Inside the callback');

this.setState({

foods: foods.slice(0, MATCHING_ITEM_LIMIT),

});

});

console.log('After `search()`');

You’d see this output in the console when running the test suite:

WOW! eBook
www.wowebook.org

Unit Testing 354

Before `search()`

After `search()`

The mock function search() is invoked but all it does is capture the arguments. The line that logs
“Inside the callback” has not been called.

So, the console output for “First invocation” makes sense. However, check out the console output for
“All invocations”:

All invocations:

[['brocc', [Function]],

['brocc', [Function]],

['brocc', [Function]]]

Reformatting that array:

[

['brocc', [Function]],

['brocc', [Function]],

['brocc', [Function]]

]

We see three invocations in total. Why is this?

We have three it blocks that correspond to our beforeEach that simulates a change. Remember, a
beforeEach is run once before each related it. Therefore, our beforeEach that simulates a search
is executed three times. Which means the mock function Client.search() is invoked three times
as well.

While this makes sense, it’s undesirable. State is leaking between specs. We want each it to receive
a fresh version of the Client mock.

Jest mock functions have a method for this, mockClear(). We’ll invoke this method after each spec
is executed using the antipode of beforeEach, afterEach. This will ensure the mock is in a pristine
state before each spec run. We’ll do this inside the top-level describe, below the beforeEach where
we shallow-render the component:

WOW! eBook
www.wowebook.org

Unit Testing 355

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-4.js

describe('FoodSearch', () => {

let wrapper;

beforeEach(() => {

wrapper = shallow(

<FoodSearch />

);

});

afterEach(() => {

Client.search.mockClear();

});

it('should not display the remove icon', () => {

We could have used a beforeEach block here as well, but it usually makes sense to perform
any “tidying up” in afterEach blocks.

Now, if we run our test suite again:

First invocation:

['brocc', [Function]]

All invocations:

[['brocc', [Function]]]

We’ve succeeded in resetting the mock between test runs. There’s only a single invocation logged,
the invocation that occurred right before this last it was executed.

With our mock behaving as desired, let’s convert our dummy spec into a real one. We’ll assert that
the first argument passed to Client.search() is the same value the user typed into the search field:

WOW! eBook
www.wowebook.org

Unit Testing 356

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-5.js

it('should display the remove icon', () => {

expect(

wrapper.find('.remove.icon').length

).toBe(1);

});

it('...todo...', () => {

const firstInvocation = Client.search.mock.calls[0];

console.log('First invocation:');

console.log(firstInvocation);

console.log('All invocations: ');

console.log(Client.search.mock.calls);

});

it('should call `Client.search() with `value`', () => {

const invocationArgs = Client.search.mock.calls[0];

expect(

invocationArgs[0]

).toEqual(value);

});

describe('and API returns results', () => {

We’re asserting that the zeroeth argument of the invocation matches value, in this case brocc.

Try it out

With Client mocked, we can run our test suite assured that FoodSearch is in total isolation. Save
FoodSearch.test.js and run the test suite from the console:

$ npm test

The result:

WOW! eBook
www.wowebook.org

Unit Testing 357

All specs pass

We used a Jest mock function to both capture and introspect the Client.search() invocation. Now,
let’s see how we can use it to establish behavior for our next layer of context: when the API returns
results.

The API returns results

As we can see in the pre-existing test scaffolding, we’ll write the specs pertaining to this context
inside of their own describe:

describe('FoodSearch', () => {

// ...

describe('user populates search field', () => {

// ...

describe('and API returns results', () => {

beforeEach(() => {

// ... simulate API returning results

});

// ... specs

});

describe('then user types more', () => {

// ...

});

});

});

WOW! eBook
www.wowebook.org

Unit Testing 358

In our beforeEach for this describe, we want to simulate the API returning results. We can do this
bymanually invoking the callback function passed to Client.search() with whatever we’d like
to simulate the API returning.

We’ll fake Client returning two matches. We can picture our component in this state:

Visual representation of desired state for component

Let’s look at the code first then we’ll break it down:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-6.js

it('should call `Client.search() with `value`', () => {

const invocationArgs = Client.search.mock.calls[0];

expect(

invocationArgs[0]

).toEqual(value);

});

describe('and API returns results', () => {

const foods = [

{

description: 'Broccolini',

kcal: '100',

protein_g: '11',

fat_g: '21',

carbohydrate_g: '31',

},

{

description: 'Broccoli rabe',

kcal: '200',

protein_g: '12',

fat_g: '22',

carbohydrate_g: '32',

},

];

beforeEach(() => {

WOW! eBook
www.wowebook.org

Unit Testing 359

const invocationArgs = Client.search.mock.calls[0];

const cb = invocationArgs[1];

cb(foods);

wrapper.update();

});

First, we declare an array, foods, which we use as the fake result set returned by Client.search().

Second, in our beforeEach, we grab the second argument that Client.search() was invoked with,
in this case our callback function. We then invoke it with our array of food objects. By manually
invoking callbacks passed to a mock, we can simulate desired behavior of asynchronous
resources.

Last, we call wrapper.update() after invoking the callback. This will cause our component to
re-render. When a component is shallow-rendered, the usual re-rendering hooks do not apply.
Therefore, when setState() is called within our callback, a re-render is not triggered.

If that’s the case, youmight wonder why this is the first timewe’ve needed to use wrapper.update().
Enzyme has actually been automatically calling update() after every one of our simulate() calls.
simulate() invokes an event handler. Immediately after that event handler returns, Enzyme will
call wrapper.update().

Because we’re invoking our callback asynchronously some time after the event handler returns, we
need to manually call wrapper.update() to re-render the component.

When a component is shallow-rendered, the usual re-rendering hooks do not apply. If any
state changes instigated by a simulate() aremade asynchronously, youmust call update()
to re-render the component.

In this chapter, we exclusively use Enzyme’s simulate() to manipulate a component.
Enzyme also has another method, setState(), which you can use in special circumstances
when a simulate() call is not viable. setState() also automatically calls update() after
it is invoked.

Yes, the nutritional info for the broccolis in our test is totally bogus!

With our callback invoked, let’s write our first spec. We’ll assert that the foods property in state
matches our array of foods:

WOW! eBook
www.wowebook.org

Unit Testing 360

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-6.js

it('should set the state property `foods`', () => {

expect(

wrapper.state().foods

).toEqual(foods);

});

Again, we use the state() method when reading state from an EnzymeWrapper.

Next, we’ll assert that the table has two rows:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-6.js

it('should display two rows', () => {

expect(

wrapper.find('tbody tr').length

).toEqual(2);

});

Because this spec uses the same selector as our previous spec “should display zero rows,” this gives
us assurance that the previous spec uses the proper selector.

Finally, let’s take it a step further and assert that both of our foods are actually printed in the table.
There are many ways to do this. Because the description of each is so unique, we can actually just
hunt for each food’s description in the HTML output, like this:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-6.js

it('should render the description of first food', () => {

expect(

wrapper.html()

).toContain(foods[0].description);

});

it('should render the description of second food', () => {

expect(

wrapper.html()

).toContain(foods[1].description);

});

describe('then user clicks food item', () => {

WOW! eBook
www.wowebook.org

Unit Testing 361

Because we’re hunting for a unique string, there’s no need to use Enzyme’s selector API. Instead,
we use Enzyme’s html() to yield a string of the component’s HTML output. We then use Jest’s
toContain() matcher, this time on a string as opposed to an array.

html() is also a great method for debugging shallow-rendered components. For instance,
seeing the full HTML output of a component can help you determine if an assertion issue
is due to an erroneous selector or an erroneous component.

For this set of specs, we’re working with two food items returned from the API (and
subsequently entered into state).

Our assertions would have been robust even if we’d only used one item. However, when
writing assertions against arrays some developers prefer that the array has more than one
item. This can help catch certain classes of bugs and asserts that the variable under test is
the appropriate data structure.

Try it out

Save FoodSearch.test.js. From your console:

$ npm test

Everything passes:

Tests pass

From here, there are a few behaviors the user can take with respect to the FoodSearch component:

• They can click on a food item to add it to their total
• They can type an additional character, appending to their search string

WOW! eBook
www.wowebook.org

Unit Testing 362

• They can hit backspace to remove a character or the entire string of text
• They can click on the “X” (remove icon) to clear the search field

We’re going to write specs for the first two behaviors together. The last two behaviors are left as
exercises at the end of this chapter.

We’ll start with simulating the user clicking on a food item.

The user clicks on a food item

When the user clicks on a food item, that item is added to their list of totals. Those totals are displayed
by the SelectedFoods component at the top of the app:

Clicking on an item

As you may recall, each food item is displayed in a tr element that has an onClick handler. That
onClick handler is set to a prop-function that App passes to FoodSearch:

WOW! eBook
www.wowebook.org

Unit Testing 363

food-lookup-complete/client/src/FoodSearch.js

<tbody>

{

this.state.foods.map((food, idx) => (

<tr

key={idx}

onClick={() => this.props.onFoodClick(food)}

>

We want to simulate a click and assert that FoodSearch calls this prop-function.

Because we’re unit testing, we don’t want App to be involved. Instead, we can set the prop
onFoodClick to a mock function.

At the moment, we’re rendering FoodSearch without setting any props:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-6.js

beforeEach(() => {

wrapper = shallow(

<FoodSearch />

);

});

We’ll begin by setting the prop onFoodClick inside our shallow render call to a new mock function:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-7.js

describe('FoodSearch', () => {

let wrapper;

const onFoodClick = jest.fn();

beforeEach(() => {

wrapper = shallow(

<FoodSearch

onFoodClick={onFoodClick}

/>

);

});

We declare onFoodClick, a mock function, at the top of our test suite’s scope and pass it as a prop
to FoodSearch.

While we’re at it, let’s make sure to clear our new mock between spec runs. This is always good
practice:

WOW! eBook
www.wowebook.org

Unit Testing 364

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-7.js

afterEach(() => {

Client.search.mockClear();

onFoodClick.mockClear();

});

Next, we’ll setup the describe ‘then user clicks food item.’ This describe is a child of “and API
returns results.”

describe('FoodSearch', () => {

// ...

describe('user populates search field', () => {

// ...

describe('and API returns results', () => {

// ...

describe('then user clicks food item', () => {

beforeEach(() => {

// ... simulate the click

});

// ... specs

});

});

});

});

Our beforeEach block simulates a click on the first food item in the table:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-7.js

describe('then user clicks food item', () => {

beforeEach(() => {

const foodRow = wrapper.find('tbody tr').first();

foodRow.simulate('click');

});

We first use find() to select the first element that matches tbody tr. We then simulate a click on
the row. Note that we do not need to pass an event object to simulate().

WOW! eBook
www.wowebook.org

Unit Testing 365

By using a mock function as our prop onFoodClick, we are able to keep FoodSearch in total isolation.
With respect to unit tests for FoodSearch, we don’t care how App implements onFoodClick(). We
only care that FoodSearch invokes this function at the right time with the right arguments.

Our spec asserts that onFoodClick was invoked with the first food object in the foods array:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-7.js

it('should call prop `onFoodClick` with `food`', () => {

const food = foods[0];

expect(

onFoodClick.mock.calls[0]

).toEqual([food]);

});

In full, this describe block:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-7.js

it('should render the description of second food', () => {

expect(

wrapper.html()

).toContain(foods[1].description);

});

describe('then user clicks food item', () => {

beforeEach(() => {

const foodRow = wrapper.find('tbody tr').first();

foodRow.simulate('click');

});

it('should call prop `onFoodClick` with `food`', () => {

const food = foods[0];

expect(

onFoodClick.mock.calls[0]

).toEqual([food]);

});

});

describe('then user types more', () => {

Try it out

Save FoodSearch.test.js and run the suite:

WOW! eBook
www.wowebook.org

Unit Testing 366

$ npm test

Our new spec passes:

Tests pass

With our spec for the user clicking on a food item completed, let’s return to the context of “and
API returns results.” The user has typed 'brocc' and sees two results. The next behavior we want to
simulate is the user typing an additional character into the search field. This will cause our (mocked)
API to return an empty result set (no results).

The API returns empty result set

As you can see in the scaffold, our last describe blocks are children to “and API returns results,”
siblings to “then user clicks food item”:

describe('FoodSearch', () => {

// ...

describe('user populates search field', () => {

// ...

describe('and API returns results', () => {

// ...

describe('then user clicks food item', () => {

// ...

});

describe('then user types more', () => {

beforeEach(() => {

// ... simulate user typing "x"

WOW! eBook
www.wowebook.org

Unit Testing 367

});

describe('and API returns no results', () => {

beforeEach(() => {

// ... simulate API returning no results

});

// ... specs

});

});

});

});

});

We could have combined “then user types more” and “and API returns no results” into
one describe with one beforeEach. But we like organizing our contextual setup in this
manner, both for readability and to leave room for future specs.

After establishing the context in both beforeEach blocks, we’ll write one assertion: that the foods
property in state is now a blank array.

If you’re feeling comfortable, try composing these describe blocks yourself and come back to verify
your solution.

Our first beforeEach block first simulates the user typing an “x,” meaning the event object now
carries the value 'broccx':

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-8.js

describe('then user types more', () => {

const value = 'broccx';

beforeEach(() => {

const input = wrapper.find('input').first();

input.simulate('change', {

target: { value: value },

});

});

Wewon’t write any specs specific to this describe. Our next describe, “and API returns no results,”
will simulate Client.search() yielding a blank array:

WOW! eBook
www.wowebook.org

Unit Testing 368

describe('and API returns no results', () => {

beforeEach(() => {

// ... simulate search returning no results

});

});

Here’s the tricky part: By the time we’ve reached this beforeEach block,we’ve simulated the user
changing the input twice. As a result, Client.search() has been invoked twice.

Anotherway to look at it: If wewere to insert a log statement in this beforeEach for Client.search.mock.calls:

describe('and API returns no results', () => {

beforeEach(() => {

// What happens if we log the mock calls here?

console.log(Client.search.mock.calls);

});

});

We would see in the console that it has been invoked twice:

[

['brocc', [Function]],

['broccx', [Function]],

]

This is because the beforeEach blocks for “user populates search field” and “then user types more”
simulate changing the input which in turn eventually calls Client.search().

We want to invoke the callback function passed to the second invocation. That corresponds to the
most recent input field change that the user made. Therefore, we’ll grab the second invocation and
invoke the callback passed to it with a blank array:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-8.js

describe('and API returns no results', () => {

beforeEach(() => {

const secondInvocationArgs = Client.search.mock.calls[1];

const cb = secondInvocationArgs[1];

cb([]);

wrapper.update();

});

WOW! eBook
www.wowebook.org

Unit Testing 369

We did not need to call wrapper.update() in the beforeEach block as we’re not making
any assertions against the virtual DOM. However, it’s good practice to follow an async
state change with an update() call. It will avoid possibly bewildering behavior should you
add specs that assert against the DOM in the future.

Finally, we’re ready for our spec. We assert that the state property foods is now an empty array:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-8.js

it('should set the state property `foods`', () => {

expect(

wrapper.state().foods

).toEqual([]);

});

The “then user types more” describe, in full:

food-lookup-complete/client/tests/complete/FoodSearch.test.complete-8.js

it('should call prop `onFoodClick` with `food`', () => {

const food = foods[0];

expect(

onFoodClick.mock.calls[0]

).toEqual([food]);

});

});

describe('then user types more', () => {

const value = 'broccx';

beforeEach(() => {

const input = wrapper.find('input').first();

input.simulate('change', {

target: { value: value },

});

});

describe('and API returns no results', () => {

beforeEach(() => {

const secondInvocationArgs = Client.search.mock.calls[1];

const cb = secondInvocationArgs[1];

cb([]);

wrapper.update();

WOW! eBook
www.wowebook.org

Unit Testing 370

});

it('should set the state property `foods`', () => {

expect(

wrapper.state().foods

).toEqual([]);

});

});

});

});

});

});

Assertions on the component’s output, like that it should not contain any rows, aren’t
strictly necessary here. Our assertions against the initial state (like “should display zero
rows”) already provide assurance that when foods is empty in state no rows are rendered.

As you recall, both callback functions look like this:

(foods) => {

this.setState({

foods: foods.slice(0, MATCHING_ITEM_LIMIT),

});

};

Because the callback function does not reference any variables inside onSearchChange(),
we could technically invoke either callback function and the spec we just wrote would
pass. However, this is bad practice and would likely set you up for a puzzling bug in the
future.

Further reading

In this chapter, we:

1. Demystified JavaScript testing frameworks, building from the ground up.
2. Introduced Jest, a testing framework for JavaScript, to give us some handy features like expect

and beforeEach.
3. Learned how to organize code in a behavior-driven style.

WOW! eBook
www.wowebook.org

Unit Testing 371

4. Introduced Enzyme, a library for working with React components in a testing environment.
5. Used the idea of mocks to write assertions for a React component that makes a request to an

API.

Armed with this knowledge, you’re prepared to isolate React components in a variety of different
contexts and effectively write unit tests for them. These unit tests will give you peace of mind as the
number and complexity of components in your app grows.

A few resources outside of this chapter will aid you greatly as you compose unit tests:

Jest API reference73

These docs will help you discover rich matchers that can both save you time and elevate the
expressiveness of your test suite. We used some handy matchers in this chapter, like toEqual and
toContain. Here are a few more examples:

• You can assert that one number is close to another with toBeCloseTo()

• You can match a string against a regular expression with toMatch()

• You can control time, allowing you to work with setTimeout or setInterval

create-react-app configures Jest for you. However, if you use Jest outside of create-react-app, you’ll
also find the reference for Jest configuration useful. You can configure settings like test watching or
instruct Jest where to find test files.

Jasmine docs74

Jest uses Jasmine assertions, so the docs for Jasmine also apply. You can use that as another reference
point to understand matchers.

Furthermore, you can use some additional functionality that’s not mentioned in the Jest API
reference. For example:

• You can assert that an array contains a specific subset ofmemberswith jasmine.arrayContaining()
• You can assert that an object contains a specific subset of key/value pairs with jas-

mine.objectContaining()

Enzyme ShallowWrapper API docs75

We explored a few methods for traversing the virtual DOM (with find()) and making assertions on
the virtual DOM’s contents (like with contains()). ShallowWrapper has many more methods that
you might find useful. Some examples:

73http://facebook.github.io/jest/docs/api.html
74http://jasmine.github.io/2.5/introduction.html
75http://airbnb.io/enzyme/docs/api/shallow.html

WOW! eBook
www.wowebook.org

http://facebook.github.io/jest/docs/api.html
http://jasmine.github.io/2.5/introduction.html
http://airbnb.io/enzyme/docs/api/shallow.html
http://facebook.github.io/jest/docs/api.html
http://jasmine.github.io/2.5/introduction.html
http://airbnb.io/enzyme/docs/api/shallow.html

Unit Testing 372

• As we saw in this chapter, ShallowWrapper is array-like. A find() call might matchmore than
one element in a component’s output. You can perform operations on this list of matching
elements that mirror Array’s methods, like map().

• You can grab the actual React component itself with instance(). You can use this to unit test
particular methods on the component.

• You can set the state of the underlying component with setState(). When possible, we like to
use simulate() or call the component’s methods directly to invoke state changes. But when
that’s not practical, setState() is useful.

Earlier, we saw that find() accepts an Enzyme selector. The docs contain a reference page for what
constitutes a valid Enzyme selector that you’ll find helpful.

We have end-to-end tests that we use for the code in this book. We use the tool
Nightwatch.js76 to drive these.

We’ll be addingmore unit tests to existing projects over the next couple of months. Perusing
these test suites will provide you with even more examples to work with.

Chapter Exercises
We mentioned earlier in the chapter that there were two further actions a user can take
after FoodSearch displays a list of food results:

1. The user can hit backspace to remove a character or the entire string of text
2. The user can click on the “x” (remove icon) to clear the search field

Compose specs for each of these situations.

A possible set of solutions is available in client/tests/FoodSearch.test.complete.js.

76http://nightwatchjs.org/

WOW! eBook
www.wowebook.org

http://nightwatchjs.org/
http://nightwatchjs.org/

Routing
What’s in a URL?

A URL is a reference to a web resource. A typical URL looks something like this:

While a combination of the protocol and the hostname direct us to a certain website, it’s the
pathname that references a specific resource on that site. Another way to think about it: the
pathname references a specific location in our application.

For example, consider a URL for some music website:

https://example.com.com/artists/87589/albums/1758221

This location refers to a specific album by an artist. The URL contains identifiers for both the artist
and album desired:

example.com/artists/:artistId/albums/:albumId

We can think of the URL as being an external keeper of state, in this case the album the user is
viewing. By storing pieces of app state up at the level of the browser’s location, we can enable users
to bookmark the link, refresh the page, and share it with others.

In a traditional web application with minimal JavaScript, the request flow for this page might look
like this:

1. Browser makes a request to the server for this page.
2. The server uses the identifiers in the URL to retrieve data about the artist and the album from

its database.
3. The server populates a template with this data.
4. The server returns this populated HTML document along with any other assets like CSS and

images.
5. The browser renders these assets.

WOW! eBook
www.wowebook.org

Routing 374

When using a rich JavaScript framework like React, we want React to generate the page. So an
evolution of that request flow using React might look like this:

1. Browser makes a request to the server for this page.
2. The server doesn’t care about the pathname. Instead, it just returns a standard index.html

that includes the React app and any static assets.
3. The React app mounts.
4. The React app extracts the identifiers from the URL and uses these identifiers to make an API

call to fetch the data for the artist and the album. It might make this call to the same server.
5. The React app renders the page using data it received from the API call.

Projects elsewhere in the book have mirrored this second request flow. One example is the timers
app in “Components & Servers.” The same server.js served both the static assets (the React app)
and an API that fed that React app data.

This initial request flow for React is slightly more inefficient than the first. Instead of one round-
trip from the browser to the server, there will be two or more: One to fetch the React app and then
however many API calls the React app has to make to get all the data it needs to render the page.

However, the gains come after the initial page load. The user experience of our timers app with
React is much better than it would be without. Without JavaScript, each time the user wanted to
stop, start, or edit a timer, their browser would have to fetch a brand new page from the server. This
adds noticeable delay and an unpleasant “blink” between page loads.

Single-page applications (SPAs) are web apps that load once and then dynamically update elements
on the page using JavaScript. Every React app we’ve built so far has been a type of SPA.

So we’ve seen how to use React to make interface elements on a page fluid and dynamic. But other
apps in the book have had only a single location. For instance, the product voting app had a single
view: the list of products to vote on. What if we wanted to add a different page, like a product
view page at the location /products/:productId? This page would use a completely different set of
components.

Back to our music website example, imagine the user is looking at the React-powered album view
page. They then click on an “Account” button at the top right of the app to view their account
information. A request flow to support this might look like:

1. User clicks on the “Account” button which is a link to /account.
2. Browser makes a request to /account.
3. The server, again, doesn’t care about the pathname. Again, it returns the same index.html

that includes the full React app and static assets.
4. The React app mounts. It checks the URL and sees that the user is looking at the /accounts

page.

WOW! eBook
www.wowebook.org

Routing 375

5. The top-level React component, say App, might have a switch for what component to render
based on the URL. Before, it was rendering AlbumView. But now it renders AccountView.

6. The React app renders and populates itself with an API request to the server (say /api/ac-

count).

This approach works and we can see examples of it across the web. But for many types of
applications, there’s a more efficient approach.

When the user clicks on the “Account” button, we could prevent the browser from fetching the
next page from /account. Instead, we could instruct the React app to switch out the AlbumView

component for the AccountView component. In full, that flow would look like this:

1. User visits https://example.com.com/artists/87589/albums/1758221.
2. The server delivers the standard index.html that includes the React app and assets.
3. The React app mounts and populates itself by making an API call to the server.
4. User clicks on the “Account” button.
5. The React app captures this click event. React updates the URL to https://example.com/account

and re-renders.
6. When the React app re-renders, it checks the URL. It sees the user is viewing /account and it

swaps in the AccountView component.
7. The React app makes an API call to populate the AccountView component.

When the user clicks on the “Account” button, the browser already contains the full React app.
There’s no need to have the browser make a new request to fetch the same app again from the
server and re-mount it. The React app just needs to update the URL and then re-render itself with a
new component-tree (AccountView).

This is the idea of a JavaScript router. As we’ll see first hand, routing involves two primary pieces
of functionality: (1) Modifying the location of the app (the URL) and (2) determining what React
components to render at a given location.

There are many routing libraries for React, but the community’s clear favorite is React Router.
React Router gives us a wonderful foundation for building rich applications that have hundreds or
thousands of React components across many different views and URLs.

React Router’s core components

Formodifying the location of an app, we use links and redirects. In React Router, links and redirects
are managed by two React components, Link and Redirect.

For determining what to render at a given location, we also use two React Router components, Route
and Switch.

WOW! eBook
www.wowebook.org

Routing 376

To best understand React Router, we’ll start out by building basic versions of React Router’s core
components. In doing so, we’ll get a feel for what routing looks like in a component-driven paradigm.

We’ll then swap out our components for those provided by the react-router library. We’ll explore
a few more components and features of the library.

In the second half of the chapter, we’ll see React Router at work in a slightly larger application. The
app we build will have multiple pages with dynamic URLs. The app will communicate with a server
that is protected by an API token. We’ll explore a strategy for handling logging and logging out
inside a React Router app.

React Router v4
The latest version of React Router, v4, is a major shift from its predecessors. The authors
of React Router state that the most compelling aspect of this version of the library is that
it’s “just React.”

We agree. And while v4 was just released at the time of writing, we find its paradigm so
compelling that we wanted to ensure we covered v4 as opposed to v3 here in the book. We
believe v4 will be rapidly adopted by the community.

Because v4 is so new, it’s possible the next few months will see some changes. But the
essence of v4 is settled, and this chapter focuses on those core concepts.

Building the components of react-router

The completed app

All the example code for this chapter is inside the folder routing in the code download. We’ll start
off with the basics app:

$ cd routing/basics

Taking a look inside this directory, we see that this app is powered by create-react-app:

WOW! eBook
www.wowebook.org

Routing 377

$ ls

README.md

nightwatch.json

package.json

public/

semantic/

semantic.json

src/

tests/

If you need a refresher on create-react-app, refer to the chapter “Using Webpack with
create-react-app.”

Our React app lives inside src/:

$ ls src

App.css

App.js

SelectableApp.js

complete/

index-complete.js

index.css

index.js

logo.svg

complete/ contains the completed version of App.js. The folder also contains each iteration of
App.js that we build up throughout this section.

Install the npm packages:

$ npm i

At the moment, index.js is loading index-complete.js. index-complete.js uses SelectableApp
to give us the ability to toggle between the app’s various iterations. SelectableApp is just for demo
purposes.

If we boot the app, we’ll see the completed version:

$ npm start

WOW! eBook
www.wowebook.org

Routing 378

The app consists of three links. Clicking on a link displays a blurb about the selected body of water
below the application:

The completed app

Notice that clicking on a link changes the location of the app. Clicking on the link /atlantic updates
the URL to /atlantic. Importantly, the browser does notmake a request whenwe click on a link. The
blurb about the Atlantic Ocean appears and the browser’s URL bar updates to /atlantic instantly.

Clicking on the link /black-sea displays a countdown. When the countdown finishes, the app
redirects the browser to /.

The routing in this app is powered by the react-router library. We’ll build a version of the app
ourselves by constructing our own React Router components.

We’ll be working inside the file App.js throughout this section.

Building Route

We’ll start off by building React Router’s Route component. We’ll see what it does shortly.

Let’s open the file src/App.js. Inside is a skeletal version of App. Below the import statement for
React, we define a simple App component with two <a> tag links:

WOW! eBook
www.wowebook.org

Routing 379

routing/basics/src/App.js

class App extends React.Component {

render() {

return (

<div

className='ui text container'

>

<h2 className='ui dividing header'>

Which body of water?

</h2>

<code>/atlantic</code>

<code>/pacific</code>

<hr />

{/* We'll insert the Route components here */}

</div>

);

}

}

We have two regular HTML anchor tags pointing to the paths /atlantic and /pacific.

Below App are two stateless functional components:

WOW! eBook
www.wowebook.org

Routing 380

routing/basics/src/App.js

const Atlantic = () => (

<div>

<h3>Atlantic Ocean</h3>

<p>

The Atlantic Ocean covers approximately 1/5th of the

surface of the earth.

</p>

</div>

);

const Pacific = () => (

<div>

<h3>Pacific Ocean</h3>

<p>

Ferdinand Magellan, a Portuguese explorer, named the ocean

'mar pacifico' in 1521, which means peaceful sea.

</p>

</div>

);

These components render some facts about the two oceans. Eventually, we want to render these
components inside App. We want to have App render Atlantic when the browser’s location is
/atlantic and Pacific when the location is /pacific.

Recall that index.js is currently deferring to index-complete.js to load the completed version of
the app to the DOM. Before we can take a look at the app so far, we need to ensure index.jsmounts
the App component we’re working on here in ./App.js instead.

Open up index.js. First, comment out the line that imports index-complete:

// [STEP 1] Comment out this line:

// import "./index-complete";

As in other create-react-app apps, the mounting of the React app to the DOM will take place here
in index.js. Let’s un-comment the line that mounts App:

// [STEP 2] Un-comment this line:

ReactDOM.render(<App />, document.getElementById("root"));

From the root of the project’s folder, we can boot the app with the start command:

WOW! eBook
www.wowebook.org

Routing 381

$ npm start

We see the two links rendered on the page. We can click on them and note the browser makes a page
request. The URL bar is updated but nothing in the app changes:

We see neither Atlantic nor Pacific rendered, which makes sense because we haven’t yet included
them in App. Despite this, it’s interesting that at the moment our app doesn’t care about the state
of the pathname. No matter what path the browser requests from our server, the server will return
the same index.html with the same exact JavaScript bundle.

This is a desirable foundation. We want our browser to load React in the same way in each location
and defer to React on what to do at each location.

Let’s have our app render the appropriate component, Atlantic or Pacific, based on the location
of the app (/atlantic or /pacific). To implement this behavior, we’ll write and use a Route

component.

In React Router, Route is a component that determines whether or not to render a specified
component based on the app’s location. We’ll need to supply Routewith two arguments as props:

• The path to match against the location
• The component to render when the location matches path

Let’s look at how we might use this component before we write it. In the render() function of our
App component, we’ll use Route like so:

WOW! eBook
www.wowebook.org

Routing 382

routing/basics/src/complete/App-1.js

<code>/atlantic</code>

<code>/pacific</code>

<hr />

<Route path='/atlantic' component={Atlantic} />

<Route path='/pacific' component={Pacific} />

</div>

);

Route, like everything else in React Router, is a component. The supplied path prop is matched
against the browser’s location. If it matches, Route will return the component. If not, Route will
return null, rendering nothing.

At the top of the file above App, let’s write the Route component as a stateless function. We’ll take
a look at the code then break it down:

routing/basics/src/complete/App-1.js

import React from 'react';

const Route = ({ path, component }) => {

const pathname = window.location.pathname;

if (pathname.match(path)) {

return (

React.createElement(component)

);

} else {

return null;

}

};

WOW! eBook
www.wowebook.org

Routing 383

class App extends React.Component {

We use the ES6 destructuring syntax to extract our two props, path and component, from the
arguments:

routing/basics/src/complete/App-1.js

const Route = ({ path, component }) => {

Next, we instantiate the pathname variable:

routing/basics/src/complete/App-1.js

const pathname = window.location.pathname;

Inside a browser environment, window.location is a special object containing the properties of the
browser’s current location. We grab the pathname from this object which is the path of the URL.

Last, if the path supplied to Route matches the pathname, we return the component. Otherwise, we
return null:

routing/basics/src/complete/App-1.js

if (pathname.match(path)) {

return (

React.createElement(component)

);

} else {

return null;

}

While the Route that ships with React Router is more complex, this is the component’s heart.
The component matches path against the app’s location to determine whether or not the specified
component should be rendered.

Let’s take a look at the app at this stage.

WOW! eBook
www.wowebook.org

Routing 384

You can also render components passed as props like this:

const Route = ({ pattern, component: Component }) => {

const pathname = window.location.pathname;

if (pathname.match(pattern)) {

return (

<Component />

);

It’s imperative when you do this that the component name is capitalized, which is
why we extract the component as Component in the arguments. But when a component
class is a dynamic variable as it is here, oftentimes React developers prefer to just use
React.createElement() as opposed to JSX.

Try it out

Save App.js. Ensure the Webpack development server is running if it isn’t already:

$ npm start

Head to the browser and visit the app. Notice that we’re now rendering the appropriate component
when we visit each location:

/pacific now renders Pacific

Our app is responding to some external state, the location of the browser. Each Route determines
whether its component should be displayed based on the app’s location. Note that when the browser
visits /, neither component matches. The space both Route components occupy is left empty.

WOW! eBook
www.wowebook.org

Routing 385

When we click on a link, we see that the browser is doing a full page load:

Clicking on /atlantic triggers a full page load

By default, our browser makes a fresh request to the Webpack development server every time we
click a link. The server returns the index.html and our browser needs to perform the work of
mounting the React app again.

As highlighted in the intro, this cycle is unnecessary. When switching between /pacific and
/atlantic, there’s no need to involve the server. Our client app already has all the components
loaded and ready to go. We just need to swap in the Atlantic component for the Pacific one when
clicking on the /atlantic link.

What we’d like clicking the links to do is change the location of the browser without making
a web request. With the location updated, we can re-render our React app and rely on Route to
appropriately determine which components to render.

To do so, we’ll build our own version of another component that ships with React Router.

Building Link

In web interfaces, we use HTML <a> tags to create links. What we want here is a special type of <a>
tag. When the user clicks on this tag, we’ll want the browser to skip its default routine of making a
web request to fetch the next page. Instead, we just want to manually update the browser’s location.

Most browsers supply an API for managing the history of the current session, window.history.
We encourage trying it out in a JavaScript console inside the browser. It has methods like
history.back() and history.forward() that allow you to navigate the history stack. Of immediate
interest, it has amethod history.pushState()which allows you to navigate the browser to a desired
location.

WOW! eBook
www.wowebook.org

Routing 386

For more info on the history API, check out the docs on MDN77.

The history API received some updates with HTML5. To maximize compatibility across browsers,
react-router interfaces with this API using a library called History.js. This history package is
already included in this project’s package.json:

routing/basics/package.json

"history": "4.3.0",

Let’s update our App.js file and import the createBrowserHistory function from the history

library. We’ll use this function to create an object, called history, which we’ll use to interact with
the browser’s history API:

routing/basics/src/complete/App-2.js

import React from 'react';

import createHistory from 'history/createBrowserHistory';

const history = createHistory();

const Route = ({ path, component }) => {

Let’s compose a Link component that produces an <a> tag with a special onClick binding. When
the user clicks on the Link component, we’ll want to prevent the browser from making a request.
Instead, we’ll use the history API to update the browser’s location.

Just like we did with the Route component, let’s see how we’ll use this component before we
implement it. Inside of the render() function of our App component, let’s replace the <a> tags
with our upcoming Link component. Rather than using the href attribute, we’ll specify the desired
location of the link with the to prop:

77https://developer.mozilla.org/en-US/docs/Web/API/History_API

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API

Routing 387

routing/basics/src/complete/App-2.js

<Link to='/atlantic'>

<code>/atlantic</code>

</Link>

<Link to='/pacific'>

<code>/pacific</code>

</Link>

Our Link component will be a stateless function that renders an <a> tag with an onClick handler
attribute. Let’s see the component in its entirety and then walk through it:

routing/basics/src/complete/App-2.js

const Link = ({ to, children }) => (

 {

e.preventDefault();

history.push(to);

}}

href={to}

>

{children}

);

class App extends React.Component {

Stepping through this:

onClick

The onClick handler for the <a> tag first calls preventDefault() on the event object. Recall that the
first argument passed to an onClick handler is always the event object. Calling preventDefault()

prevents the browser from making a web request for the new location.

Using the history.push() API, we’re “pushing” the new location onto the browser’s history stack.
Doing so will update the location of the app. This will be reflected in the URL bar.

WOW! eBook
www.wowebook.org

Routing 388

href

We set the href attribute on the <a> tag to the value of the to prop.

When a user clicks a traditional <a> tag, the browser uses href to determine the next location to visit.
As we’re changing the location manually in our onClick handler, the href isn’t strictly necessary.
However, we should always set it anyway. It enables a user to hover over our links and see where
they lead or open up links in new tabs:

Hovering over a link

children

Inside of the <a> tag we render the prop children. As covered in the chapter “Advanced Component
Configuration,” the children prop is a special prop. It is a reference to all React elements contained
inside of our Link component. This is the text or HTML that we’re turning into a link. In our case,
this will be either <code>/atlantic</code> or <code>/pacific</code>.

With our app using our Link component instead of vanilla <a> tags, we’re modifying the location
of the browser without performing a web request whenever the user clicks on one of our links.

If we save and run the app now, we’ll see that the functionality isn’t quite working as we expect.
We can click on the links and the URL bar will update with the new location without refreshing the
page, yet our app does not respond to the change:

WOW! eBook
www.wowebook.org

Routing 389

After clicking the link /pacific, URL bar says /pacific but we still see Atlantic

While Link is updating the location of the browser, our React app is not alerted of the change.
We’ll need to trigger our React app to re-render whenever the location changes.

The history object provides a listen() function which we can use here. We can pass listen()
a function that it will invoke every time the history stack is modified. We can set up the
listen() handler inside of componentDidMount(), subscribing to historywith a function that calls
forceUpdate():

routing/basics/src/complete/App-2.js

class App extends React.Component {

componentDidMount() {

history.listen(() => this.forceUpdate());

}

render() {

When the browser’s location changes, this listening function will be invoked, re-rendering App. Our
Route components will then re-render, matching against the latest URL.

Try it out

Let’s save our updated App.js and visit the app in the browser. Notice that the browser doesn’t
perform any full page loads as we navigate between the two routes /pacific and /atlantic!

WOW! eBook
www.wowebook.org

Routing 390

Even with the tiny size of our app we can enjoy a noticeable performance improvement. Avoiding a
full page load saves hundreds of milliseconds and prevents our app from “blinking” during the page
change. Given this is a superior user experience now, it’s easy to imagine how these benefits scale
as the size and complexity of our app does.

Between the Link and Route components, we’re getting an understanding of how we can use a
component-driven routing paradigm to make updates to the browser’s location and have our app
respond to this state change.

We still have two more components to cover: Redirect and Switch. These will give us even more
control over the routing in our app.

Before building these components, however, we’ll build a basic version of React Router’s Router
component. react-router supplies a Router component which is the top-most component in every
react-router app. As we’ll see, it’s responsible for triggering re-renders whenever the location
changes. It also supplies all of React Router’s other components with APIs they can use to both read
and modify the browser’s location.

Building Router

Our basic version of Router should do two things:

1. Supply its children with context for both location and history

2. Re-render the app whenever the history changes

Regarding the first requirement, at the moment our Route and Link components are using two
external APIs directly. Route uses window.location to read the location and Link uses history to
modify the location. Redirect will need to access the same APIs. The Router supplied by react-

router makes these APIs available to child components via context. This is a cleaner pattern and
means you can easily inject your own location or history object into your app for testing purposes.

If you need a refresher on context, we cover this React feature in the chapter “Advanced
Component Configuration.”

Regarding the second requirement, right now App subscribes to history in componentDidMount().
We’ll move this responsibility up to Router, which will be our app’s top-most component.

Let’s use Router inside App before building it. Because we will no longer need to use componentDid-
Mount() in App, we can turn the component into a stateless function.

At the top of App, we’ll convert the component to a function, remove componentDidMount(), and
add the opening tag for <Router>:

WOW! eBook
www.wowebook.org

Routing 391

routing/basics/src/complete/App-3.js

const App = () => (

<Router>

<div

className='ui text container'

>

And close both off at the bottom:

routing/basics/src/complete/App-3.js

<Route path='/atlantic' component={Atlantic} />

<Route path='/pacific' component={Pacific} />

</div>

</Router>

);

We’ll declare Router above App. Let’s see what it looks like in full before walking through the
component:

routing/basics/src/complete/App-3.js

class Router extends React.Component {

static childContextTypes = {

history: PropTypes.object,

location: PropTypes.object,

};

constructor(props) {

super(props);

this.history = createHistory();

this.history.listen(() => this.forceUpdate());

}

getChildContext() {

return {

history: this.history,

location: window.location,

};

}

WOW! eBook
www.wowebook.org

Routing 392

render() {

return this.props.children;

}

}

Subscribing to history

Inside of the constructor for our new Router component, we initialize this.history. We then
subscribe to changes, which is the same thing we did inside the App component:

routing/basics/src/complete/App-3.js

constructor(props) {

super(props);

this.history = createHistory();

this.history.listen(() => this.forceUpdate());

}

Exposing context

As we mentioned earlier, we want Router to expose two properties to its child components. We can
use the context feature of React components. Let’s add the two properties we want to pass down,
history and location, to the child context.

In order to expose context to children, we must specify the type of each context. We do that first by
defining childContextTypes:

routing/basics/src/complete/App-3.js

static childContextTypes = {

history: PropTypes.object,

location: PropTypes.object,

};

JavaScript classes: static
The line defining childContextTypes inside the class is identical to doing this below the class
definition:

Router.childContextTypes = {

history: PropTypes.object,

location: PropTypes.object,

};

WOW! eBook
www.wowebook.org

Routing 393

This keyword allows us to define a property on the class Router itself as opposed to instances of
Router.

Then, in getChildContext(), we return the context object:

routing/basics/src/complete/App-3.js

getChildContext() {

return {

history: this.history,

location: window.location,

};

}

Finally, we render the children wrapped by our new Router component in the render() function:

routing/basics/src/complete/App-3.js

render() {

return this.props.children;

}

Because we’re initializing history inside of Router, we can remove the declaration that we had at
the top of the file:

routing/basics/src/complete/App-3.js

import React from 'react';

import createHistory from 'history/createBrowserHistory';

const history = createHistory();

Since we now have a Router component that is passing the history and location in the context,
we can update our Route and Link components to use these variables from our context.

Let’s first tackle the Route component. The second argument passed to a stateless functional
component is the context object. Rather than using the location on window.location, we’ll grab
location from that context object in the arguments of the component:

WOW! eBook
www.wowebook.org

Routing 394

routing/basics/src/complete/App-3.js

const Route = ({ path, component }, { location }) => {

const pathname = location.pathname;

if (pathname.match(path)) {

return (

React.createElement(component)

);

} else {

return null;

}

};

Route.contextTypes = {

location: PropTypes.object,

};

Below Route, we set the property contextTypes. Remember, to receive context a component must
white-list which parts of the context it should receive.

Let’s also update our Link component in a similar manner. Link can use the history property from
the context object:

routing/basics/src/complete/App-3.js

const Link = ({ to, children }, { history }) => (

 {

e.preventDefault();

history.push(to);

}}

href={to}

>

{children}

);

Link.contextTypes = {

history: PropTypes.object,

};

Our app is now wrapped in a Router component. While it lacks lots of the features provided by the
actual Router supplied by react-router, it gives us an idea of how the Router component works: It

WOW! eBook
www.wowebook.org

Routing 395

supplies location-management APIs to child components and forces the app to re-render when the
location changes.

Let’s save our updated App.js and head to the app in our browser. We see that everything is working
exactly as before.

With our Router in place, we can now roll our own Redirect component that uses history from
context to manipulate the browser’s location.

Building Redirect

The Redirect component is a cousin of Link. Whereas Link produces a link that the user can click
on to modify the location, Redirect will immediately modify the location whenever it is rendered.

Like Link, we’ll expect this component to be supplied with a to prop. And, like Link, we’ll grab
history from context and use that object to modify the browser’s location.

However, where we do this is different. Above Router, let’s write the Redirect component and see
how it works:

routing/basics/src/complete/App-4.js

class Redirect extends React.Component {

static contextTypes = {

history: PropTypes.object,

}

componentDidMount() {

const history = this.context.history;

const to = this.props.to;

history.push(to);

}

render() {

return null;

}

}

class Router extends React.Component {

We’ve placed the history.push() inside componentDidMount()! The moment this component is
mounted to the page, it calls out to the history API to modify the app’s location.

WOW! eBook
www.wowebook.org

Routing 396

If you’re familiar with routing paradigms from other web development frameworks, the Redirect
component might appear particularly curious. Most developers are used to things like an imperative
routing table to handle redirects.

Instead, react-router furnishes a declarative paradigm consisting of composable components. Here,
a Redirect is represented as nothing more than a React component. Want to redirect? Just render a
Redirect component.

Because we’re defining Redirect as a JavaScript class, we can define contextTypes inside
the class declaration with static.

In the completed version of the app, we saw a third route, black-sea. When this location was visited,
the app displayed a countdown timer before redirecting to /. Let’s build this now.

First, we’ll add a new Link and Route for the component that we’ll soon define, BlackSea:

routing/basics/src/complete/App-4.js

<Link to='/atlantic'>

<code>/atlantic</code>

</Link>

<Link to='/pacific'>

<code>/pacific</code>

</Link>

<Link to='/black-sea'>

<code>/black-sea</code>

</Link>

<hr />

<Route path='/atlantic' component={Atlantic} />

<Route path='/pacific' component={Pacific} />

<Route path='/black-sea' component={BlackSea} />

</div>

</Router>

WOW! eBook
www.wowebook.org

Routing 397

Let’s go ahead and define BlackSea at the bottom of App.js.

First, let’s implement the counting logic. We’ll initialize state.counter to 3. Then, inside compo-

nentDidMount(), we’ll perform the countdown using JavaScript’s built-in setInterval() function:

routing/basics/src/complete/App-4.js

class BlackSea extends React.Component {

state = {

counter: 3,

};

componentDidMount() {

this.interval = setInterval(() => (

this.setState(prevState => {

return {

counter: prevState.counter - 1,

};

}

)), 1000);

}

The setInterval() function will decrease state.counter by one every second.

Because the state update depends on the current version of state, we’re passing setState()
a function as opposed to an object. We discuss this technique in the “Advanced Component
Configuration” chapter.

We have to remember to clear the interval when the component is unmounted. This is the same
strategy we used in the timers app in the second chapter:

routing/basics/src/complete/App-4.js

componentWillUnmount() {

clearInterval(this.interval);

}

Last, let’s focus on the redirect logic. We’ll handle the redirect logic inside our render() function.
When the render() function is called, we’ll want to check if the counter is less than 1. If it is, we
want to perform a redirect. We do this by including the Redirect component in our render output:

WOW! eBook
www.wowebook.org

Routing 398

routing/basics/src/complete/App-4.js

render() {

return (

<div>

<h3>Black Sea</h3>

<p>Nothing to sea [sic] here ...</p>

<p>Redirecting in {this.state.counter}...</p>

{

(this.state.counter < 1) ? (

<Redirect to='/' />

) : null

}

</div>

);

}

}

Three seconds after BlackSea mounts, our interval function decrements our state.counter to 0.
The setState() function triggers a re-render of the BlackSea component. Its output will include
the Redirect component. When the Redirect component mounts, it will trigger the redirect.

In the BlackSea component, we use a ternary operator to control whether or not we render
the Redirect component. Using ternary operators inside of JSX is common in React. This
is because we can’t embed multi-line statements like an if/else clause inside our JSX.

This mechanism for triggering a redirect might seem peculiar at first. But this paradigm is powerful.
We have complete control of routing by rendering components and passing props. Again, the React
Router team prides itself on the fact that the interface to the library is just React. As we’ll explore
more in the second half of the chapter, this property gives us lots of flexibility.

Try it out

With Redirect built and in use, let’s try it out. Save App.js. Visiting /black-sea in the browser, we
witness the component rendering before it performs the redirect:

WOW! eBook
www.wowebook.org

Routing 399

The Black Sea countdown

At this point, we have an understanding of how three of React Router’s fundamental components
work to read and update the browser’s location state. We also see how they work with the context
of the top-most Router component.

Let’s scrap our hand-rolled React Router components and instead use the library’s routing compo-
nents. After doing so, we can explore a couple more features of the Route component supplied by
react-router. Further, we’ll see how Switch provides one last key piece of functionality.

Using react-router

We’ll import the components that we want to use from the react-router package and remove the
ones we’ve written so far.

The react-router library encompasses a few different npm packages such as react-router-dom
and react-router-native. Each corresponds to a supported environment for React. Because we’re
building a web app, we’ll use the react-router-dom npm package.

react-router-dom is already included in this project’s package.json.

At the top of our App.js file, remove the import statement for createBrowserHistory. React Router
will take care of history management:

import React from 'react';

import createHistory from 'history/createBrowserHistory';

We’ll add an import statement that includes each of the components we want to use. Then, we’ll
delete all our custom react-router components. All our other components, like App, can remain
unchanged:

WOW! eBook
www.wowebook.org

Routing 400

routing/basics/src/complete/App-5.js

import React from 'react';

import {

BrowserRouter as Router,

Route,

Link,

Redirect,

} from 'react-router-dom'

const App = () => (

react-router-dom exports its router under the name BrowserRouter to distinguish it from the
routers included in other environments, like NativeRouter. It is common practice to use the alias
Router by using the as keyword as we do here.

Save App.js. After this change, we’ll see that everything is still working as it was before we switched
to using React Router.

More Route

Now that we’re using the react-router library, our imported Route component has several
additional features.

So far, we’ve used the prop component to instruct Route which component to render when the path
matches the current location. Route also accepts the prop render. We can use this prop to define a
render function in-line.

To see an example of this, let’s add another Route declaration to App. We’ll insert it above the rest
of our existing Route components. This time, we’ll use render:

routing/basics/src/complete/App-5.js

<Route path='/atlantic/ocean' render={() => (

<div>

<h3>Atlantic Ocean — Again!</h3>

<p>

Also known as "The Pond."

</p>

</div>

)} />

<Route path='/atlantic' component={Atlantic} />

<Route path='/pacific' component={Pacific} />

<Route path='/black-sea' component={BlackSea} />

WOW! eBook
www.wowebook.org

Routing 401

Save App.js. If we visit the app at /atlantic we see just the Atlantic component, as expected:

Just Atlantic shows on /atlantic

What happens if we visit /atlantic/ocean? We don’t have a Link to this path so type it into the
address bar. We notice both the Atlantic component and our new anonymous render function, one
stacked atop the other:

WOW! eBook
www.wowebook.org

Routing 402

Both Atlantic components appear on /atlantic/ocean

Why do we see both components? Because of how Route matches path against the location. Recall
that our Route component performed the match like this:

routing/basics/src/complete/App-1.js

if (pathname.match(path)) {

Consider how that behaves:

const routePath = '/atlantic';

let browserPath = '/atl';

browserPath.match(routePath); // -> no match

browserPath = '/atlantic';

browserPath.match(routePath); // -> matches

browserPath = '/atlantic/ocean'

browserPath.match(routePath); // -> matches

WOW! eBook
www.wowebook.org

Routing 403

Therefore, both Route declarations for our two Atlantic components match the location /at-

lantic/ocean. So they both render.

We hadn’t observed this behavior of Route up until now. But given how Route works, this behavior
makes sense.Any number of components might match a given location and theywill all render.
Route does not impose any kind of exclusivity.

Sometimes, this behavior is undesirable. We’ll see a strategy for managing this a bit later.

The example above and our implementation of pathname matching are not strictly
accurate. As youmight expect, Routematches against the start of the pathname. Therefore,
/atlantic/ocean/pacific will not match for the component Pacific even though that
path contains the /pacific substring.

With this behavior in mind, what if we wanted to add a component that renders when the user visits
the root (/)? It would be nice to have some text that instructs the user to click on one of the links.

We now know that a solution like this would be problematic:

routing/basics/src/complete/App-5.js

{/* This solution is problematic */}

<Route path='/' render={() => (

<h3>

Welcome! Select a body of saline water above.

</h3>

)} />

Given that / matches paths like /atlantic and /pacific, this component would render on every
page of the app:

The Route for / matches every location

This behavior is not quite what we want. By adding the prop exact to the Route component, we can
specify that the path must exactly match the location. Add the Route for / now:

WOW! eBook
www.wowebook.org

Routing 404

routing/basics/src/complete/App-6.js

<Route path='/atlantic/ocean' render={() => (

<div>

<h3>Atlantic Ocean — Again!</h3>

<p>

Also known as "The Pond."

</p>

</div>

)} />

<Route path='/atlantic' component={Atlantic} />

<Route path='/pacific' component={Pacific} />

<Route path='/black-sea' component={BlackSea} />

<Route exact path='/' render={() => (

<h3>

Welcome! Select a body of saline water above.

</h3>

)} />

We’re using some JSX syntactic sugar here. While we could set the prop explicitly like this:

<Route exact={true} path='/' render={() => (

// ...

)}

In JSX, if the prop is listed but not assigned to a value it defaults the value to true.

Try it out

Save App.js. Visiting / in our browser, we see our welcome component. Importantly, the welcome
component does not appear on any other path:

WOW! eBook
www.wowebook.org

Routing 405

We welcome the user at /

We now have a proper handler for when the user visits /.

The Route component is a powerful yet simple way to declare which components we’d like to appear
on which routes. However, Route alone has some limitations:

1. As we saw earlier with the route /atlantic/ocean, we’ll often want only one Route to match
a given path.

2. Furthermore, we don’t yet have a strategy for handling the situation where a user visits a
location that our app doesn’t specify a match for.

To work around these, we can wrap our Route components in a Switch component.

Using Switch

When Route components are wrapped in a Switch component, only the first matching Route will
be displayed.

This means we can use Switch to overcome the two limitations we’ve witnessed so far with Route:

1. When the user visits /atlantic/ocean, the first Route will match and the subsequent Route
matching /atlantic will be ignored.

2. We can include a catch-all Route at the bottom of our Switch container. If none of the other
Route components match, this component will be rendered.

Let’s see this in practice.

In order to use the Switch component, let’s import the Switch component from react-router:

WOW! eBook
www.wowebook.org

Routing 406

routing/basics/src/complete/App-7.js

import React from 'react';

import {

BrowserRouter as Router,

Route,

Link,

Redirect,

Switch,

} from 'react-router-dom'

const App = () => (

We’ll wrap all of our Route components in a Switch component. Add the opening Switch component
tag above the first Route:

routing/basics/src/complete/App-7.js

<hr />

<Switch>

<Route path='/atlantic/ocean' render={() => (

Next, we’ll add our “catch-all” Route beneath our existing Route components. Because we don’t
specify a path prop, this Route will match every path:

routing/basics/src/complete/App-7.js

<Route exact path='/' render={() => (

<h3>

Welcome! Select a body of saline water above.

</h3>

)} />

<Route render={({ location }) => (

<div className='ui inverted red segment'>

<h3>

Error! No matches for <code>{location.pathname}</code>

</h3>

</div>

)} />

</Switch>

</div>

WOW! eBook
www.wowebook.org

Routing 407

</Router>

);

Route passes the prop location to the render function. Route always passes this prop to its target.
We’ll explore this more in the second half of this chapter.

Try it out

Save App.js. Visit /atlantic/ocean and note that the componentmatching /atlantic is gone. Next,
manually enter a path for the app that doesn’t exist. Our catch-all Route component will render:

No matches for /arctic

At this point, we’re familiar with React Router’s fundamental components. We wrap our app in
Router, which supplies any React Router components in the tree with location and history APIs and
ensures our React app is re-rendered whenever the location is changed. Route and Switch both help
us control what React components are displayed at a given location. And Link and Redirect give
us the ability to modify the location of the app without a full page load.

In the second half of this chapter, we’ll apply these fundamentals to a more complex application.

Dynamic routing with React Router

In this section, we’ll build off the foundations established in the last. We’ll see how React Router’s
fundamental components work together inside of a slightly larger app, and explore a few different
strategies for programming in its unique component-driven routing paradigm.

WOW! eBook
www.wowebook.org

Routing 408

The app in this section has multiple pages. The app’s main page has a vertical menu where the user
can choose between five different music albums. Choosing an album immediately shows album
information in the main panel. All album information is pulled from Spotify’s API78.

The server that our React app communicates with is protected by a token that requires a login. While
not a genuine authentication flow, the setup will give us a feel for how to use React Router inside
of an application that requires users to login.

The completed app

The code for this section is inside routing/music. From the root of the book’s code folder, navigate
to that directory:

$ cd routing/music

Let’s take a look at this project’s structure:

$ ls

SpotifyClient.js

client/

nightwatch.json

package.json

server.js

server.test.js

start-client.js

start-server.js

tests/

In the root of the project is a Node API server (server.js). Inside client is a React app powered by
create-react-app:

$ ls client

package.json

public/

semantic/

semantic.json

src/

78https://developer.spotify.com/web-api/

WOW! eBook
www.wowebook.org

https://developer.spotify.com/web-api/
https://developer.spotify.com/web-api/

Routing 409

This project’s structure is identical to the food lookup app at the end of the chapter “Using Webpack
with create-react-app.” When in development, we boot two servers: server.js and the Webpack
development server. The Webpack development server will serve our React app. Our React app
interfaces with server.js to fetch data about a given album. server.js, in turn, communicates
with the Spotify API to get the album data:

Communication diagram

Let’s install the dependencies and see the running app. We have two package.json files, one for
server.js and one for the React app. We’ll run npm i for both:

$ npm i

$ cd client

$ npm i

$ cd ..

We can boot the app with npm start in the top-level directory. This uses Concurrently to boot both
servers simultaneously:

$ npm start

Find the app at http://localhost:3000.

The app will prompt you with a login button. Click login to “login.” We are not prompted for a user
name or password.

After logging in, we can see a list of albums in a vertical side menu:

WOW! eBook
www.wowebook.org

Routing 410

Clicking on one of these albums displays it to the right of the vertical side menu. Furthermore, the
URL of the app is updated:

The URL follows the scheme /albums/:albumId where :albumId is the dynamic part of the URL.

Clicking the “Logout” button in the top right, we’re redirected to the login page at /login. If we try

WOW! eBook
www.wowebook.org

Routing 411

to manually navigate back to /albums by typing that address into the URL bar, we are prevented
from reaching that page. Instead, we are redirected back to /login.

Before digging into the React app, let’s take a look at the server’s API.

The server’s API

POST /api/login

The server provides an endpoint for retrieving an API token, /api/login. This token is required for
the endpoint /api/albums.

Unlike a real-world login endpoint, the /api/login endpoint does not require a user name or a
password. server.js will always return a hard-coded API token when this endpoint is requested.
That hard-coded token is a variable inside server.js:

routing/music/server.js

// A fake API token our server validates

export const API_TOKEN = 'D6W69PRgCoDKgHZGJmRUNA';

To test this endpoint yourself, with the server running you can use curl to make a POST request to
that endpoint:

$ curl -X POST http://localhost:3001/api/login

{

"success": true,

"token": "D6W69PRgCoDKgHZGJmRUNA"

}

The React app stores this API token in localStorage. React will include this token in all subsequent
requests to the API. Clicking the “Logout” button in the app removes the token from React and
localStorage. The user will have to “login” again to access the app.

We interact with both the API and localStorage using the Client library declared in client/sr-

c/Client.js. We discuss this library more later.

WOW! eBook
www.wowebook.org

Routing 412

The localStorage API allows you to read and write to a key-value store in the user’s
browser. You can store items to localStorage with setItem():

localStorage.setItem('gas', 'pop');

And retrieve them later with getItem():

localStorage.getItem('gas');

// => 'pop'

Note that items stored in localStorage have no expiry.

Security and client-side API tokens
Security on the web is a huge topic. And managing client-side API tokens is a delicate task.
To build a truly secure web application, it’s important to understand the intricacies of the
topic. Unfortunately, it’s far too easy to miss subtle practices which can end up leaving
giant security holes in your implementation.

While using localStorage to store client-side API tokens works fine for hobby projects,
there are significant risks. Your users’ API tokens are exposed to cross-site scripting attacks.
And tokens stored in localStorage impose no requirement on their safe transfer. If
someone on your development team accidentally inserts code that makes requests over
http as opposed to https, your tokens will be transferred over the wire exposed.

As a developer, you are obligated to be careful and deliberate when users entrust you
with sensitive data. There are strategies you can use to protect your app and your users,
like using JSON Web Tokens (JWTs) or cookies or both. Should you find yourself in this
fortunate position, take the necessary time to carefully research and implement your token
management solution.

GET /api/albums

The /api/albums endpoint returns data supplied by the Spotify API for a given list of albums. We
supply the endpoint with a query parameter, ids, which we set to the list of desired album IDs:

/api/albums?ids=<id1>,<id2>

Note that IDs are comma-separated.

This endpoint also expects the API token to be included as the query param token. Including both
the ids and token query params looks like this:

WOW! eBook
www.wowebook.org

Routing 413

/api/albums?ids=<id1>,<id2>&token=<token>

Here’s an example of querying the /api/albums endpoint with curl:

$ curl -X GET \

"http://localhost:3001/api/albums"\

"?ids=1DWWb4Q39mp1T3NgyscowF,2ANVost0y2y52ema1E9xAZ"\

"&token=D6W69PRgCoDKgHZGJmRUNA"

In bash, the \ character allows us to split our command over multiple lines. Strings can be
split over multiple lines in a similar manner:

$ echo "part1"\

"part2"

-> part1part2

We do this above for readability. Importantly, there is no whitespace between the " and \

characters. Furthermore, "part2" does not have any whitespace ahead of it. If there was
any whitespace, the strings would not concatenate properly.

If you’re using Windows, you can just write this command as a single line.

The information for each album is extensive, so we refrain from including an example
response here.

Starting point of the app

The completed components and the stepswe take to get to them are located under client/src/components-
complete. We’ll be writing all the code for the rest of this chapter in client/src/components.

Touring around the existing code, our first stop is index.js. Check out its import statements:

WOW! eBook
www.wowebook.org

Routing 414

routing/music/client/src/index.js

import React from "react";

import ReactDOM from "react-dom";

import { BrowserRouter as Router } from "react-router-dom";

import App from './components/App';

import "./styles/index.css";

import "../semantic/dist/semantic.css";

// [STEP 1] Comment out this line:

import './index-complete';

Note that we’re importing Router here.

Like the last project, index.js includes index-complete.js which allows us to traverse each
iteration of App inside components/complete. Let’s comment out that import statement:

// [STEP 1] Comment out this line:

// import './index-complete';

Then, at the bottom of index.js, un-comment the call to ReactDOM.render(). Note that we wrap
<App> in <Router>:

// [STEP 2] Un-comment these lines:

ReactDOM.render(

<Router>

<App />

</Router>,

document.getElementById("root")

);

Wrapping your App in index.js with <Router> is a common pattern for React Router apps.

Save index.js. With our development server still running, we’ll see that our starting point is a
stripped-down interface:

WOW! eBook
www.wowebook.org

Routing 415

Initial App

Our starting point doesn’t use React Router at all. The app lists out all the albums on one page. There
is a “Logout” button and clicking it changes the URL but doesn’t appear to do anything else. The
“Close” buttons don’t work either.

Next, let’s take a look at App.js:

routing/music/client/src/components/App.js

import React from 'react';

import TopBar from './TopBar';

import AlbumsContainer from './AlbumsContainer';

import '../styles/App.css';

const App = () => (

<div className='ui grid'>

<TopBar />

<div className='spacer row' />

<div className='row'>

<AlbumsContainer />

</div>

</div>

);

WOW! eBook
www.wowebook.org

Routing 416

export default App;

App renders both our TopBar and AlbumsContainer.

As always, the div and className elements throughout the app are present just for
structure and styling. As in other projects, this app uses SemanticUI79.

We won’t look at TopBar right now.

AlbumsContainer is the component that interfaces with our API to fetch the data for the albums. It
then renders Album components for each album.

At the top of AlbumsContainer, we define our import statements. We also have a hard-coded list of
ALBUM_IDS that AlbumsContainer uses to fetch the desired albums from the API:

routing/music/client/src/components/AlbumsContainer.js

import React, { Component } from 'react';

import Album from './Album';

import { client } from '../Client';

const ALBUM_IDS = [

'23O4F21GDWiGd33tFN3ZgI',

'3AQgdwMNCiN7awXch5fAaG',

'1kmyirVya5fRxdjsPFDM05',

'6ymZBbRSmzAvoSGmwAFoxm',

'4Mw9Gcu1LT7JaipXdwrq1Q',

];

AlbumsContainer is a stateful component with two state properties:

• fetched: Whether or not AlbumsContainer has successfully fetched the album data from the
API yet

• albums: An array of all the album objects

Stepping through the component, we’ll start with its initial state:

79http://semantic-ui.com

WOW! eBook
www.wowebook.org

http://semantic-ui.com/
http://semantic-ui.com/

Routing 417

routing/music/client/src/components/AlbumsContainer.js
class AlbumsContainer extends Component {

state = {

fetched: false,

albums: [],

};

We use the fetched boolean to keep track of whether or not the albums have been retrieved from
the server.

After our AlbumsContainer component mounts, we call the this.getAlbums() function. This
populates the albums in state:

routing/music/client/src/components/AlbumsContainer.js
componentDidMount() {

this.getAlbums();

}

In our getAlbums() function, we use the Client library (inside src/Client.js) to make a request
to the API to grab the data for the albums specified in ALBUM_IDS. We use the method getAlbums()

from the library, which expects as an argument an array of album IDs.

When we get the data back, we update the state to set fetched to true and albums to the result:

routing/music/client/src/components/AlbumsContainer.js
getAlbums = () => {

client.setToken('D6W69PRgCoDKgHZGJmRUNA');

client.getAlbums(ALBUM_IDS)

.then((albums) => (

this.setState({

fetched: true,

albums: albums,

})

));

};

We introduce Fetch and promises in the chapter “Components & Servers.”

Notice that before calling client.getAlbums() we call client.setToken(). As mentioned earlier,
our API expects a token in the request to /api/albums. Since we don’t yet have the login and logout
functionality implemented in the app, we cheat by setting the token manually before making our
request. This is the same token expected by server.js:

WOW! eBook
www.wowebook.org

Routing 418

routing/music/server.js

export const API_TOKEN = 'D6W69PRgCoDKgHZGJmRUNA';

Finally, the render method for AlbumsContainer switches on this.state.fetched. If the data
has yet to be fetched, we render the loading icon. Otherwise, we render all the albums in
this.state.albums:

routing/music/client/src/components/AlbumsContainer.js

render() {

if (!this.state.fetched) {

return (

<div className='ui active centered inline loader' />

);

} else {

return (

<div className='ui two column divided grid'>

<div

className='ui six wide column'

style={{ maxWidth: 250 }}

>

{/* VerticalMenu will go here */}

</div>

<div className='ui ten wide column'>

{

this.state.albums.map((a) => (

<div

className='row'

key={a.id}

>

<Album album={a} />

</div>

))

}

</div>

</div>

);

}

}

Our first update will be to add the vertical menu that we saw in the completed version of the app.
This vertical menu should allow us to choose which album we’d like to view. When an album in

WOW! eBook
www.wowebook.org

Routing 419

the vertical menu is selected, the album should be displayed and the location of the app updated to
/albums/:albumId.

Using URL params

At the moment, our App component is rendering both TopBar and AlbumsContainer:

routing/music/client/src/components/App.js

const App = () => (

<div className='ui grid'>

<TopBar />

<div className='spacer row' />

<div className='row'>

<AlbumsContainer />

</div>

</div>

);

As we saw, we’ll eventually have login and logout pages. We can keep TopBar in App as we want
TopBar to appear on every page. Since we want the album listing page to appear on a route, we
should nest AlbumsContainer inside a Route. We’ll have it only render at the location /albums. This
will prepare us for adding /login and /logout soon.

First, inside App.js, let’s import the Route component:

routing/music/client/src/components-complete/App-1.js

import React from 'react';

import { Route } from 'react-router-dom';

Then, we’ll use Route on the path /albums:

WOW! eBook
www.wowebook.org

Routing 420

routing/music/client/src/components-complete/App-1.js

const App = () => (

<div className='ui grid'>

<TopBar />

<div className='spacer row' />

<div className='row'>

<Route path='/albums' component={AlbumsContainer} />

</div>

</div>

);

Now, AlbumsContainer will only render when we visit the app at /albums.

We’ll have AlbumsContainer render a child component, VerticalMenu. We’ll have the parent
(AlbumsContainer) pass the child (VerticalMenu) the list of albums. Let’s first compose Vertical-
Menu and then we’ll update AlbumsContainer to use it.

Open the file src/components/VerticalMenu.js. The current file contains the scaffold for the
component:

routing/music/client/src/components/VerticalMenu.js

import React from 'react';

import '../styles/VerticalMenu.css';

const VerticalMenu = ({ albums }) => (

<div className='ui secondary vertical menu'>

<div className='header item'>

Albums

</div>

{/* Render album menu here */}

</div>

);

export default VerticalMenu;

As we can see, VerticalMenu expects the prop albums. We want to iterate over the albums prop,
rendering a Link for each album. First, we’ll import Link from react-router:

WOW! eBook
www.wowebook.org

Routing 421

routing/music/client/src/components-complete/VerticalMenu-1.js

import React from 'react';

import { Link } from 'react-router-dom';

import '../styles/VerticalMenu.css';

We’ll use map to compose our list of Link components. The to prop for each Link will be
/albums/:albumId:

routing/music/client/src/components-complete/VerticalMenu-1.js

const VerticalMenu = ({ albums }) => (

<div className='ui secondary vertical menu'>

<div className='header item'>

Albums

</div>

{

albums.map((album) => (

<Link

to={`/albums/${album.id}`}

className='item'

key={album.id}

>

{album.name}

</Link>

))

}

</div>

);

We set the className to item for styling. We’re using SemanticUI’s vertical menu.

VerticalMenu will now update the location of the app whenever the user clicks on one of its menu
items. Let’s update AlbumsContainer to both use VerticalMenu and render a single album based on
the location of the app.

Open src/components/AlbumsContainer.js. Add VerticalMenu to the list of imports:

WOW! eBook
www.wowebook.org

Routing 422

import Album from './Album';

import VerticalMenu from './VerticalMenu';

import { client } from '../Client';

Then, inside the render method, we’ll add VerticalMenu nested inside a column:

routing/music/client/src/components-complete/AlbumsContainer-1.js

render() {

if (!this.state.fetched) {

return (

<div className='ui active centered inline loader' />

);

} else {

return (

<div className='ui two column divided grid'>

<div

className='ui six wide column'

style={{ maxWidth: 250 }}

>

<VerticalMenu

albums={this.state.albums}

/>

</div>

<div className='ui ten wide column'>

Because VerticalMenu does not need full album objects, it would indeed be cleaner to pass
the component subset objects that look like this:

[{ name: 'Madonna', id: '1DWWb4Q39mp1T3NgyscowF' }]

This would also make VerticalMenumore flexible, as we could write it such that it can be
a side menu for any list of items.

In the output for AlbumsContainer, in the column adjacent to VerticalMenu, we want to render a
single album now as opposed to a list of all of them. We know that VerticalMenu is going to modify
the location according to the scheme /albums/:albumId. We can use a Route component to match
against this pattern and extract the parameter :albumId from the URL.

Still in AlbumsContainer.js, first add Route to the component’s imports:

WOW! eBook
www.wowebook.org

Routing 423

routing/music/client/src/components-complete/AlbumsContainer-1.js

import React, { Component } from 'react';

import { Route } from 'react-router-dom';

Then, inside render in the div tags below VerticalMenu, we’ll replace the map call that renders all
the albums. Instead, we’ll define a Route component with a render prop. We’ll take a look at it in
full then break it down:

routing/music/client/src/components-complete/AlbumsContainer-1.js

<div className='ui ten wide column'>

<Route

path='/albums/:albumId'

render={({ match }) => {

const album = this.state.albums.find(

(a) => a.id === match.params.albumId

);

return (

<Album

album={album}

/>

);

}}

/>

</div>

path

The string we’re matching against is /albums/:albumId. The : is how we indicate to React Router
that this part of the URL is a dynamic parameter. Importantly, any value will match this dynamic
parameter.

render

We set a render prop on this Route to a function. Route invokes the render function with a few
arguments, like match. We explore matchmore in a bit. Here, we’re interested in the params property
on match.

Route extracts all the dynamic parameters from the URL and passes them to the target
component inside the object match.params. In our case, params will contain the property albumId

which will correspond to the value of the :albumId part of the current URL (/albums/:albumId).

We use find to get the album that matches params.albumId, rendering a single Album.

The user can now modify the location of the app with the links in VerticalMenu. And AlbumsCon-

tainer uses Route to read the location and extract the desired albumId, rendering the desired album.

WOW! eBook
www.wowebook.org

Routing 424

Try it out

Save AlbumsContainer.js. If the app isn’t still running, be sure to boot it from the top-level directory
using the npm start command:

$ npm start

Currently only the TopBar will be visible when we visit http://localhost:3000 in our browser:

Nothing matches at /

Recall that in Appwe wrapped AlbumsContainer in a Route for the pattern /albums. It doesn’t match
/, so the body of App remains empty.

Let’s manually visit the /albums path by typing it in the browser URL bar and we’ll see our
VerticalMenu rendered:

WOW! eBook
www.wowebook.org

Routing 425

VerticalMenu appears

Nothing is rendered in the column adjacent to VerticalMenu as that column is awaiting a URL
matching /albums/:albumId. Clicking on one of the albums changes the location of the app:

WOW! eBook
www.wowebook.org

Routing 426

Selecting an album

We’re getting somewhere! While the “Close” and “Logout” buttons still don’t work, we can switch
between albums. The app’s location updates without refreshing the page.

Let’s wire up the “Close” button next.

Propagating pathnames as props

Inside Album.js, we render a “Close” button inside the album’s header:

routing/music/client/src/components-complete/Album-1.js

<div className='six wide column'>

<p>

{

`By ${album.artist.name}

- ${album.year}

- ${album.tracks.length} songs`

}

</p>

<div

className='ui left floated large button'

>

Close

</div>

WOW! eBook
www.wowebook.org

Routing 427

To “close” the album, we need to change the app’s location from /albums/:albumId to /albums.
Knowing what we know about routing through this point, we could create a link to handle this
behavior for us, like this:

// Valid "close" button

<Link

to='/albums'

className='ui left floated large button'

>

Close

</Link>

This is perfectly valid. However, one consideration we have to make as we add routing to our apps
is flexibility.

For example, what if we wanted to modify the app so that our albums page existed on / and not
/albums? We’d have to change all references to /albums in the app.

More compelling, what if we wanted to display an album in different locations within the app? For
example, we might add artist pages at /artists/:artistId. The user can then drill down to an
individual album, opening the URL /artists/:artistId/albums/:albumId. We’d want a “Close”
button in this situation to link to /artists/:artistId, not /albums.

A simple way to maintain some flexibility is to pass pathnames through the app as props. Let’s see
this in action.

Recall that inside App.js, we specify the path for AlbumsContainer is /albums:

routing/music/client/src/components-complete/App-1.js

<Route path='/albums' component={AlbumsContainer} />

We just saw that Route invokes a function passed as a render prop with the argument match. Route
also sets this prop on components rendered via the component prop. Regardless of how Route renders
its component, it will always set three props:

• match

• location

• history

According to the React Router docs80, the match object contains the following properties:

80https://reacttraining.com/react-router/web/api/Route

WOW! eBook
www.wowebook.org

https://reacttraining.com/react-router/web/api/Route
https://reacttraining.com/react-router/web/api/Route

Routing 428

• params - (object) Key/value pairs parsed from the URL corresponding to the
dynamic segments of the path

• isExact - true if the entire URL was matched (no trailing characters)
• path - (string) The path pattern used tomatch. Useful for building nested <Route>s
• url - (string) The matched portion of the URL. Useful for building nested <Link>s

Of interest to us is the property path. Inside AlbumsContainer, this.props.match.path will be
/albums.

We can update the Route inside AlbumsContainer that wraps Album. Before, the path prop was /al-
bums/:albumId.We can replace the root of the path (/albums) with the variable this.props.match.path.

First, let’s declare a new variable, matchPath:

routing/music/client/src/components-complete/AlbumsContainer-2.js

render() {

if (!this.state.fetched) {

return (

<div className='ui active centered inline loader' />

);

} else {

const matchPath = this.props.match.path;

Then, we can change the path prop on Route to use this variable:

routing/music/client/src/components-complete/AlbumsContainer-2.js

<div className='ui ten wide column'>

<Route

path={`${matchPath}/:albumId`}

render={({ match }) => {

const album = this.state.albums.find(

(a) => a.id === match.params.albumId

);

return (

With this approach, AlbumsContainer doesn’t make any assumptions about its location. We
could, for example, update App so that AlbumsContainer matches at / instead of /albums and
AlbumsContainer would need no changes.

We want the “Close” button in Album to link to this same path. “Closing” an album means changing
the location back to /albums. Let’s propagate the prop down to Album:

WOW! eBook
www.wowebook.org

Routing 429

routing/music/client/src/components-complete/AlbumsContainer-2.js

return (

<Album

album={album}

albumsPathname={matchPath}

/>

);

Then, inside Album.js we can extract the albumsPathname from the props object:

routing/music/client/src/components-complete/Album.js

const Album = ({ album, albumsPathname }) => (

Now, we can change the div element to a Link component. We’ll set the to prop to albumsPathname:

routing/music/client/src/components-complete/Album.js

<div className='six wide column'>

<p>

{

`By ${album.artist.name}

- ${album.year}

- ${album.tracks.length} songs`

}

</p>

<Link

to={albumsPathname}

className='ui left floated large button'

>

Close

</Link>

Let’s apply the same approach to VerticalMenu. Switch back to AlbumsContainer.js. We’ll pass
VerticalMenu the prop albumsPathname:

WOW! eBook
www.wowebook.org

Routing 430

routing/music/client/src/components-complete/AlbumsContainer-2.js

<div

className='ui six wide column'

style={{ maxWidth: 250 }}

>

<VerticalMenu

albums={this.state.albums}

albumsPathname={matchPath}

/>

</div>

Now we can use this prop to compose the to attribute for Link:

routing/music/client/src/components-complete/VerticalMenu-2.js

const VerticalMenu = ({ albums, albumsPathname }) => (

<div className='ui secondary vertical menu'>

<div className='header item'>

Albums

</div>

{

albums.map((album) => (

<Link

to={`${albumsPathname}/${album.id}`}

className='item'

key={album.id}

>

{album.name}

</Link>

))

}

</div>

);

By isolating the number of places we specify pathnames we make our app more flexible for routing
changes in the future. With this update, the only place in our app where we specify the path /albums
is in App.

Try it out

Save Album.js. With the app running, visit /albums. Clicking on an album opens it. Clicking on
“Close” closes it by changing the location back to /albums.

WOW! eBook
www.wowebook.org

Routing 431

With the “Close” button working, there’s an interface improvement we can make before moving on
to implementing login and logout.

When an album is open, it would be nice if the sidebar indicated which album was active:

VerticalMenu indicating which album is active with a light highlight

We’ll solve this next.

Dynamic menu items with NavLink

At the moment, all the menu items in our vertical menu have the class item. In SemanticUI’s vertical
menus, we can set the class of the active item to active item to have it show up as highlighted.

How will we know if an album is “active”? This state is maintained in the URL. If the album’s id
matches that of :albumId in the URL, we’d know that album was active.

Given this, we could drum up the following solution:

albums.map((album) => {

const to = `${albumsPathname}/${album.id}`;

const active = window.location.pathname === to;

<Link

to={to}

className={active ? 'active item' : 'item'}

key={album.id}

>

{album.name}

</Link>

})

We grab the URL’s pathname through the browser’s window.locationAPI. If the browser’s location
matches that of the link, we set its class to active item.

WOW! eBook
www.wowebook.org

Routing 432

Styling active links is a common need.While the solution above would work, react-router provides
a built-in strategy to handle this situation.

We can use another link component, NavLink. NavLink is a special version of Link that is intended
for just this purpose. When a NavLink component’s target location matches the current URL, it will
add style attributes to the rendered element.

We can use NavLink like this:

routing/music/client/src/components-complete/VerticalMenu-3.js

<NavLink

to={`${albumsPathname}/${album.id}`}

activeClassName='active'

className='item'

key={album.id}

>

When the to prop on a NavLink matches the current location, the class applied to the element will
be a combination of className and activeClassName. Here, that will render the class active item

as desired.

In this instance, however, we don’t need to set the prop activeClassName. The default value of
activeClassName is the string 'active'. So, we can omit it.

Import NavLink at the top of the file:

routing/music/client/src/components-complete/VerticalMenu.js

import { NavLink } from 'react-router-dom';

Then swap out Link for NavLink:

routing/music/client/src/components-complete/VerticalMenu.js

const VerticalMenu = ({ albums, albumsPathname }) => (

<div className='ui secondary vertical menu'>

<div className='header item'>

Albums

</div>

{

albums.map((album) => (

<NavLink

to={`${albumsPathname}/${album.id}`}

className='item'

key={album.id}

WOW! eBook
www.wowebook.org

Routing 433

>

{album.name}

</NavLink>

))

}

</div>

);

NavLink makes styling links easy. Use NavLink when you need this feature but stick to Link when
you don’t.

Try it out

Save VerticalMenu.js. In our browser, the vertical menu will now reflect the active album with a
gray background:

Menu highlights the active album

Let’s handle one last thing before moving on to login and logout. AlbumsContainer matches on
/albums. If the user visits /, it would be nice if they were redirected to /albums. We’ll add that now.

Adding a redirect for the root path

Inside App.js, we first import Redirect:

WOW! eBook
www.wowebook.org

Routing 434

routing/music/client/src/components-complete/App-3.js

import { Route, Redirect } from 'react-router-dom';

We’ll then be able to add the Redirect component to the output of App. We want to Route the path
/ exactly:

routing/music/client/src/components-complete/App-3.js

<div className='row'>

<Route path='/albums' component={AlbumsContainer} />

<Route exact path='/' render={() => (

<Redirect

to='/albums'

/>

)} />

</div>

Recall that the exact attribute is necessary here. Otherwise, the pattern /would match against every
route, including /albums and /login.

Try it out

Save App.js. In your browser, visiting / redirects to /albums and the vertical menu of albums
renders.

We’ve gotten to see some of React Router’s components at work inside a slightly more complex
interface:

• We matched a component against a dynamic URL
• We used some of the properties in the match argument that Route sets on its target component
• We propagated the pathname /albums down from App, a best practice
• We used NavLink to render styled link elements

Let’s take this a bit further. In the next section, we’ll implement a fake authentication system for
our app. We’ll explore a strategy for elegantly preventing a user from accessing certain locations
without logging in first.

Supporting authenticated routes

As we saw when we explored the API endpoint /api/albums earlier, this endpoint requires a token
to access. At the moment, we’re cheating by manually setting the token before every request in
getAlbums():

WOW! eBook
www.wowebook.org

Routing 435

routing/music/client/src/components-complete/AlbumsContainer-2.js

getAlbums = () => {

client.setToken('D6W69PRgCoDKgHZGJmRUNA');

client.getAlbums(ALBUM_IDS)

To mimic a more real-world authentication flow, we want to remove the token string literal from
our client app. Instead, we should have our app make a request to the API’s /api/login endpoint. As
we saw, to keep things simple our API doesn’t require a user name or password. But, mimicking an
actual login endpoint, it will return a token that we can store locally and use in subsequent requests.

The Client library

Packaged with our app is a client library inside client/src/Client.js. The Client library has all
the methods we need to interact with the server’s API.

The Client library has a method, login(), that will both perform a request to /api/login and store
the token. This login() function executes the request, checks to make sure it’s the expected 201

status, parses the json response value, and stores the token by using the setToken() function:

routing/music/client/src/Client.js

login() {

return fetch('/api/login', {

method: 'post',

headers: {

accept: 'application/json',

},

}).then(this.checkStatus)

.then(this.parseJson)

.then((json) => this.setToken(json.token));

}

setToken() stores the token in localStorage:

WOW! eBook
www.wowebook.org

Routing 436

routing/music/client/src/Client.js

setToken(token) {

this.token = token;

if (this.useLocalStorage) {

localStorage.setItem(LOCAL_STORAGE_KEY, token);

}

}

When the app loads, Client first tries to load the token from localStorage. The token is kept in
localStorage indefinitely and has no expiry. Therefore, the user will only ever be logged out of our
app when they perform a logout.

To logout, we can use the logout() function implemented in the Client library:

routing/music/client/src/Client.js

logout() {

this.removeToken();

}

removeToken() nullifies the token and removes it from localStorage:

routing/music/client/src/Client.js

removeToken() {

this.token = null;

if (this.useLocalStorage) {

localStorage.removeItem(LOCAL_STORAGE_KEY);

}

}

With an idea of the functions we’ll use in Client, let’s begin by adding a new login component.

Implementing login

As we saw in the completed version of the app, the Login component displays a single “Login”
button. Clicking this button fires off the login process. We want to display the loading indicator
while the login is in process:

WOW! eBook
www.wowebook.org

Routing 437

Clicking the “Login” button on Login

Open up Login.js. This file contains the scaffold for the component. We’ll use a state property
loginInProgress to indicate whether the login is underway. We’ll use another property in state,
shouldRedirect, to indicate if the login process has completed and the component should redirect
to /albums. Let’s declare both the initial state and the performLogin() function now:

routing/music/client/src/components-complete/Login-1.js

class Login extends Component {

state = {

loginInProgress: false,

shouldRedirect: false,

};

performLogin = () => {

this.setState({ loginInProgress: true });

client.login().then(() => (

this.setState({ shouldRedirect: true })

));

};

We set the state properties loginInProgress and shouldRedirect initially to false.

In performLogin(), we first flip loginInProgress to true. When client.login() completes, we
flip the state property shouldRedirect to true. We don’t need to flip loginInProgress back to
false as the component will be redirecting immediately anyway.

In render(), we first check to see if the component should redirect. If it should, we render a Redirect
component. Otherwise, we can use loginInProgress to determine whether to show the “Login”
button or the loading indicator:

WOW! eBook
www.wowebook.org

Routing 438

routing/music/client/src/components-complete/Login-1.js

render() {

if (this.state.shouldRedirect) {

return (

<Redirect to='/albums' />

);

} else {

return (

<div className='ui one column centered grid'>

<div className='ten wide column'>

<div

className='ui raised very padded text container segment'

style={{ textAlign: 'center' }}

>

<h2 className='ui green header'>

Fullstack Music

</h2>

{

this.state.loginInProgress ? (

<div className='ui active centered inline loader' />

) : (

<div

className='ui large green submit button'

onClick={this.performLogin}

>

Login

</div>

)

}

</div>

</div>

</div>

);

}

}

Save Login.js. In order to test Login, we’ll need to add our Logout component.

Logging out doesn’t require an API request. We just need to call client.logout() which instantly
removes the token stored locally. We can perform this call in constructor(). We’ll then redirect to
the login path, which will be /login.

First, inside Logout.js, import Redirect from react-router:

WOW! eBook
www.wowebook.org

Routing 439

routing/music/client/src/components-complete/Logout.js

import React, { Component } from 'react';

import { Redirect } from 'react-router-dom';

Then we’ll fill in the Logout component:

routing/music/client/src/components-complete/Logout.js

class Logout extends Component {

constructor(props) {

super(props);

client.logout();

}

render() {

return (

<Redirect

to='/login'

/>

);

}

}

Save Logout.js. With Login and Logout composed, we just need to add them to App.

First, we import the components:

// Top of `App.js`

import TopBar from './TopBar';

import AlbumsContainer from './AlbumsContainer';

import Login from './Login';

import Logout from './Logout';

And then we add Route components for each of them:

WOW! eBook
www.wowebook.org

Routing 440

routing/music/client/src/components-complete/App-4.js

<div className='row'>

<Route path='/albums' component={AlbumsContainer} />

<Route path='/login' component={Login} />

<Route path='/logout' component={Logout} />

<Route exact path='/' render={() => (

<Redirect

to='/albums'

/>

)} />

</div>

Finally, let’s remove the manual setToken() call from inside getAlbums() in AlbumsContainer:

getAlbums() {

client.setToken('D6W69PRgCoDKgHZGJmRUNA');

client.getAlbums(ALBUM_IDS)

// ...

};

Save AlbumsContainer.js. With setToken() removed, we can now test that our login functionality
works. When we click the “Login” button at /login, it should trigger an API call to /api/login and
set the token given in the response.

The component TopBar has been responsible for rendering the menu bar at the top of the page. The
far right button has said “Logout” thus far as we’ve always been logged in. TopBar uses a function on
Client, isLoggedIn(), to check if the user is logged in. This function checks if the token is present.
We render either a “Login” link or a “Logout” link based on this boolean value:

routing/music/client/src/components/TopBar.js

<div className='right menu'>

{

client.isLoggedIn() ? (

<Link className='ui item' to='/logout'>

Logout

</Link>

) : (

<Link className='ui item' to='/login'>

Login

WOW! eBook
www.wowebook.org

Routing 441

</Link>

)

}

</div>

With this in mind, let’s test the app out.

Try it out

We’ll take some steps to make sure that login and logout are working properly.

1. Load the page at /albums. We can see all the albums. In the top right, we see the “Logout”
button.

2. Click the “Logout” button. We should be redirected to /login.
3. Without clicking the “Login” button, manually enter the path /albums.

When we visit /albums after logging out, we see the spinner on the page, indefinitely:

Page hangs indefinitely

Opening up the console, we see that our app is complaining that it received a 403 from the API:

WOW! eBook
www.wowebook.org

Routing 442

Error in the console

Great. The API rejected our request because it didn’t include a token. The Logout component did its
job and removed the token.

Now, we should be able to log in and view this page again:

1. Click the “Login” button in the top right.
2. On the /login page, click the “Login” button.
3. We’ll be redirected to /albums. The albums should now be visible again.

Our app is close! We’re converging on a real-world authentication flow. But we just identified an
improvement we need to make. When the user visits /albums without being logged in, the app
silently fails. Instead, we should redirect the user to /login.

What will happen if the user visits another page, say /albums/1DWWb? We should redirect the user
to /login in that instance as well. And, when the login completes, the best experience would be if
we redirected the user back to where they came from (/albums/1DWWb).

We’ll address each of these in turn.

PrivateRoute, a higher-order component

If the user visits a page under /albums and is not logged in, we want to redirect them to the login
page.

Using the client library’s isLoggedIn(), we could implement something like this in AlbumsCon-

tainer:

WOW! eBook
www.wowebook.org

Routing 443

// In AlbumsContainer

render() {

// Something like this would work fine

if (!client.isLoggedIn()) {

return (

<Redirect to='/login' />

);

}

}

This would work fine for our purposes right now. But, as our app grows, we’d likely need many
pages and their constituent components to be wrapped with this redirect.

This is where React Router’s composability comes in handy. Because everything in React Router is
a component, we can write higher-order components that wrap React Router’s elements in custom
functionality.

A higher-order component is a React component that wraps another one. This pattern is a powerful
mechanism for extending or altering the functionality of a pre-existing component.

As we saw when we wrote Route, this component is an example of a higher-order component.

In this case, we can write a new component, PrivateRoute. PrivateRoute will be like our own
custom flavor of the Route component. As we’ll see, we’ll use it to extend and focus the functionality
of Route. We can interchange it with Route anywhere in our app where we want to assert that the
user is logged in. Under the hood, it will use both Route and Redirect to operate.

Open up App.js. Let’s import and use PrivateRoute to see what using it will look like. We’ll then
build the component.

Import it at the top of App.js:

routing/music/client/src/components-complete/App-5.js

import TopBar from './TopBar';

import PrivateRoute from './PrivateRoute';

import AlbumsContainer from './AlbumsContainer';

import Login from './Login';

import Logout from './Logout';

We want PrivateRoute to have the same interface as Route. /albums will be the only route that
requires the user to be logged in. For /albums, we’ll swap out Route for PrivateRoute:

WOW! eBook
www.wowebook.org

Routing 444

routing/music/client/src/components-complete/App-5.js

<Switch>

<PrivateRoute path='/albums' component={AlbumsContainer} />

<Route path='/login' component={Login} />

<Route path='/logout' component={Logout} />

Open up PrivateRoute.js. A scaffold for the component already exists.

Again, higher-order components are functions that return components wrapped with new function-
ality. To wrap our head around this, let’s consider what PrivateRoute would look like if all it did
was return Route. This implementation is the same as using Route directly:

routing/music/client/src/components-complete/PrivateRoute-1.js

const PrivateRoute = (props) => (

<Route {...props} />

);

In this example, PrivateRoute returns a Route component, passing along all its props to Route.
While not useful, this version of PrivateRoute is the simplest implementation of a higher-order
component.

Because all that PrivateRoute does is render a Route component, if you were to save PrivateR-

oute.js and reload the app, everything would be working just as before.

What we want to eventually do is have our component either render the component that PrivateR-
oute was given (the prop component) or redirect if the user is not logged in. Something like this:

routing/music/client/src/components-complete/PrivateRoute-2.js

const PrivateRoute = (props) => (

<Route {...props} render={(props) => (

client.isLoggedIn() ? (

// render the component

todo

) : (

// render the redirect

todo

)

)} />

);

WOW! eBook
www.wowebook.org

Routing 445

We pass along all the props to Route as before. Except this time, we specify a render function.
Remember, you can either set the prop component on Route or pass a function to render.

Inside of this render function, we would switch off of client.isLoggedIn(). This boolean value
will tell us if we should render the component given to PrivateRoute or perform a redirect.

Here’s one approach to doing this. First, we can use the destructuring syntax to grab our arguments:

routing/music/client/src/components-complete/PrivateRoute-3.js

const PrivateRoute = ({ component, ...rest }) => (

We grab the component prop then use the spread syntax to grab ...rest, which is all the rest of the
props set on PrivateRoute.

Next, we pass along all the props (rest) to Route:

routing/music/client/src/components-complete/PrivateRoute-3.js

const PrivateRoute = ({ component, ...rest }) => (

<Route {...rest} render={(props) => (

If the user is logged in, we want to render the component:

routing/music/client/src/components-complete/PrivateRoute-3.js

<Route {...rest} render={(props) => (

client.isLoggedIn() ? (

React.createElement(component, props)

) : (

Otherwise, we want to perform a redirect:

routing/music/client/src/components-complete/PrivateRoute-3.js

) : (

<Redirect to={{

pathname: '/login',

}} />

)

Our PrivateRoute component, in full:

WOW! eBook
www.wowebook.org

Routing 446

routing/music/client/src/components-complete/PrivateRoute-3.js
const PrivateRoute = ({ component, ...rest }) => (

<Route {...rest} render={(props) => (

client.isLoggedIn() ? (

React.createElement(component, props)

) : (

<Redirect to={{

pathname: '/login',

}} />

)

)} />

);

Save PrivateRoute.js. Because we’re already using the component in App to match the /albums

endpoint, we’re ready to test it out in the browser.

Higher-order components can be difficult to parse at first. If you’re struggling with
PrivateRoute, we recommend returning to the component later and playing around with
it.

Try it out

With the app open, perform the following steps to verify things work:

1. Click the “Logout” button in the top right
2. We are redirected to /login

3. Now, when visiting /albums the app should redirect you to /login

4. When we login, we’ll be redirected to /albums and this time it renders

We’re almost finished tying things together. There’s one last piece that we mentioned would be nice
to have.

Redirect state

If the user visits a page on the site they can’t access because they’re not logged in, we redirect them
to /login. When they log in, we should send them back to whichever page they came from. In order
to do this, Login needs some way to know where the user came from.

React Router’s Redirect allows us to set some state when we perform our redirect. That state will
be available at the next location. We can have the Redirect in PrivateRoute set this state according
to the user’s location. We’ll see how we can have Login read from this state to figure out where to
send the user.

Open up PrivateRoute.js. Passing this state along in a Redirect looks like this:

WOW! eBook
www.wowebook.org

Routing 447

routing/music/client/src/components-complete/PrivateRoute.js

<Redirect to={{

pathname: '/login',

state: { from: props.location },

}} />

We can set this state to whatever we want. We set the property from to the location of the app before
the redirect. So, if the user tried to access /albums/1DWWb4Q39mp1T3NgyscowF, state.from would be
set to this value.

Now, let’s use this state in Login.js to determine where to redirect the user after they log in.

The state will be available to us here under the location prop that Route provides. Let’s make a
new class function on our Login component we’ll call redirectPath() that reads this state:

routing/music/client/src/components-complete/Login.js

redirectPath = () => {

const locationState = this.props.location.state;

const pathname = (

locationState && locationState.from && locationState.from.pathname

);

return pathname || '/albums';

};

render() {

This function reads the location’s state variable. If it sees a from property, it will return that string.
Otherwise, it will default to /albums.

Now we can use it in our Redirect:

routing/music/client/src/components-complete/Login.js

if (this.state.shouldRedirect) {

return (

<Redirect to={this.redirectPath()} />

Try it out

Now that we’re including state in our redirect, logged-out users will be sent to whichever page they
were trying to access after they log in.

To test this out, in the browser we:

WOW! eBook
www.wowebook.org

Routing 448

1. Visit one of the albums.
2. Copy the full URL (e.g. http://localhost:3000/albums/23O4F21GDWiGd33tFN3ZgI).
3. Click “Logout.”
4. Paste the full URL and hit enter (we can also hit the back button).
5. Our browser is trying to access a page protected by PrivateRoute. We’re redirected to /login.
6. Click the “Login” button.
7. After the login completes, instead of being redirected to /albums we’re redirected to the

location we were trying to access.

Recap

In this chapter, we saw how we can use components from React Router to provide fast, JavaScript-
powered navigation around our web apps. We can prevent the user’s browser from doing full page
loads when navigating around our site. We can build user-friendly URLs that are shareable. And the
added complexity to our application is minimal.

React Router’s declarative, component-driven paradigm is unique in the routing landscape. While
it often means that we have to re-think how to approach routing solutions, the reward is that we’re
working with familiar React components. This limits the surface area of React Router’s API and
minimizes any “magic.”

Further Reading

The React Router docs81 contain several focused examples on a variety of React Router’s concepts.
At the time of writing, examples included common patterns like query params and ambiguous route
matching. All those examples build on the foundations established in this chapter.

81https://reacttraining.com/react-router/

WOW! eBook
www.wowebook.org

https://reacttraining.com/react-router/
https://reacttraining.com/react-router/

Part II

WOW! eBook
www.wowebook.org

Intro to Flux and Redux
Why Flux?

In our projects so far, we’ve managed state inside of React components. The top-level React
component managed our primary state. In this type of data architecture, data flows downward to
child components. To make changes to state, child components propagate events up to their parent
components by calling prop-functions. Any state mutations took place at the top and then flowed
downward again.

Managing application state with React components works fine for a wide variety of applications.
However, as apps grow in size and complexity, managing state inside of React components (or the
component-state paradigm) can become cumbersome.

A common pain point is the tight coupling between user interactions and state changes. For
complex web applications, oftentimes a single user interaction can affect many different, discrete
parts of the state.

For example, consider an app for managing email. Clicking an email must:

1. Replace the “inbox view” (the list of emails) with the “email view” (the email the user clicked)
2. Mark the email as read locally
3. Reduce the total unread counter locally
4. Change the URL of the browser
5. Send a web request to mark the email as read on the server

The function in the top-level component that handles a user clicking on an email must describe all of
the state changes that occur. This loads a single function with lots of complexity and responsibility.
Wading through all of this logic for managing many disparate parts of an app’s state tree can make
updates difficult to manage and error-prone.

Facebook was running into this and other architectural problems with their apps. This motivated
them to invent Flux.

Flux is a Design Pattern

Flux is a design pattern. The predecessor to Flux at Facebook was another design pattern, Model-
View-Controller82 (MVC). MVC is a popular design pattern for both desktop and web applications.

82https://en.wikipedia.org/wiki/Model–view–controller

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Intro to Flux and Redux 451

In MVC, user interactions with the View trigger logic in the Controller. The Controller instructs the
Model how to update itself. After the Model updates, the View re-renders.

While React does not have three discrete “actors” like a traditional MVC implementation, it suffers
from the same coupling between user interactions and state changes.

Flux overview

The Flux design pattern is made up of four parts, organized as a one-way data pipeline:

Flux diagram

The view dispatches actions that describe what happened. The store receives these actions and
determines what state changes should occur. After the state updates, the new state is pushed to the
View.

Returning to our email example, in Flux, we no longer have a single function handling email clicks
that describes all of the state changes. Instead, React notifies the store (through an action) that the
user clicked on an email. As we’ll see over the next few chapters, we can organize the store such
that each discrete part of the state has its own logic for handling updates.

In addition to decoupling interaction handling and state changes, Flux also provides the following
benefits:

Breaking up state management logic

As parts of the state tree become interdependent, most of an app’s state usually gets rolled up to a
top-level component. Flux relieves the top-level component of state management responsibility and
allows you to break up state management into isolated, smaller, and testable parts.

React components are simpler

Certain component-managed state is fine, like activating certain buttons on mouse hover. But by
managing all other state externally, React components become simple HTML rendering functions.
This makes them smaller, easier to understand, and more composable.

Mis-match between the state tree and the DOM tree

Oftentimes, we want to store our state with a different representation than how we want to display
it. For example, we might want to have our app store a timestamp for a message (createdAt) but
in the view we want to display a human-friendly representation, like “23 minutes ago.” Instead of

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 452

having components hold all this computational logic for derived data, we’ll see how Flux enables us
to perform these computations before providing state to React components.

We’ll reflect on these benefits as we dig deep into the design of a complex application in the next
chapter. Before that, we’ll implement the Flux design pattern in a basic application so that we can
review Flux’s fundamentals.

Flux implementations

Flux is a design pattern, not a specific library or implementation. Facebook has open-sourced a
library they use83. This library provides the interface for a dispatcher and a store that you can use
in your application.

But Facebook’s implementation is not the exclusive option. Since Facebook started sharing Flux with
the community, the community has responded by writing tons of different Flux implementations84.
A developer has many compelling choices.

While the available choices can be overwhelming, one community favorite has emerged: Redux85.

Redux

Redux has gained widespread popularity and respect in the React community. The library has even
won the endorsement of the creator of Flux86.

Redux’s best feature is its simplicity. Stripped of its comments and sanity checks, Redux is only
about 100 lines of code.

Because of this simplicity, throughout this chapter we’ll be implementing the Redux core library
ourselves. We’ll use small example applications to see how everything fits together.

In the following chapters, we’ll build on this foundation by constructing a feature-rich messaging
application that mirrors Facebook’s. We’ll see how using Redux as the backbone of our application
equips our app to handle increasing feature complexity.

Redux’s key ideas

Throughout this chapter, we’ll become familiar with each of Redux’s key ideas. Those ideas are:

• All of your application’s data is in a single data structure called the state which is held in the
store

83https://github.com/facebook/flux
84https://github.com/voronianski/flux-comparison
85https://github.com/reactjs/redux
86https://twitter.com/jingc/status/616608251463909376

WOW! eBook
www.wowebook.org

https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/voronianski/flux-comparison
https://github.com/reactjs/redux
https://twitter.com/jingc/status/616608251463909376
https://github.com/facebook/flux
https://github.com/voronianski/flux-comparison
https://github.com/reactjs/redux
https://twitter.com/jingc/status/616608251463909376

Intro to Flux and Redux 453

• Your app reads the state from this store
• The state is never mutated directly outside the store
• The views emit actions that describe what happened
• A new state is created by combining the old state and the action by a function called the
reducer

These key ideas are probably a bit cryptic at the moment, but you’ll come to understand each of
them over the course of this chapter.

Throughout the rest of the chapter, we’ll be referring to Redux. Because Redux is an
implementation of Flux, many of the concepts that apply to Redux apply to Flux as well.

While the Flux creators approve of Redux, Redux is arguably not a “strict” Flux implemen-
tation. You can read about the nuances on the Redux website87.

Building a counter

We’ll explore Redux’s core ideas by building a simple counter. For now, we’ll focus only on Redux
and state management. We’ll see later how Redux connects to React views.

Preparation

Inside of the code download that came with this book, navigate to redux/counter:

$ cd redux/counter

All the code for the counter will go inside app.js.

Because we’re focusing on Redux and state management to start, we’ll be running our code in the
terminal as opposed to the browser.

The package.json for both of the projects contains the package babel-cli. As we’ll indicate in the
Try it out sections below, we’ll be using the babel-node command that comes with babel-cli to
run our code examples:

example of using `babel-node` to run code in the terminal

$./node_modules/.bin/babel-node app.js

Run npm install now inside of redux/counter to install babel-cli:

87http://redux.js.org/docs/introduction/PriorArt.html

WOW! eBook
www.wowebook.org

http://redux.js.org/docs/introduction/PriorArt.html
http://redux.js.org/docs/introduction/PriorArt.html

Intro to Flux and Redux 454

$ npm install

Overview

Our state will be a number. The number will start off as 0. Our actions will either be to increment or
decrement the state. We know from our Redux diagram that the views would dispatch these actions
to the store:

View emits “Increment” action

When the store receives an action from the views, the store uses a reducer function to process the
action. The store provides the reducer function with the current state and the action. The reducer
function returns the new state:

// Inside the store, receives `action` from the view

state = reducer(state, action);

For example, consider a store with a current state of 5. The store receives an increment action. The
store uses its reducer to derive the next state:

Inside an example store

We’ll start building our Redux counter by constructing its reducer. We’ll then work our way up to
see what a Redux store looks like. Our store will be the maintainer of state, accepting actions and
using the reducer to determine the next version of the state.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 455

While we’re starting with a simple representation of state (a number), we’ll be working
with much more complicated state in the next chapter.

The counter’s actions

We know the reducer function for our counter will accept two arguments, state and action. We
know state for our counter will be an integer. But how are actions represented in Redux?

Actions in Redux are objects. Actions always have a type property.

Our increment actions will look like this:

{

type: 'INCREMENT',

}

And decrement actions like this:

{

type: 'DECREMENT',

}

We can envision what a simple interface for this counter app might look like:

An example counter interface

When the user clicks the “+” icon, the view would dispatch the increment action to the store. When
the user clicks the “-“ icon, the view would dispatch the decrement action to the store.

The image of the interface for the counter app is provided as just an example of what the
view might look like. We will not be implementing a view layer for this app.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 456

Incrementing the counter

Let’s begin writing our reducer function. We’ll start by handling the increment action.

The reducer function for our counter accepts two arguments, state and action, and returns the
next version of the state. When the reducer receives an INCREMENT action, it should return state +

1.

Inside of app.js, add the code for our counter’s reducer:

redux/counter/complete/initial-reducer.js

function reducer(state, action) {

if (action.type === 'INCREMENT') {

return state + 1;

} else {

return state;

}

}

If the action.type is INCREMENT, we return the incremented state. Otherwise, our reducer returns
the state unmodified.

You might be wondering if it would be a better idea to raise an error if our reducer receives
an action.type that it does not recognize.

In the next chapter, we’ll see how reducer composition “breaks up” state management
into smaller, more focused functions. These smaller reducers might only handle a subset of
the app’s state and actions. As such, if they receive an action they do not recognize, they
should just ignore it and return the state unmodified.

Try it out

At the bottom of app.js, let’s add some code to test our reducer.

We’ll call our reducer, passing in integers for state and seeing how the reducer increments the
number. If we pass in an unknown action type, our reducer returns the state unchanged:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 457

redux/counter/complete/initial-reducer.js

const incrementAction = { type: 'INCREMENT' };

console.log(reducer(0, incrementAction)); // -> 1

console.log(reducer(1, incrementAction)); // -> 2

console.log(reducer(5, incrementAction)); // -> 6

const unknownAction = { type: 'UNKNOWN' };

console.log(reducer(5, unknownAction)); // -> 5

console.log(reducer(8, unknownAction)); // -> 8

Save app.js and run it with ./node_modules/.bin/babel-node:

$./node_modules/.bin/babel-node app.js

And your output should look like this:

1

2

6

5

8

Decrementing the counter

Again, decrement actions have a type of DECREMENT:

{

type: 'DECREMENT',

}

To support decrement actions, we add another clause to our reducer:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 458

redux/counter/complete/initial-reducer-w-dec.js

function reducer(state, action) {

if (action.type === 'INCREMENT') {

return state + 1;

} else if (action.type === 'DECREMENT') {

return state - 1;

} else {

return state;

}

}

Try it out

At the bottom of app.js, below the code where we dispatched increment actions, add some code to
dispatch decrement actions:

redux/counter/complete/initial-reducer-w-dec.js

const decrementAction = { type: 'DECREMENT' };

console.log(reducer(10, decrementAction)); // -> 9

console.log(reducer(9, decrementAction)); // -> 8

console.log(reducer(5, decrementAction)); // -> 4

Run app.js with ./node_modules/.bin/babel-node:

$./node_modules/.bin/babel-node app.js

And your output should look like this:

1

2

6

5

8

9

8

4

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 459

Supporting additional parameters on actions

In the last example, our actions contained only a type which told our reducer either to increment
or decrement the state. But often behavior in our app can’t be described by a single value. In these
cases, we need additional parameters to describe the change.

For example, what if we wanted our app to allow the user to specify an amount to increment or
decrement by?

An example counter interface with an amount field

We’ll have our actions carry the additional property amount. An INCREMENT action would then look
like this:

{

type: 'INCREMENT',

amount: 7,

}

Wemodify our reducer to increment and decrement by action.amount, expecting all actions to now
carry this property:

redux/counter/complete/reducer-w-amount.js

function reducer(state, action) {

if (action.type === 'INCREMENT') {

return state + action.amount;

} else if (action.type === 'DECREMENT') {

return state - action.amount;

} else {

return state;

}

}

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 460

Try it out

Clear out the code we used to test out reducer() in app.js previously.

This time, we’ll test calling the reducer with our modified actions that now carry the amount

property:

redux/counter/complete/reducer-w-amount.js

const incrementAction = {

type: 'INCREMENT',

amount: 5,

};

console.log(reducer(0, incrementAction)); // -> 5

console.log(reducer(1, incrementAction)); // -> 6

const decrementAction = {

type: 'DECREMENT',

amount: 11,

};

console.log(reducer(100, decrementAction)); // -> 89

Run app.js with ./node_modules/.bin/babel-node:

$./node_modules/.bin/babel-node app.js

And note the output:

5

6

89

Building the store

So far, we’ve been calling our reducer and manually supplying the last version of the state along
with an action.

In Redux, the store is responsible for both maintaining the state and accepting actions from the view.
Only the store has access to the reducer:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 461

Inside the store

The Redux library provides a function for creating stores, createStore(). This function returns
a store object that keeps an internal variable, state. In addition, it provides a few methods for
interacting with the store.

We will write our own version of createStore() so that we fully understand how Redux stores
work. By the end of this chapter, our code for createStore() will behave almost exactly like the
one provided by the Redux library.

At the moment, our store will provide two methods:

• dispatch: The method we’ll use to send the store actions
• getState: The method we’ll use to read the current value of state

Inside of app.js, clear out the code we used to test out reducer() previously. Below the definition
of reducer(), let’s define createStore(). createStore()will accept a single argument, the desired
reducer for the store.

Let’s take a look at the full createStore() function. We’ll break it down piece-by-piece below the
code block:

redux/counter/complete/reducer-w-store-v1.js

function createStore(reducer) {

let state = 0;

const getState = () => (state);

const dispatch = (action) => {

state = reducer(state, action);

};

return {

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 462

getState,

dispatch,

};

}

The reducer argument

createStore() accepts a single argument, reducer. This is how we will indicate what reducer
function our store should use.

state

We initialize the state to 0 at the top of createStore(). Note that we close over the state variable.
This makes state private and inaccessible outside of createStore().

For more info on closures, see the aside “The Factory Pattern.”

getState

To get read access to the state from outside createStore(), we have the method getState which
returns state.

dispatch

The dispatch method is how we send actions to the store. We’ll call it like this:

store.dispatch({ type: 'INCREMENT', amount: 7 });

dispatch calls the reducer function passed in as an argument with the current state and the action.
dispatch sets state to the reducer’s return value.

Note that dispatch does not return the state. Dispatching actions in Redux are “fire-and-forget.”
When we call dispatch, we’re sending a notification to the store with no expectation on when or
how that action will be processed.

Dispatching actions to the store is decoupled from reading the latest version of the state. We’ll see
how this works in practice when we connect the store to React views at the end of this chapter.

The return object

At the bottom of createStore(), we return a new object. This object has getState and dispatch

as methods.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 463

The Factory Pattern
In createStore() above, we’re using a pattern called the “Factory Pattern.” This is a ubiquitous
pattern in JavaScript for creating complex objects like our store object.

The Factory Pattern provides a closure for variables declared inside the factory function.

At the top of createStore(), we declare the variable state:

function createStore(reducer) {

let state = 0;

// ...

state is a private variable. Only the functions declared inside of createStore() have access to
it. Furthermore, because state is inside of this closure, the variable “lives on” between function
calls.

As an example, consider the following factory function:

function createAdder() {

let value = 0;

const add = (amount) => (value = value + amount);

const getValue = () => (value);

return {

add,

getValue,

}

}

We first call the factory to instantiate our adder object. The private variable value is initialized to
0:

const adder = createAdder();

While createAdder() has returned our new object and exited, the variable value lives on in
memory as 0. Whenever we call add(), we are modifying this same value:

adder.add(1);

adder.getValue();

// => 1

adder.add(1);

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 464

adder.getValue();

// => 2

adder.add(5);

adder.getValue();

// => 7

Importantly, value is only accessible to the functions inside the factory. This prevents unintended
reads or writes.

In the case with our store, this prevents any modifications from being made to state outside of
the dispatch() function.

Try it out

We’ll write the code to test out our store in app.js below createStore().

We’ll create our store object with createStore(). Then, instead of calling reducer() with a state
and an action, we’ll dispatch actions to the store. Because our store is keeping the internal variable
state, our state persists between dispatches.

We can use getState() to read state between dispatches:

redux/counter/complete/reducer-w-store-v1.js

const store = createStore(reducer);

const incrementAction = {

type: 'INCREMENT',

amount: 3,

};

store.dispatch(incrementAction);

console.log(store.getState()); // -> 3

store.dispatch(incrementAction);

console.log(store.getState()); // -> 6

const decrementAction = {

type: 'DECREMENT',

amount: 4,

};

store.dispatch(decrementAction);

console.log(store.getState()); // -> 2

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 465

Run app.js with ./node_modules/.bin/babel-node:

$./node_modules/.bin/babel-node app.js

And note the output:

3

6

2

The core of Redux

As it stands, our createStore() function closely resembles the createStore() function that ships
with the Redux library. By the end of this chapter, we’ll have made just a couple of tweaks and
additions to createStore() to bring it closer to that of the Redux library.

Now that we’ve seen a Redux store in action, let’s recap Redux’s key ideas:

All of your application’s data is in a single data structure called the state which is held in the
store.

We saw that the store has a single private variable for the state, state.

Your app reads the state from this store.

We use getState() to access the store’s state.

The state is never mutated directly outside the store.

Because state is a private variable, it cannot be mutated outside of the store.

The views emit actions that describe what happened.

We use dispatch() to send these actions to the store.

A new state is created by combining the old state and the action by a function called the
reducer.

Inside of dispatch(), our store uses reducer() to get the new state, passing in the current state and
the action.

There is one more key idea of Redux we have yet to cover:

Reducers functions must be pure functions.

We will explore this idea in the next app.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 466

Next up

In the next app and over the next two chapters, we’ll work with examples of increasing complexity.
All the ideas we cover are patterns that flow from this core: a single store controls state, making
updates by using a reducer. This reducer takes the current state and an action and returns a new
state.

If you understand the ideas presented above, it’s likely you’d be able to invent many of the patterns
and libraries we’ll be discussing.

To see how Redux operates inside of a feature-rich web application, we’ll cover:

• How to carefully handle more complex data structures in our state
• How to be notified when our state changes without having to poll the store with getState()

(with subscriptions)
• How to split up large reducers into more manageable, smaller ones (and recombine them)
• How to organize our React components in a Redux-powered app

Let’s first deal with handling more complex data structures in our state. For the remainder of this
chapter, we’ll switch gears from our counter app to the beginnings of a chat app. In subsequent
chapters, the interface for our chat app will begin to mirror the richness and complexity of
Facebook’s.

The beginnings of a chat app

Previewing

We’ll build our chat app inside of the folder redux/chat_simple. From inside of the redux/counter
directory, you can type:

$ cd ../chat_simple

First, run npm install:

$ npm install

Run ls to see the contents of this folder:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 467

$ ls

README.md

nightwatch.json

node_modules

package.json

public

semantic

semantic.json

src

tests

yarn.lock

The structure of this app was generated with create-react-app.

For more on create-react-app, see the chapter “Using Webpack with create-react-app.”

Inside of src/ is App.js, the file we’ll be working with in this chapter:

$ ls src/

App.js

complete

index.css

index.js

As is the case with apps generated by create-react-app, index.js is where we mount <App /> to the
DOM. Inside of complete/ are the iterations of App as we build it up through the chapter.

At the moment, index.js is mounting complete/App-5.js, the completed version of the app that
we reach at the end of this chapter. We can boot our app to see it:

$ npm start

Navigate to localhost:3000:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 468

The iteration of the chat app that we build in this chapter

Over the next few chapters, we’ll be enhancing the feature-set (and complexity) of this app. For now,
we can add messages using the input box and delete messages by clicking on them.

While it’s on our mind, let’s modify index.js so that it includes ./App instead of ./complete/App-5:

import React from "react";

import ReactDOM from "react-dom";

import App from "./App";

Open up src/App.js. You’ll see that the same createStore() that we built for the counter app is
already present.

As with the counter app, we’ll start by building the chat app’s reducer. Once our reducer is built,
we’ll see how we connect our Redux store to React views.

Before we build our reducer, though, we should examine how the chat app will represent both its
state and its actions.

State

The state in our counter app was a single number. In our chat app, the state is going to be an object.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 469

This state object will have a single property, messages. messages will be an array of strings, with
each string representing an individual message in the application. For example:

// an example `state` value

{

messages: [

'here is message one',

'here is message two',

],

}

Actions

Our app will process two actions: ADD_MESSAGE and DELETE_MESSAGE.

The ADD_MESSAGE action object will always have the property message, the message to be added to
the state. The ADD_MESSAGE action object has this shape:

{

type: 'ADD_MESSAGE',

message: 'Whatever message is being added here',

}

The DELETE_MESSAGE action object will delete a specified message from the state.

If each of our messages were objects, we could assign eachmessage an id property when it is created.
DELETE_MESSAGE could then specify the message to delete with an id property.

However, for simplicity, our messages at the moment are strings. To specify the message to be
removed from state, we can use the index of the message in the array.

With that in mind, the DELETE_MESSAGE action object has this shape:

{

type: 'DELETE_MESSAGE',

index: 2, // <- index of whichever message is being removed here

}

Building the reducer()

Initializing state

Right now, we initialize state at the top of createStore() to 0:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 470

1 function createStore(reducer) {

2 let state = 0;

3 // ...

4 }

While this works fine for our counter app, we want the initial state for our messaging app to look
like this:

{ // an object

messages: [], // no messages

}

We’ll need to modify createStore() so that it will work for this and any representation of state.

We’ll have createStore() accept a second argument, initialState. The function will initialize
state to this value.

Inside of App.js, edit createStore() now:

redux/chat_simple/src/complete/App-1.js

function createStore(reducer, initialState) {

let state = initialState;

// ...

We’ll pass in initialState when we initialize the store a bit later.

Handling the ADD_MESSAGE action

Begin writing the reducer() inside of App.js, below createStore():

redux/chat_simple/src/complete/App-1.js

function reducer(state, action) {

if (action.type === 'ADD_MESSAGE') {

return {

messages: state.messages.concat(action.message),

};

} else {

return state;

}

}

When our reducer receives the ADD_MESSAGE action we want to append the new message to the end
of the messages array in state. Otherwise, we return state unmodified.

We might be tempted to use Array’s push to append the new message to messages:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 471

// tempting, but flawed

if (action.type === 'ADD_MESSAGE') {

state.messages.push(action.messages);

return state;

}

This would yield the desired result: state.messages would contain the new message.

However, this violates a principle of Redux reducers, our last key idea of Redux from our list above:
reducers must be pure functions.

A pure function88 is one that:

• Will always return the same value given the same set of arguments.
• Does not alter the “world” around it in any way. This includes mutating variables external
to the function or altering an entry in a database.

Because state is a variable external to reducer() and passed in as an argument, reducer() does not
“own” this variable. Modifying state, as we do with push above, would make reducer() impure.

When writing Redux reducers, our pure reducer functions will always return a new array or object
in the event that state has to be modified. This follows from the practice of treating component
state as immutable as we discussed in the first few chapters. Reducers should treat the state object
as immutable or read-only.

Reducers should treat the state object as immutable.

Because we do not want to modify the state argument, ADD_MESSAGE should instead create a new
state object with a new messages array. The new array should have the desired message appended
to it.

Look again at how we produce the next state in ADD_MESSAGE:

redux/chat_simple/src/complete/App-1.js

return {

messages: state.messages.concat(action.message),

};

88https://en.wikipedia.org/wiki/Pure_function

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Pure_function

Intro to Flux and Redux 472

Crucially, Array’s concat does not modify the original array. Instead, it creates a new copy of the
array that includes action.message appended to it.

In general, writing functions purely can help reduce surprises or enigmatic bugs in your
code. We explore the specific motivations and benefits of Redux’s insistence on pure
reducer functions in a subsequent chapter.

Try it out

We’ll write our testing code at the bottom of App.js, below the definition for reducer().

Our createStore() function now accepts initialState as an argument. Let’s first define this
variable:

redux/chat_simple/src/complete/App-1.js

const initialState = { messages: [] };

And then initialize the store:

redux/chat_simple/src/complete/App-1.js

const store = createStore(reducer, initialState);

Let’s add code to dispatch add message actions to the store. This time, we’ll save each state “version”
in two variables, stateV1 and stateV2. We’ll print out the two versions of our state at the end:

redux/chat_simple/src/complete/App-1.js

const addMessageAction1 = {

type: 'ADD_MESSAGE',

message: 'How does it look, Neil?',

};

store.dispatch(addMessageAction1);

const stateV1 = store.getState();

const addMessageAction2 = {

type: 'ADD_MESSAGE',

message: 'Looking good.',

};

store.dispatch(addMessageAction2);

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 473

const stateV2 = store.getState();

console.log('State v1:');

console.log(stateV1);

console.log('State v2:');

console.log(stateV2);

While we’re inside of a create-react-app project, we don’t yet have any React components. So we’ll
just run App.js with babel-node:

./node_modules/.bin/babel-node src/App.js

Which yields the following result:

State v1:

{ messages: ['How does it look, Neil?'] }

State v2:

{ messages: ['How does it look, Neil?', 'Looking good.'] }

Importantly, the state object was not modified between dispatches. We saved the first version
of the state as the variable stateV1. Although this object was passed into reducer(), reducer() did
not modify it. Instead, it created a new object with our second message appended. This new object
was returned and set to the variable stateV2.

Handling the DELETE_MESSAGE action

As discussed, the DELETE_MESSAGE action object has the following shape:

{

type: 'DELETE_MESSAGE',

index: 2, // <- index of whichever message is being removed here

}

To support this action, we need to add a new else if statement to handle an action with a type of
'DELETE_MESSAGE'. When the reducer receives this action, it should return an object with a messages
array that contains every message except the one specified by the action’s index property.

Themost succinct solutionmight seem to be Array’s splicemethod89. The first argument for splice
is the starting index of the element(s) you want to remove. The second is the number of elements to
remove:

89https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice

Intro to Flux and Redux 474

// tempting, but flawed

case 'DELETE_MESSAGE':

state.messages.splice(action.index, 1);

return state;

However, like push, splice modifies the original array. This would make reducer() impure.
Again, we cannot modify state — we must treat it as read-only.

Instead, we can create a new object as we did in ADD_MESSAGE. That new object will contain a new
messages array that includes all of the elements in state.messages except the one being removed.

To do this in JavaScript, we can create a new array that contains:

• All of the elements from 0 to action.index

• All of the elements from action.index + 1 to the end of the array

We use Array’s slice to grab the desired “chunks” of the array:

redux/chat_simple/src/complete/App-2.js
function reducer(state, action) {

if (action.type === 'ADD_MESSAGE') {

return {

messages: state.messages.concat(action.message),

};

} else if (action.type === 'DELETE_MESSAGE') {

return {

messages: [

...state.messages.slice(0, action.index),

...state.messages.slice(

action.index + 1, state.messages.length

),

],

};

} else {

return state;

}

}

Importantly, slice does not modify the original array. Instead, it returns a new array with the
elements in the range you specify. We create a new array that combines two ranges: up to and
excluding action.index and every element after action.index.

For more info on the ES6 spread operator (...) see Appendix B.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 475

Try it out

At the very bottom of App.js, we’ll add on to our code that tested the ADD_MESSAGE action. Write
the following below the last console.log() statement in the file:

redux/chat_simple/src/complete/App-2.js

const deleteMessageAction = {

type: 'DELETE_MESSAGE',

index: 0,

};

store.dispatch(deleteMessageAction);

const stateV3 = store.getState();

console.log('State v3:');

console.log(stateV3);

By the second version of the state, we’ve added two messages to the state. We then dispatch a
DELETE_MESSAGE action, specifying the message at index 0.

Run the file with babel-node:

./node_modules/.bin/babel-node src/App.js

As expected, in the third version of the state the first message has been removed:

State v1:

{ messages: ['How does it look, Neil?'] }

State v2:

{ messages: ['How does it look, Neil?', 'Looking good.'] }

State v3:

{ messages: ['Looking good.'] }

Subscribing to the store

Our store so far provides methods for the view to dispatch actions and to read the current version
of the state.

One important feature is missing before we can connect the store to React, however. While the
view can read the state at any time with getState(), the view needs to know when the state has
changed. Constantly polling the store with getState() is inefficient.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 476

In our previous apps, when we wanted to modify the state we called setState(). Importantly,
setState() triggers a render() call on the component.

Now, state is being modified outside of React and inside of the store. Our views are unaware of when
it changes. If we’re going to keep our views up to date with the most current state in the store, then
our views should receive a notification whenever the state changes.

Our store will use the observer pattern to allow the views to immediately update when the state
changes. The views will register a callback function that they would like to be invoked when the
state changes. The store will keep a list of all of these callback functions. When the state changes,
the store will invoke each function, “notifying” the listeners of the change.

The best way to illustrate this pattern is to implement it.

Inside createStore(), we will:

1. Define an array called listeners

2. Add a subscribe() method which adds a new listener to listeners

3. Call each listener function when the state is changed

1. Define an array called listeners

We declare listeners at the top of createStore():

redux/chat_simple/src/complete/App-3.js

function createStore(reducer, initialState) {

let state = initialState;

const listeners = [];

// ...

2. Add a subscribe() method which adds a new listener to listeners

Next, below the declaration of listeners, let’s add subscribe():

redux/chat_simple/src/complete/App-3.js

const subscribe = (listener) => (

listeners.push(listener)

);

The listener argument of subscribe() is a function, the function that the view would like invoked
whenever the state changes. We add this function to the listeners array.

To make subscribe() accessible, we need to expose subscribe by adding it to the store object
returned by createStore():

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 477

redux/chat_simple/src/complete/App-3.js

// ...

return {

subscribe,

getState,

dispatch,

};

3. Call each listener function when the state is changed

Whenever the state changes, we need to invoke all the functions kept in listeners. The state may
change whenever we dispatch actions. As such, we’ll add the invocation logic to dispatch():

redux/chat_simple/src/complete/App-3.js

// ...

const dispatch = (action) => {

state = reducer(state, action);

listeners.forEach(l => l());

};

// ...

Note that there are no arguments passed to the listeners. This callback is solely a notification that
the state changed.

createStore() in full

Here’s our createStore() function, in full:

redux/chat_simple/src/complete/App-4.js

function createStore(reducer, initialState) {

let state = initialState;

const listeners = [];

const subscribe = (listener) => (

listeners.push(listener)

);

const getState = () => (state);

const dispatch = (action) => {

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 478

state = reducer(state, action);

listeners.forEach(l => l());

};

return {

subscribe,

getState,

dispatch,

};

}

Stripped of comments, warnings, and sanity checks, the Redux library’s createStore() looks and
behaves quite like our function.

Try it out

With subscribe() in place, our store is complete. Let’s test everything out.

In App.js, clear out all the previous testing code below this line where we initialize the store:

redux/chat_simple/src/complete/App-4.js

const store = createStore(reducer, initialState);

We’ll dispatch add and delete message actions like before. Except, now we’ll use subscribe() to
register a function that will perform a console.log() every time the state changes.

Our listener prints the current state to the console:

redux/chat_simple/src/complete/App-4.js

const listener = () => {

console.log('Current state: ');

console.log(store.getState());

};

Next, let’s subscribe this listener:

redux/chat_simple/src/complete/App-4.js

store.subscribe(listener);

Now, we can dispatch our actions. After every dispatch() call, the listening function we passed to
subscribe() will be called, writing to the console:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 479

redux/chat_simple/src/complete/App-4.js

const addMessageAction1 = {

type: 'ADD_MESSAGE',

message: 'How do you read?',

};

store.dispatch(addMessageAction1);

// -> `listener()` is called

const addMessageAction2 = {

type: 'ADD_MESSAGE',

message: 'I read you loud and clear, Houston.',

};

store.dispatch(addMessageAction2);

// -> `listener()` is called

const deleteMessageAction = {

type: 'DELETE_MESSAGE',

index: 0,

};

store.dispatch(deleteMessageAction);

// -> `listener()` is called

Save App.js and run it with babel-node:

$./node_modules/.bin/babel-node src/App.js

And note the output:

Current state:

{ messages: ['How do you read?'] }

Current state:

{ messages: ['How do you read?', 'I read you loud and clear, Houston.'] }

Current state:

{ messages: ['I read you loud and clear, Houston.'] }

With our store feature complete, we’re prepared to connect our Redux store to some React views
and see a complete, working Redux pipeline.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 480

Connecting Redux to React

Revisiting the Flux diagram from earlier, we can now explore the specifics behind how Redux and
React work together to fulfill this design pattern:

Using store.getState()

React is no longer managing state. Redux is. Therefore, top-level React components will use
store.getState() as opposed to this.state to drive their render() functions. The state provided
by Redux will trickle down from there.

For instance, if we want to render our state’s messages, we fetch them from our Redux store:

// An example top-level component

class App extends React.Component {

// ...

render() {

const messages = store.getState().messages;

// ...

}

};

Using store.subscribe()

When React manages state, we call setState() to modify this.state. setState() will trigger a
re-render after the state is modified.

When Redux is managing state, we use subscribe() inside the top-level React component to setup
a listening function that initiates the re-render.

We can subscribe our component inside of componentDidMount. The listening function that we pass
to subscribe() will call this.forceUpdate(), triggering the component (this) to re-render.

As an example, subscribing a React component looks like this:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 481

// An example top-level component

class App extends React.Component {

// ...

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

// ...

};

Using store.dispatch()

Lower-level components will dispatch actions in response to events that should modify state. For
instance, a React component might dispatch an action to the store whenever a delete button is
clicked:

// An example leaf component

class Message extends React.Component {

handleDeleteClick = () => {

store.dispatch({

type: 'DELETE_MESSAGE',

index: this.props.index,

});

};

// ...

};

This dispatch() call will modify the state. dispatch() will then invoke the listener, which we
registeredwith subscribe(). This forces the App component to re-render.When render() is invoked,
the App component reads from the store again with getState(). App then passes the latest version
of the state down to its child components.

This cycle repeats every time React dispatches an action.

The app’s components

The chat app has three React components:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 482

• App: The top-level container
• MessageView: The list of messages
• MessageInput: The input to add new messages

As we saw, the input box enables adding messages. Clicking on a message deletes it.

MessageView will render the state’s messages. It will also dispatch DELETE_MESSAGE actions every
time the user clicks an individual message.

MessageInputwill not use state to render. However, it will dispatch ADD_MESSAGE actions every time
the user submits a new message.

We could have broken MessageView into MessageList and Message. This would follow the
pattern from previous apps. However, each message is simple enough at the moment that
this is not necessary.

Preparing App.js

For this project, the store logic and React components will all be inside src/App.js. We will be able
to reference store directly in each of our components.

In more complex applications, the store will likely be located in a different file than React
components. In a later chapter, we’ll explore other ways to have React components communicate
with a Redux store object.

Clear out all the testing code below the declaration of store at the end of src/App.js:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 483

redux/chat_simple/src/complete/App-4.js

const store = createStore(reducer, initialState);

The App component

App is the top-level React component in our app. App will be the component that reads from the
store. We’ll need it to subscribe to our Redux store.

Subscribing to changes

Like we talked about above, we will subscribe() inside of componentDidMount. The callback
function we give to subscribe() calls this.forceUpdate(). This will cause the App component
to re-render every time the state changes:

redux/chat_simple/src/complete/App-5.js

class App extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

Rendering the view

In render, we’ll first use getState() to read messages from the store. We’ll then render the two
children, MessageView and MessageInput. Only MessageView needs the list of messages:

redux/chat_simple/src/complete/App-5.js

render() {

const messages = store.getState().messages;

return (

<div className='ui segment'>

<MessageView messages={messages} />

<MessageInput />

</div>

);

}

We have our downward data pipeline, from the store through App down to MessageView. But what
about the inverse direction? We want MessageView to have the ability to delete messages and
MessageInput to be able to add them.

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 484

When React is managing state, we pass down functions as props from state-managing components
to children. This enables children to propagate events up to the parent who modifies the state.

Now, we have a store object that we can dispatch actions to. While we could still concentrate all
communication with the store inside of App, let’s explore allowing our child components to dispatch
actions to the store directly.

As in previous projects, the two div tags (and their className attributes) are provided for
styling.

The App component in full:

redux/chat_simple/src/complete/App-5.js

class App extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

render() {

const messages = store.getState().messages;

return (

<div className='ui segment'>

<MessageView messages={messages} />

<MessageInput />

</div>

);

}

}

The MessageInput component

MessageInput will have a single input field and a submit button. When the user clicks the submit
button, the component should dispatch an ADD_MESSAGE action.

As a controlled component, we’ll want to keep track of the value of the input in state somewhere.
We could keep this state in our Redux store. But it’s usually easier to just keep form data in the form
component’s state.

Let’s begin by defining the initial state as well as the onChange handler function:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 485

redux/chat_simple/src/complete/App-5.js

class MessageInput extends React.Component {

state = {

value: '',

};

onChange = (e) => {

this.setState({

value: e.target.value,

})

};

For more info on controlled components, see the “Forms” chapter.

Next, we’ll define handleSubmit(), the function that will call dispatch():

redux/chat_simple/src/complete/App-5.js

handleSubmit = () => {

store.dispatch({

type: 'ADD_MESSAGE',

message: this.state.value,

});

this.setState({

value: '',

});

};

render will contain an input and a button wrapped in a div. button will have its onClick attribute
set to this.handleSubmit:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 486

redux/chat_simple/src/complete/App-5.js

render() {

return (

<div className='ui input'>

<input

onChange={this.onChange}

value={this.state.value}

type='text'

/>

<button

onClick={this.handleSubmit}

className='ui primary button'

type='submit'

>

Submit

</button>

</div>

);

}

Do I have to keep all my app’s state in my Redux store?

We mentioned that we could have kept the value of the input inside MessageInput in our
Redux store. This is a perfectly valid and common approach.

However, we often find that using component state in certain areas is just fine. We like
using component state for data that will always be isolated to the component, like form
input data or whether or not a drop-down is open. If in the future it ever feels “wrong,” it’s
easy to move that state into Redux.

The MessageView component

The MessageView component’s messages prop is an array of strings. MessageView will render these
messages as a list. Furthermore, whenever the user clicks a message we want to dispatch a DELETE_-
MESSAGE action.

Let’s begin by defining the component and its function handleClick(). handleClick() will be the
function that calls dispatch(). handleClick() accepts one argument, index, which it uses in the
action object it dispatches:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 487

redux/chat_simple/src/complete/App-5.js

class MessageView extends React.Component {

handleClick = (index) => {

store.dispatch({

type: 'DELETE_MESSAGE',

index: index,

});

};

The render function will use map to create the list of messages to render. We want each individual
message to be wrapped inside of a div:

redux/chat_simple/src/complete/App-5.js

render() {

const messages = this.props.messages.map((message, index) => (

<div

className='comment'

key={index}

onClick={() => this.handleClick(index)}

>

{message}

</div>

));

On this div we set the onClick attribute. We want this to call a function that calls handleClick(),
passing in the index of the target message.

Finally, we return messages wrapped inside of a div:

redux/chat_simple/src/complete/App-5.js

return (

<div className='ui comments'>

{messages}

</div>

);

Finally, we export App at the bottom of the file:

WOW! eBook
www.wowebook.org

Intro to Flux and Redux 488

redux/chat_simple/src/complete/App-5.js

export default App;

Wealready include App in index.js andmount it to the DOMusing ReacctDOM.render(). Therefore,
we’re ready to try everything out.

Try it out

Save App.js. In your terminal, from the root of the project folder, boot the server:

$ npm start

Add a few messages, then click on them to see them instantly disappear.

Next up

Redux is a powerful way to manage state in your app. By using a few simple ideas you can get an
understandable data architecture that scales well to large apps.

Admittedly, in the current state of our app it’s difficult to see how Redux provides any advantage
over managing state in React. Indeed, as stated in the introduction of this chapter, using React for
state management is a preferable choice for a wide variety of applications.

However, as we’ll see as we scale up the complexity of our messaging app, Redux is advantageous
as an app’s interactivity and state management grows more complicated. This is because:

1. All of the data is in a central data structure
2. Data changes are also centralized
3. The actions that views emit are decoupled from the state mutations that occur
4. One-way data flow makes it easy to trace how changes flow through the system

With the core ideas of Redux behind us, we’re prepared to significantly increase the functionality
of the messaging app. In doing so, we’ll explore solutions for a variety of real-world challenges.

As we evolve the messaging app, we’ll cover:

• How to use the Redux library
• How to use the React-Redux library
• How to deal with more complicated state
• How to split up our reducers (and recombine them)
• How to re-organize our React components

React and Redux pair wonderfully, and we’ll see first-hand how well they scale to handle our
escalating requirements.

WOW! eBook
www.wowebook.org

Intermediate Redux
In the last chapter, we learned about a specific Flux implementation, Redux. By building our own
Redux store from scratch and integrating the store with React components, we got a feel for how
data flows through a Redux-powered React app.

In this chapter, we build on these concepts by adding additional features to our chat application.
Our chat app will begin to look like a real-world messaging interface.

In the process, we’ll explore strategies for handling more complex state management. We’ll also use
a couple of functions directly from the redux library.

Preparation

Inside of the code download that came with the book, navigate to redux/chat_intermediate:

$ cd redux/chat_intermediate

This app is setup identically to the chat app in the last chapter, powered by create-react-app.

$ ls

README.md

nightwatch.json

package.json

public

semantic

semantic.json

src

tests

yarn.lock

Checking out src/:

WOW! eBook
www.wowebook.org

Intermediate Redux 490

$ ls src/

App.js

complete

index.css

index.js

Again, App.js is where we’ll be working. It contains the app as we left it in the previous chapter.
And again, complete/ contains each iteration of App.js as we build it up over the next two chapters.
index.js currently includes the final version of App.js and mounts it to the DOM.

As usual, run npm install to install all of the dependencies for the project:

$ npm install

And then execute npm start to boot the server:

$ npm start

View the completed app by visiting http://localhost:3000 in your browser.

In this iteration of the chat app, our app has threads. Each message belongs to a particular thread
with another user. We can switch between threads using the tabs at the top.

As in the last iteration, note that we can add messages with the text field at the bottom as well as
delete messages by clicking on them.

To begin, let’s swap in App.js in src/index.js:

import React from "react";

import ReactDOM from "react-dom";

import App from "./App";

Using createStore() from the redux library

In the last chapter, we implemented our own version of createStore(). At the top of src/App.js,
you’ll find the createStore() function just as we left it. The store object that this function creates
has three methods: getState(), dispatch(), and subscribe().

As we noted in the last chapter, our createStore() function is very similar to that which ships with
the redux library. Let’s remove our implementation and use the one from redux.

In package.json, we already include the redux library:

WOW! eBook
www.wowebook.org

Intermediate Redux 491

"redux": "3.6.0",

We can import the createStore() function from the library:

redux/chat_intermediate/src/complete/App-1.js

import { createStore } from 'redux';

Now we can remove our own createStore() definition from App.js.

Try it out

To verify everything is working properly, ensure the server is running:

$ npm start

And then check out the app on http://localhost:3000.

Behavior for the app will be the same as we left it in the previous chapter. We can add new messages
and click on them to delete.

There are a couple subtle behavioral differences between our createStore() and the one that ships
with the Redux library. Our app has yet to touch on them. We’ll address these differences when they
come up.

Representing messages as objects in state

Our state up to this point has been simple. State has been an object, with a messages property. Each
message has been a string:

// Example of our state object so far

{

messages: [

'Roger. Eagle is undocked',

'Looking good.',

],

}

To bring our app closer to a real-world chat app, each message will need to carry more data. For
example, we might want each message to specify when it was sent or who sent it. To support this,
we can use an object to represent each message as opposed to a string.

For now, we’ll add two properties to each message, timestamp and id:

WOW! eBook
www.wowebook.org

Intermediate Redux 492

// Example of our new state object

{

messages: [

// An example message

// messages are now objects

{

text: 'Roger. Eagle is undocked',

timestamp: '1461974250213',

id: '9da98285-4178',

},

// ...

]

}

The Date.now() function in JavaScript returns a number representing the number of
milliseconds since January 1, 1970 00:00 UTC. This is called “Epoch” or “Unix” time. We’re
using this representation for the timestamp property above.

You can use a JavaScript library like Moment.js90 to render more human-friendly times-
tamps.

In order to support messages that are objects, we’ll need to tweak our reducer as well as our React
components.

Updating ADD_MESSAGE

The reducer function we wrote in the last chapter handles two actions, ADD_MESSAGE and DELETE_-

MESSAGE. Let’s start by updating the ADD_MESSAGE action handler.

As you recall, the ADD_MESSAGE action currently contains a message property:

{

type: 'ADD_MESSAGE',

message: 'Looking good.',

}

reducer() receives this action and returns a new object with a messages property. messages is set
to a new array that contains the previous state.messages with the new message appended to it:

90http://momentjs.com/

WOW! eBook
www.wowebook.org

http://momentjs.com/
http://momentjs.com/

Intermediate Redux 493

redux/chat_intermediate/src/complete/App-1.js

function reducer(state, action) {

if (action.type === 'ADD_MESSAGE') {

return {

messages: state.messages.concat(action.message),

};

Let’s tweak our ADD_MESSAGE action so that it uses the property name text instead of message:

// Example of what our new ADD_MESSAGE will look like

{

type: 'ADD_MESSAGE',

text: 'Looking good.',

}

text matches the property name that we’ll be using for the message object.

Next, let’s modify our reducer’s ADD_MESSAGE handler so that it uses message objects as opposed to
string literals.

We will give each message object a unique identifier. We include the uuid library in our pack-
age.json. Let’s import it at the top of src/App.js:

redux/chat_intermediate/src/complete/App-2.js

import uuid from 'uuid';

Next, let’s modify ADD_MESSAGE so that it creates a new object to represent the message. It will use
action.text for the text property and then generate a timestamp and an id:

redux/chat_intermediate/src/complete/App-2.js

if (action.type === 'ADD_MESSAGE') {

const newMessage = {

text: action.text,

timestamp: Date.now(),

id: uuid.v4(),

};

Date.now() is part of the JavaScript standard library. It returns the current time in the Unix
time format, in milliseconds.

We’ll use concat again. This time, we’ll use concat to return a new array that contains state.messages
and our newMessage object:

WOW! eBook
www.wowebook.org

Intermediate Redux 494

redux/chat_intermediate/src/complete/App-2.js

return {

messages: state.messages.concat(newMessage),

};

Our modified ADD_MESSAGE handler in full:

redux/chat_intermediate/src/complete/App-2.js

if (action.type === 'ADD_MESSAGE') {

const newMessage = {

text: action.text,

timestamp: Date.now(),

id: uuid.v4(),

};

return {

messages: state.messages.concat(newMessage),

};

Updating DELETE_MESSAGE

The DELETE_MESSAGE action up until now contained an index, the index of the message in the
state.messages array to be deleted:

{

type: 'DELETE_MESSAGE',

index: 5,

}

Now that all of our messages have a unique id, we can use that:

// Example of what our new DELETE_MESSAGE will look like

{

type: 'DELETE_MESSAGE',

id: '9da98285-4178',

}

To remove the message from state.messages, we can use Array’s filter() method. filter()
returns a new array containing all of the elements that “pass” the supplied test function:

WOW! eBook
www.wowebook.org

Intermediate Redux 495

redux/chat_intermediate/src/complete/App-2.js

} else if (action.type === 'DELETE_MESSAGE') {

return {

messages: state.messages.filter((m) => (

m.id !== action.id

))

Here, we’re building a new array containing every object that does not have an id that corresponds
to the action’s id.

With these changes in place, our reducers are ready to handle our newmessage objects. We’ll update
our React components next. We need to update both the actions they emit as well as how they render
messages.

Updating the React components

MessageInput dispatches an ADD_MESSAGE action whenever the user clicks its submit button. We’ll
need to modify this component so that it uses the property name text as opposed to message for
the action:

redux/chat_intermediate/src/complete/App-2.js

handleSubmit = () => {

store.dispatch({

type: 'ADD_MESSAGE',

text: this.state.value,

});

this.setState({

value: '',

});

};

MessageView dispatches a DELETE_MESSAGE action whenever the user clicks on a message. We need
to tweak the action it dispatches so that it uses the property id as opposed to index:

WOW! eBook
www.wowebook.org

Intermediate Redux 496

redux/chat_intermediate/src/complete/App-2.js

class MessageView extends React.Component {

handleClick = (id) => {

store.dispatch({

type: 'DELETE_MESSAGE',

id: id,

});

};

Then, we need to change the render() function for MessageView. We’ll modify the HTML for each
message so that it also includes the timestamp property. To render the text of the message, we call
message.text:

redux/chat_intermediate/src/complete/App-2.js

render() {

const messages = this.props.messages.map((message, index) => (

<div

className='comment'

key={index}

onClick={() => this.handleClick(message.id)} // Use `id`

>

<div className='text'> {/* Wrap message data in `div` */}

{message.text}

@{message.timestamp}

</div>

</div>

));

Note that we now pass in message.id as opposed to index to this.handleClick(). We wrap the
display logic for each message inside a div with class text.

Our reducers and React components are now on the same page. We’re using our new representation
of both the state and actions.

Save App.js. If your server isn’t already running, boot it:

$ npm start

Navigate to http://localhost:3000. When you add messages, a timestamp should appear to the
right of each message. You can also delete them as before by clicking on them:

WOW! eBook
www.wowebook.org

Intermediate Redux 497

Introducing threads

Our state now uses message objects, which will allow us to carry information about each message
in our app (like timestamp).

But in order for our app to begin reflecting a real-world chat app, we’ll need to introduce another
concept: threads.

In a chat app, a “thread” is a distinct set of messages. A thread is a conversation between you and
one or more other users:

Two threads in the interface

WOW! eBook
www.wowebook.org

Intermediate Redux 498

As the completed version of the app demonstrated, our app will use tabs to enable a user to switch
between threads. Each message belongs to a single thread:

Messages belong to Threads

To support threads, we’ll update the shape of our state object. The top-level property will now be
threads, an array of thread objects. Each thread object will have a messages property which will
contain the message object we introduced to the system in the previous section:

{

threads: [

{

id: 'd7902357-4703', // UUID of the thread

title: 'Buzz Aldrin', // Who the conversation is with

messages: [

{

id: 'e8596e6b-97cc',

text: 'Twelve minutes to ignition.',

timestamp: 1462122634882,

},

// ... other messages with Buzz Aldrin

]

},

// ... other threads (with other users)

],

}

Supporting threads in initialState

To support threads, let’s first update our initial state.

At the moment, we’re initializing state to an object with a messages property:

WOW! eBook
www.wowebook.org

Intermediate Redux 499

redux/chat_intermediate/src/complete/App-2.js

const initialState = { messages: [] };

Now we want our top-level property to be threads. We could initialize state to this:

{ threads: [] }

But that would quickly add a significant amount of complexity to our app. Not only do we need to
update our reducers to support our new thread-driven state, but we’d need to also add some way to
create new threads.

For our app to reflect a real-world chat app, we’d need the ability to create new threads in the future.
But for now, we can take a smaller step by just initializing our state with a hard-coded set of threads.

Modify initialState now, initializing it to an object with a threads property.We’ll have two thread
objects in state:

redux/chat_intermediate/src/complete/App-3.js

const initialState = {

activeThreadId: '1-fca2', // New state property

threads: [// Two threads in state

{

id: '1-fca2', // hardcoded pseudo-UUID

title: 'Buzz Aldrin',

messages: [

{ // This thread starts with a single message already

text: 'Twelve minutes to ignition.',

timestamp: Date.now(),

id: uuid.v4(),

},

],

},

{

id: '2-be91',

title: 'Michael Collins',

messages: [],

},

],

};

WOW! eBook
www.wowebook.org

Intermediate Redux 500

Because we’re hardcoding the id for our threads for now, we’re using a clipped version of
UUID for each of them.

Notice our initial state object contains another top-level property, activeThreadId. Our front-end
displays only one thread at a time. Our view needs to know which thread to display. In addition to
threads and messages, our app should also have this additional piece of state.

Here, we initialize it to our first thread which has an id of '1-fca2'.

We now have an initial state object that our React components can use to render a threaded version
of our app. We’ll update the components first to render from this new state shape.

Our app will be locked at this initial state though; we won’t be able to add or delete any messages
or switch between tabs. Once we confirm the views look good, we’ll update our actions and our
reducer to support our new thread-based chat app.

For now, we’re initializing the first thread object with a single message already under
messages. This will enable us to verify our React components are properly rendering a
thread with a message ahead of our reducers supporting our updated ADD_MESSAGE action.

Supporting threads in the React components

To enable switching between threads in the app, the interface will have tabs above the messages
view. We’ll need to both add new React components and modify existing ones to support this.

Looking at the completed version of this chapter’s chat app, we can identify the following
components:

• App: The top-level component.
• ThreadTabs: The tabs widget for switching between threads.
• Thread: Displays all the messages in a thread. This component has been called MessageView,
but we’ll update its name to reflect our new thread-based state paradigm.

WOW! eBook
www.wowebook.org

Intermediate Redux 501

– MessageInput: The input to add new messages to the open thread. We can have this
nested under Thread.

Let’s first update our existing components to support our thread-based state. We’ll then add our new
component, ThreadTabs.

Modifying App

App currently subscribes to the store. App uses getState() to read the messages property and then
renders its two children.

We’ll have the component use our state’s activeThreadId property to deduce which thread is active.
The component will then pass the active thread to Thread (formerly MessageView) to render its
messages.

First, we read both activeThreadId and threads from the state. We then use Array’s find to find
the thread object that has an id that matches activeThreadId:

redux/chat_intermediate/src/complete/App-3.js

class App extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

render() {

const state = store.getState();

const activeThreadId = state.activeThreadId;

const threads = state.threads;

const activeThread = threads.find((t) => t.id === activeThreadId);

We pass our Thread component the activeThread for it to render. We’re removing MessageInput

from App as it will now be a child of Thread:

redux/chat_intermediate/src/complete/App-3.js

return (

<div className='ui segment'>

<Thread thread={activeThread} />

</div>

);

The updated App component, in full:

WOW! eBook
www.wowebook.org

Intermediate Redux 502

redux/chat_intermediate/src/complete/App-3.js

class App extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

render() {

const state = store.getState();

const activeThreadId = state.activeThreadId;

const threads = state.threads;

const activeThread = threads.find((t) => t.id === activeThreadId);

return (

<div className='ui segment'>

<Thread thread={activeThread} />

</div>

);

}

}

Turning MessageView into Thread

Now that messages are collected under a single thread, our front-end is displaying one thread’s
messages at a given time. We’ll rename MessageView to Thread to reflect this.

Thread will render both the list of messages pertaining to the thread it’s rendering as well as the
MessageInput component for adding new messages to that thread.

First, rename the component:

redux/chat_intermediate/src/complete/App-3.js

class Thread extends React.Component {

Now, to create messages in render(), we’ll use this.props.thread.messages instead of this.props.messages:

redux/chat_intermediate/src/complete/App-3.js

render() {

const messages = this.props.thread.messages.map((message, index) => (

Last, we’ll add MessageInput as a child of Thread. While we’ll eventually need to update Mes-

sageInput to work properly with our new threaded state paradigm, we’ll hold off on that update
for now:

WOW! eBook
www.wowebook.org

Intermediate Redux 503

redux/chat_intermediate/src/complete/App-3.js

return (

<div className='ui center aligned basic segment'>

<div className='ui comments'>

{messages}

</div>

<MessageInput />

</div>

);

Try it out

Save App.js. Navigating to http://localhost:3000, we see our app with a single message, the
message we set in initialState. However, we cannot add or delete any messages:

Our actions and our reducer do not yet support our new state shape. Before we update them, though,
let’s add the ThreadTabs component to our app.

Adding the ThreadTabs component

Our App component will render ThreadTabs above its other child components. ThreadTabswill need
a list of thread titles to render as tabs. We’ll eventually have the component dispatch an action to

WOW! eBook
www.wowebook.org

Intermediate Redux 504

update the activeThreadId piece of state whenever a tab is clicked, but for now we’ll just have it
render the thread titles.

Updating App

First, we’ll prepare a tabs array. This array will contain objects that correspond to the information
ThreadTabs needs to render each tab.

ThreadTabs will need two pieces of information:

• The title of each tab
• Whether or not the tab is the “active” tab

Indicating whether or not the tab is active is for style purposes. Here’s an example of two tabs. In
the markup, the left tab is indicated as active:

Inside render for App, we’ll create an array of objects, tabs. Each object will contain a title and
an active property. active will be a boolean:

redux/chat_intermediate/src/complete/App-4.js

const tabs = threads.map(t => (

{ // a "tab" object

title: t.title,

active: t.id === activeThreadId,

}

));

We add ThreadTabs to the App component’s markup, passing down tabs as a prop:

WOW! eBook
www.wowebook.org

Intermediate Redux 505

redux/chat_intermediate/src/complete/App-4.js

return (

<div className='ui segment'>

<ThreadTabs tabs={tabs} />

<Thread thread={activeThread} />

</div>

);

Creating ThreadTabs

Next, let’s add the ThreadTabs component right beneath the declaration of App. While we’ll soon
dispatch actions from ThreadTabs whenever a tab is clicked, for now it will just render the HTML
for our tabs.

We first map over this.props.tabs, preparing themarkup for each tab. In Semantic UI, we represent
each tab as a div with a class of item. The active tab has a class of active item. We’ll use index
for the React-required key prop of each tab:

redux/chat_intermediate/src/complete/App-4.js

class ThreadTabs extends React.Component {

render() {

const tabs = this.props.tabs.map((tab, index) => (

<div

key={index}

className={tab.active ? 'active item' : 'item'}

>

{tab.title}

</div>

));

return (

<div className='ui top attached tabular menu'>

{tabs}

</div>

);

}

}

Try it out

Save App.js. Ensure the server is still running, and browse to http://localhost:3000. Everything
is as before — we can’t add or delete messages — but we now have tabs in the interface. We can’t
switch between the tabs yet, though:

WOW! eBook
www.wowebook.org

Intermediate Redux 506

The first thread (“Buzz Aldrin”) is our active thread. Its corresponding tab object has its active
property set to true. This sets the class of the tab to active item, which gives us a nice visual
indication of the active tab on the interface.

We’ve updated our state to support threads and our React components are properly rendering based
on this new representation. Next, we’ll restore interactivity by updating the actions and the reducer
to work with this new state model.

Supporting threads in the reducer

Because our representation of state for this app has changed, we’ll need to update the action handlers
in our reducer.

Updating ADD_MESSAGE in the reducer

Because messages now belong to a thread, our ADD_MESSAGE action handler will need to add new
messages to a specific thread. We’ll add a property to this action object, threadId:

WOW! eBook
www.wowebook.org

Intermediate Redux 507

{

type: 'ADD_MESSAGE',

text: 'Looking good.',

threadId: '1-fca2', // <- Or whichever thread is appropriate

}

Before, our ADD_MESSAGE handler in reducer() created a new message object and then used concat

to append it to state.messages.

Now, we need to do the following:

1. Create the new message object newMessage
2. Find the corresponding thread (action.threadId) in state.threads

3. Append newMessage to the end of thread.messages

Let’s modify reducer() in App.js now.

We keep the instantiation of the newMessage object. Next, we define threadIndex by hunting through
state.threads and identifying the thread that corresponds to action.threadId:

redux/chat_intermediate/src/complete/App-5.js

const newMessage = {

text: action.text,

timestamp: Date.now(),

id: uuid.v4(),

};

const threadIndex = state.threads.findIndex(

(t) => t.id === action.threadId

);

Now, we might be tempted to just update the messages property on the thread like this:

// tempting, but flawed

const thread = state.threads[threadIndex];

thread.messages = thread.messages.concat(newMessage);

return state;

This would technically work; thread is a reference to the thread object sitting in state.threads.
So by setting thread.messages to a new array with the new message included, we’re modifying the
thread object inside state.threads.

But this mutates state. As we discussed in the last chapter, reducer() must be a pure function.
This means treating the state object as read-only.

WOW! eBook
www.wowebook.org

Intermediate Redux 508

We can’t, therefore, modify the thread object. Instead, we can create a new thread object that
contains the updated thread.messages property.

So, adding some detail to our plan from before, we actually want to do the following:

1. Create the new message object newMessage
2. Find the corresponding thread (state.activeThreadId) in state.threads

3. Create a new thread object that contains all of the properties of the original thread
object, plus an updated messages property

4. Return state with a threads property that contains our new thread object in place of
the original one

We already have step 1 taken care of. We have the threadIndex defined. Let’s see how we create
our new thread object:

redux/chat_intermediate/src/complete/App-5.js

const oldThread = state.threads[threadIndex];

const newThread = {

...oldThread,

messages: oldThread.messages.concat(newMessage),

};

To create newThread, we use an experimental JavaScript feature: the spread syntax for objects. We
used the spread syntax in the last chapter for arrays, creating a new array based off of chunks of an
existing one. The spread syntax for arrays was introduced in ES6. Here, we’re using it to create a
new object based on properties of an existing object.

This line copies all of the properties from oldThread to newThread:

redux/chat_intermediate/src/complete/App-5.js

...oldThread,

And then this line sets the messages property of newThread to the new messages array that contains
newMessage:

redux/chat_intermediate/src/complete/App-5.js

messages: oldThread.messages.concat(newMessage),

Note that by having the property messages appear after oldThread, we’re effectively “overwriting”
the messages property from oldThread.

We could have used Object.assign() to peform the same operation:

WOW! eBook
www.wowebook.org

Intermediate Redux 509

Object.assign({}, oldThread, {

messages: oldThread.messages.concat(newMessage),

});

As you may recall, the first argument for Object.assign() is the target object. You can pass in as
many additional arguments which are all of the objects you would like to copy properties from.

Because we perform lots of operations like this when working with pure reducer functions in Redux,
we prefer the terser syntax of object’s spread operator.

The spread operator for objects (...)
The spread operator was introduced for arrays in ES6. For objects, the spread operator is still a
“stage 3” proposal. It is very likely it will be ratified and included in a future version of JavaScript.

We’ve been careful about using experimental JavaScript features in this book. We’ve been using
property initializers, another experimental feature, elsewhere in the book because the React
community has been using them heavily. The same goes for the Redux community and the spread
operator for objects. As such, we’re using it for this project.

The syntax is supported with the Babel preset stage-0which is included in package.json. stage-0
includes all “stage 3” JavaScript proposals.

Usage

The ellipsis ... operator copies one object into another:

const commonDolphin = {

family: 'Delphinidae',

genus: 'Delphinus',

};

const longBeakedDolphin = {

...commonDolphin,

species: 'D. capensis',

};

// =>

// {

// family: 'Delphinidae',

// genus: 'Delphinus',

// species: 'D. capensis',

// }

const spottedDolphin = {

...commonDolphin,

genus: 'Stenella',

WOW! eBook
www.wowebook.org

Intermediate Redux 510

species: 'S. attenuata',

};

// =>

// {

// family: 'Delphinidae',

// genus: 'Stenella',

// species: 'S. attenuata',

// }

const atlanticSpottedDolphin = {

...spottedDolphin,

species: 'S. frontalis',

}

// =>

// {

// family: 'Delphinidae',

// genus: 'Stenella',

// species: 'S. frontalis',

// }

The spread operator enables us to succinctly construct new objects by copying over properties
from existing ones. Because of this feature, we’ll be using this operator often to keep our reducer
functions pure.

Now, we have a newThread object that contains all of the properties of the original thread except
with an updated messages property that contains the message being added.

The last step is to return the updated state. We want to return an object which has a state.threads
that’s set to the original list of threads except with our new thread object “subbed-in” for our old
one.

We can re-use our strategy for creating a new array that contains chunks of a previous one. We have
threadIndex, the index of the thread in the array we want to swap out. We want to create a new
array that looks like this:

• All of the threads in state.threads up to but not including threadIndex

• newThread

• All of the threads in state.threads after threadIndex

That would look like this:

WOW! eBook
www.wowebook.org

Intermediate Redux 511

// Building a new array of threads

[

...state.threads.slice(0, threadIndex), // up to the thread

newThread, // insert the new thread object

...state.threads.slice(

threadIndex + 1, state.threads.length // after the thread

),

]

We can’t set state.threads to this new array. That would be modifying state. Instead, we can
create a new object and again use the spread operator to copy over all of the properties of state
into the new object. Then, we can overwrite the threads property with our new array:

redux/chat_intermediate/src/complete/App-5.js

return {

...state,

threads: [

...state.threads.slice(0, threadIndex),

newThread,

...state.threads.slice(

threadIndex + 1, state.threads.length

),

],

};

Updating ADD_MESSAGE required some new concepts, but now we have an important strategy we’ll
be re-using in the future: how to update state objects while avoiding mutations.

Our new logic for handling the ADD_MESSAGE action, in full:

redux/chat_intermediate/src/complete/App-5.js

if (action.type === 'ADD_MESSAGE') {

const newMessage = {

text: action.text,

timestamp: Date.now(),

id: uuid.v4(),

};

const threadIndex = state.threads.findIndex(

(t) => t.id === action.threadId

);

const oldThread = state.threads[threadIndex];

const newThread = {

WOW! eBook
www.wowebook.org

Intermediate Redux 512

...oldThread,

messages: oldThread.messages.concat(newMessage),

};

return {

...state,

threads: [

...state.threads.slice(0, threadIndex),

newThread,

...state.threads.slice(

threadIndex + 1, state.threads.length

),

],

};

Introducing threads to our state significantly increased the complexity of this action handler. Soon,
we’ll explore ways to break this action handler apart into smaller pieces. For now, let’s update
the areas where we’re dispatching the ADD_MESSAGE action. There’s just one: the MessageInput

component.

Updating the MessageInput component

Our action object for ADD_MESSAGE should now contain the property threadId.

MessageInput is the only component that dispatches this action. The component should set threadId
to the id of the active thread. We’ll have Thread pass MessageInput the active thread’s id as a prop:

redux/chat_intermediate/src/complete/App-5.js

return (

<div className='ui center aligned basic segment'>

<div className='ui comments'>

{messages}

</div>

<MessageInput threadId={this.props.thread.id} />

</div>

);

}

Then, we can read from this.props in MessageInput to set threadId on the action object:

WOW! eBook
www.wowebook.org

Intermediate Redux 513

redux/chat_intermediate/src/complete/App-5.js

handleSubmit = () => {

store.dispatch({

type: 'ADD_MESSAGE',

text: this.state.value,

threadId: this.props.threadId,

});

this.setState({

value: '',

});

};

With MessageInput dispatching our updated ADD_MESSAGE action, let’s verify that the functionality
for adding messages has returned.

Try it out

Save App.js. Refreshing http://localhost:3000, we see that we can now submit messages again:

We still can’t delete messages or switch between our threads. Let’s focus on updating the DELETE_-
MESSAGE action first.

WOW! eBook
www.wowebook.org

Intermediate Redux 514

Updating DELETE_MESSAGE in the reducer

The DELETE_MESSAGE action currently carries the property idwhich indicates which message should
be deleted.While our app at the moment only permits a message to be deleted from the active thread,
we’ll write our reducer so that it searches all of the threads for the matching message.

When removing a message from state, we face a similar challenge as to the one that we faced with
ADD_MESSAGE. The message is sitting in the messages array of a thread. But we can’t modify the
thread object in state.

We can use a similar strategy:

1. Grab the thread that holds the message we want to remove
2. Create a new thread object that contains all of the properties of the original thread object,

plus an updated messages property that does not include the message we’re removing
3. Return state with a threads property that contains our new thread object in place of the

original one

Let’s modify the reducer’s DELETE_MESSAGE handler now.

First, we identify the thread that holds the message we’re deleting:

redux/chat_intermediate/src/complete/App-6.js

} else if (action.type === 'DELETE_MESSAGE') {

const threadIndex = state.threads.findIndex(

(t) => t.messages.find((m) => (

m.id === action.id

))

);

const oldThread = state.threads[threadIndex];

Inside of the findIndex callback, we perform a find against the messages property of that thread. If
find finds the message matching the action’s id, it returns the message. This satisfies the findIndex
testing function, meaning that the thread’s index is returned.

Next, we create a new thread object. We use the spread syntax to copy over all of the attributes from
oldThread to this new object. We overwrite the messages property by using the filter() function
just as before to generate a new array that does not include the deleted message:

WOW! eBook
www.wowebook.org

Intermediate Redux 515

redux/chat_intermediate/src/complete/App-6.js

const newThread = {

...oldThread,

messages: oldThread.messages.filter((m) => (

m.id !== action.id

)),

};

The return statement for DELETE_MESSAGE is identical to the one for ADD_MESSAGE. We’re performing
the same operation: We ultimately want to “swap out” the original thread object in state.threads

with our new one. So we want to:

1. Create a new object and copy over all the attributes from state

2. Overwrite the threads property with a new array of threads that has our new thread object
swapped in for the original one

Again, the code is identical to that of ADD_MESSAGE:

redux/chat_intermediate/src/complete/App-6.js

return {

...state,

threads: [

...state.threads.slice(0, threadIndex),

newThread,

...state.threads.slice(

threadIndex + 1, state.threads.length

),

],

};

In full, our DELETE_MESSAGE action handler:

WOW! eBook
www.wowebook.org

Intermediate Redux 516

redux/chat_intermediate/src/complete/App-6.js

} else if (action.type === 'DELETE_MESSAGE') {

const threadIndex = state.threads.findIndex(

(t) => t.messages.find((m) => (

m.id === action.id

))

);

const oldThread = state.threads[threadIndex];

const newThread = {

...oldThread,

messages: oldThread.messages.filter((m) => (

m.id !== action.id

)),

};

return {

...state,

threads: [

...state.threads.slice(0, threadIndex),

newThread,

...state.threads.slice(

threadIndex + 1, state.threads.length

),

],

};

The complexity of this action handler, like that of ADD_MESSAGE, was significantly complicated by
the introduction of threads. What’s more, we’ve witnessed similar patterns emerge between the two
action handlers: They both instantiate a new thread object that’s a derivative of an existing thread
object. And they both swap this thread object in for the thread object being “modified” in state.

Soon, we’ll explore a new strategy to share this code and break these procedures down. But for now,
let’s test out deleting messages again.

Try it out

Save App.js. Make sure your server is running and navigate to http://localhost:3000. Adding
and deleting messages are both working now:

WOW! eBook
www.wowebook.org

Intermediate Redux 517

Clicking on the tab to switch threads still does not work, however. We initialize our state with
activeThreadId set to '1-fca2' but have no actions in the system to modify this part of the state.

Adding the action OPEN_THREAD

We’ll introduce another action, OPEN_THREAD, which React will dispatch whenever the user clicks on
a thread tab to open it. This action will ultimately modify the activeThreadId property on state.

The component ThreadTabs will be the one to dispatch this action.

The action object

The action object just needs to specify the id of the thread the user wants to open:

{

type: 'OPEN_THREAD',

id: '2-be91', // <- or whichever `id` is appropriate

}

Modifying the reducer

Let’s add another clause to our reducer to handle this new action. We’ll add this clause below the
DELETE_MESSAGE clause but before the final else statement.

We can’t modify the state object directly:

WOW! eBook
www.wowebook.org

Intermediate Redux 518

// Incorrect

} else if (action.type === 'OPEN_THREAD') {

state.activeThreadId = action.id;

return state;

}

Instead, we’ll copy over all of the attributes from state into a new object. We’ll overwrite the
activeThreadId property of this new object:

redux/chat_intermediate/src/complete/App-7.js

} else if (action.type === 'OPEN_THREAD') {

return {

...state,

activeThreadId: action.id,

};

Using this strategy, we do not modify state.

Now, we just need to have ThreadTabs dispatch this action whenever a tab is clicked.

Dispatching from ThreadTabs

In order for ThreadTabs to dispatch the OPEN_THREAD action, it needs the id of the thread that was
clicked on.

Right now, the tab object that we’re giving to ThreadTabs contains the properties title and active.
We’ll need to modify the instantiation of tabs in App to also include the property id.

Let’s do that first. Inside the App component, add this property to the tab object that we create:

redux/chat_intermediate/src/complete/App-7.js

const tabs = threads.map(t => (

{

title: t.title,

active: t.id === activeThreadId,

id: t.id,

}

));

Next, we’ll add the component function handleClick to ThreadTabs. The function accepts id:

WOW! eBook
www.wowebook.org

Intermediate Redux 519

redux/chat_intermediate/src/complete/App-7.js

class ThreadTabs extends React.Component {

handleClick = (id) => {

store.dispatch({

type: 'OPEN_THREAD',

id: id,

});

};

Finally, we add an onClick attribute to the div tag for each tab. We set it to a function that calls
handleClick with the thread’s id:

redux/chat_intermediate/src/complete/App-7.js

const tabs = this.props.tabs.map((tab, index) => (

<div

key={index}

className={tab.active ? 'active item' : 'item'}

onClick={() => this.handleClick(tab.id)}

>

ThreadTabs is now emitting our new action. Let’s test everything out.

Try it out

Save App.js. Pull up http://localhost:3000 in your browser. At this point, adding and deleting
messages works and we can switch between tabs. If we add a message to one thread, it’s added to
just that thread:

WOW! eBook
www.wowebook.org

Intermediate Redux 520

This is starting to look like an actual chat application! We’ve introduced the concept of threads and
now support an interface that can switch between conversations with multiple users.

However, in the process, we significantly complicated our reducer function. While it’s nice that all
of our state is being managed in a single location, each of our action handlers contain a lot of logic.
What’s more, our ADD_MESSAGE and DELETE_MESSAGE handlers duplicate a lot of the same code.

It’s also odd that the management of two distinct pieces of state — adding/deleting messages and
switching between threads — are both managed in the same place. The idea of having a single
reducer function manage the entirety of our state as the complexity of our app grows might feel
daunting and even a bit dubious.

Indeed, Redux apps have a strategy for breaking down state management logic: reducer composi-
tion.

Breaking up the reducer function

With reducer composition, we can break up the state management logic of our app into smaller
functions. We’ll still pass in a single reducer function to createStore(). But this top-level function
will then call one or more other functions. Each reducer function will manage a different part of the
state tree.

Adding and deleting messages is a distinct piece of functionality from switching between threads.
Let’s break these two apart first.

WOW! eBook
www.wowebook.org

Intermediate Redux 521

A new reducer()

We’ll still call our top-level function reducer(). Except now, we’ll have two other reducer functions,
each managing their part of the state’s top-level properties. We’ll name each of these sub-reducers
after the property name that they manage:

To implement this, let’s first see what our new top-level reducer() function should look like. We
can then create our sub-reducer functions.

To avoid confusion, let’s rename our current reducer function from reducer() to threadsReducer():

redux/chat_intermediate/src/complete/App-8.js

function threadsReducer(state, action) {

We still have to tweak this function, but we’ll get back to it in a bit.

Now, above threadsReducer(), we’ll insert our new function, reducer():

redux/chat_intermediate/src/complete/App-8.js

function reducer(state, action) {

return {

activeThreadId: activeThreadIdReducer(state.activeThreadId, action),

threads: threadsReducer(state.threads, action),

};

}

The function is short but there’s a lot going on.

We are returning a brand new object with the keys activeThreadId and threads. Importantly, we
are delegating the responsibility of how to update activeThreadId and threads to their respective
reducers.

Check out this line again:

WOW! eBook
www.wowebook.org

Intermediate Redux 522

redux/chat_intermediate/src/complete/App-8.js

activeThreadId: activeThreadIdReducer(state.activeThreadId, action),

For the property activeThreadId on next state, we’re delegating responsibility to the yet-to-be-
defined function activeThreadIdReducer(). Notice how the first argument is not the whole state —
it’s only the part of the state that this reducer is responsible for. We pass in the action as the second
argument.

Same strategy with threads:

redux/chat_intermediate/src/complete/App-8.js

threads: threadsReducer(state.threads, action),

We delegate responsibility of the state’s threads property to threadsReducer(). The state that we
pass this reducer — the first argument — is the part of the state that threadsReducer() is responsible
for updating.

This is how sub-reducers work in tandemwith the top-level reducer. The top-level reducer breaks up
each part of the state tree and delegates the management of those pieces of state to the appropriate
reducer.

To get a better idea, let’s write activeThreadIdReducer() below reducer():

redux/chat_intermediate/src/complete/App-8.js

function activeThreadIdReducer(state, action) {

if (action.type === 'OPEN_THREAD') {

return action.id;

} else {

return state;

}

}

This reducer only handles one type of action, OPEN_THREAD. Remember, the state argument being
passed to the reducer is actually state.activeThreadId. This is the only part of the state that this
reducer needs to be concerned with. As such, activeThreadIdReducer() receives a string as state
(the id of a thread) and will return a string.

Notice how this simplifies the logic for handling OPEN_THREAD. Before, our logic had to consider
the entire state tree. So we had to create a new object, copy over all of the state’s properties, and
then overwrite the activeThreadId property. Now, our reducer just has to worry about this single
property.

WOW! eBook
www.wowebook.org

Intermediate Redux 523

If the action is OPEN_THREAD, activeThreadIdReducer() simply returns action.id, the id of the
thread to be opened. Otherwise, it returns the same id it was passed.

Up in reducer(), the return value of activeThreadIdReducer() is set to the property activeThrea-
dId in the new state object.

Let’s update threadsReducer() next. Before, this function received the entire state object. Now, it’s
only receiving part of it: state.threads. We’ll be able to simplify the code a bit as a result.

Updating threadsReducer()

threadsReducer() is now receiving only part of the state. Its state argument is the array of threads.

As a result, we can simplify our returns like we did with activeThreadIdReducer(). We no longer
need to create a new state object, copy all the old values over, then overwrite threads. Instead, we
can just return the updated array of threads.

What’s more, instead of referencing state.threads everywhere we’ll reference state as this is now
the array of threads.

Let’s make these modifications first for ADD_MESSAGE.

We reference state as opposed to state.threads:

redux/chat_intermediate/src/complete/App-8.js

const threadIndex = state.findIndex(

(t) => t.id === action.threadId

);

const oldThread = state[threadIndex];

const newThread = {

...oldThread,

messages: oldThread.messages.concat(newMessage),

};

For the return statement, we no longer need to return a full state object, just the array of threads:

WOW! eBook
www.wowebook.org

Intermediate Redux 524

redux/chat_intermediate/src/complete/App-8.js

return [

...state.slice(0, threadIndex),

newThread,

...state.slice(

threadIndex + 1, state.length

),

];

DELETE_MESSAGE will receive the same treatment.

We first change our references from state.threads to state:

redux/chat_intermediate/src/complete/App-8.js

} else if (action.type === 'DELETE_MESSAGE') {

const threadIndex = state.findIndex(

(t) => t.messages.find((m) => (

m.id === action.id

))

);

const oldThread = state[threadIndex];

Then, we return just the array as opposed to the whole state object:

redux/chat_intermediate/src/complete/App-8.js

return [

...state.slice(0, threadIndex),

newThread,

...state.slice(

threadIndex + 1, state.length

),

];

Finally, we can remove the OPEN_THREAD handler from threadsReducer(). This reducer is not
concerned about the OPEN_THREAD action. That action pertains to a part of the state tree that this
reducer does not work with. So, whenever that action is received, the function will reach the last
else clause and will just return state unmodified.

Our updated threadsReducer() function, in full:

WOW! eBook
www.wowebook.org

Intermediate Redux 525

redux/chat_intermediate/src/complete/App-8.js

function threadsReducer(state, action) {

if (action.type === 'ADD_MESSAGE') {

const newMessage = {

text: action.text,

timestamp: Date.now(),

id: uuid.v4(),

};

const threadIndex = state.findIndex(

(t) => t.id === action.threadId

);

const oldThread = state[threadIndex];

const newThread = {

...oldThread,

messages: oldThread.messages.concat(newMessage),

};

return [

...state.slice(0, threadIndex),

newThread,

...state.slice(

threadIndex + 1, state.length

),

];

} else if (action.type === 'DELETE_MESSAGE') {

const threadIndex = state.findIndex(

(t) => t.messages.find((m) => (

m.id === action.id

))

);

const oldThread = state[threadIndex];

const newThread = {

...oldThread,

messages: oldThread.messages.filter((m) => (

m.id !== action.id

)),

};

return [

...state.slice(0, threadIndex),

newThread,

WOW! eBook
www.wowebook.org

Intermediate Redux 526

...state.slice(

threadIndex + 1, state.length

),

];

} else {

return state;

}

}

By focusing this reducer and having it deal with only the threads property in state, we were able to
simplify our code a little. Our return functions no longer have to worry about the entire state tree
and we removed an action handler from this function.

We still duplicate logic between the two action handlers. Notably, their return functions are the
same.

In fact, while we simplified the reducer by having it work with only state.threads, this reducer
is actually dealing with two levels of the state tree: both threads and messages. We can further
break our reducer logic into smaller pieces and share code by having threadsReducer() delegate
the responsibility to another reducer: messagesReducer().

We’ll explore this in the next section. For now, let’s boot up the app and verify our solution so far
works.

You might be asking: Why not just rename the first argument in threadsReducer() to
threads as opposed to calling it state?

Indeed, doing this could improve readability of the reducer function. You’d no longer need
to hold the idea in working memory that state is actually state.threads.

However, consistently calling the first argument to a Redux reducer state can be helpful
for avoiding errors. It’s a clear reminder that the argument is a part of the state tree and
that you should avoid accidentally mutating it.

Ultimately, it’s a matter of personal preference.

Try it out

Save App.js. Boot the server if it isn’t running:

$ npm start

And then point your browser to http://localhost:3000. On the surface, it should appear as though
nothing has changed; adding and deleting messages works and we can switch between threads.

WOW! eBook
www.wowebook.org

Intermediate Redux 527

Adding messagesReducer()

We used the concept of reducer composition to break up the management of our state. Our top-
level reducer() function delegates the management of the two top-level state properties to their
respective reducers.

We can take this concept even further. We’ve noticed that threadsReducer() has the responsibility
of managing the state of both threads and messages. What’s more, we see an opportunity to share
code between the two action handlers.

We can have threadsReducer() delegate the management of each thread’s messages property to
another reducer, messagesReducer(). In full, the reducer tree will look like this:

Let’s first modify threadsReducer(), anticipating this new messages reducer function. We want the
threads reducer function to know as little as possible about messages. threadsReducer() will rely
on messagesReducer() to determine how a given thread’s messages should be updated based on the
action received.

Modifying the ADD_MESSAGE action handler

Let’s see what happens when we delegate all message handling functionality to our anticipated
messagesReducer() function.

We’ll no longer declare newMessage. We expect that messagesReducer() will take care of this.

Then, when specifying the messages attribute for newThread, we’ll delegate the creation of this array
to messagesReducer():

WOW! eBook
www.wowebook.org

Intermediate Redux 528

redux/chat_intermediate/src/complete/App-9.js

function threadsReducer(state, action) {

if (action.type === 'ADD_MESSAGE') {

const threadIndex = state.findIndex(

(t) => t.id === action.threadId

);

const oldThread = state[threadIndex];

const newThread = {

...oldThread,

messages: messagesReducer(oldThread.messages, action),

};

We pass messagesReducer() the array oldThread.messages as the first argument and action as the
second. This follows our pattern so far: reducer() passed threadsReducer() state.threads as its
first argument. threadsReducer() passes thread.messages as the first argument to messagesRe-

ducer(). We now know that when we build messagesReducer(), the first argument (state) will be
an array of a given thread’s messages.

The full action object is passed along in its entirety down the chain.

We do not need to make any modifications to the return value.

At the moment, this might only seem like a minor — perhaps negligible — victory. Before, we were
calling concat in-line to create a new messages array with the new message inside. Now we have
the added complexity of calling another function to do this.

We are breaking apart the responsibility of our functions, which is a worthwhile endeavor in its
own right. Furthermore, another benefit will become apparent when we give DELETE_MESSAGE the
same treatment.

Prior to modifying our DELETE_MESSAGE action handler, let’s start on our messagesReducer()

function to get an idea of how these reducers will work together.

Creating messagesReducer()

We’ll write messagesReducer() below threadsReducer() in App.js. We’ll start it off with one action
handler (ADD_MESSAGE).

As we saw above, threadsReducer() passes messagesReducer() a thread’s messages array as the
first argument. This will be state inside of messagesReducer().

messagesReducer() needs to:

1. Create the new message
2. Return a new array of messages that includes this new message appended to the end of it

We’ll use the same logic that we had previously in threadsReducer() to accomplish this:

WOW! eBook
www.wowebook.org

Intermediate Redux 529

redux/chat_intermediate/src/complete/App-9.js

function messagesReducer(state, action) {

if (action.type === 'ADD_MESSAGE') {

const newMessage = {

text: action.text,

timestamp: Date.now(),

id: uuid.v4(),

};

return state.concat(newMessage);

} else {

return state;

}

}

messagesReducer() receives an array of messages as its first argument, state. The ADD_MESSAGE

handler creates a new message using action.text. We use concat just as before to return a new
messages array with our new message appended to it.

Now that we’ve seen how threadsReducer() delegates ADD_MESSAGE to messagesReducer(), let’s
take a look at how DELETE_MESSAGE can do the same thing.

Modifying the DELETE_MESSAGE action handler

As with the ADD_MESSAGE action handler, we want our DELETE_MESSAGE action handler in thread-

sReducer() to delegate the responsibility of handling the messages property of each thread to
messagesReducer().

Instead of invoking the filter() function directly, we can call messagesReducer() inside of the
declaration of newThread and have it generate the messages property, like this:

redux/chat_intermediate/src/complete/App-9.js

} else if (action.type === 'DELETE_MESSAGE') {

const threadIndex = state.findIndex(

(t) => t.messages.find((m) => (

m.id === action.id

))

);

const oldThread = state[threadIndex];

const newThread = {

...oldThread,

messages: messagesReducer(oldThread.messages, action),

};

WOW! eBook
www.wowebook.org

Intermediate Redux 530

Look familiar?With these modifications, the threads reducer’s DELETE_MESSAGE looks almost exactly
like its ADD_MESSAGE. The only difference is how the two handlers identify threadIndex.

On reflection, this makes sense. The action that we’re dealing with is adding and removingmessages.
This will only ever affect the messages property on an individual thread. Because the messages

property is now being managed by messagesReducer(), the differences between ADD_MESSAGE and
DELETE_MESSAGE are expressed in that function. Aside from determining threadIndex, the rest of
the ceremony — creating a new thread object with an updated messages property — is identical.

We can define a new function, findThreadIndex(), where we can store the logic to determine
threadIndex. Then, we can combine our two action handlers as their code will be identical.

First, we’ll write findThreadIndex() above threadsReducer(). This function will take both threads
(or state in threadsReducer()) and the action as arguments. We’ll copy the logic for finding the
index of the affected thread into this function:

redux/chat_intermediate/src/complete/App-10.js

function findThreadIndex(threads, action) {

switch (action.type) {

case 'ADD_MESSAGE': {

return threads.findIndex(

(t) => t.id === action.threadId

);

}

case 'DELETE_MESSAGE': {

return threads.findIndex(

(t) => t.messages.find((m) => (

m.id === action.id

))

);

}

}

}

Wedecided to use a switch statement here as opposed to an if/else clause. Using a switch statement
in reducers and their helper functions can be slightly easier to read and manage. You’ll see it used
in many Redux apps. As the actions in a system grows, a single reducer will have to have multiple
action handlers. switch is built for this use case.

Another reason for using switch in findThreadIndex() is because we’ll use one in our refactored
threadsReducer():

WOW! eBook
www.wowebook.org

Intermediate Redux 531

redux/chat_intermediate/src/complete/App-10.js

function threadsReducer(state, action) {

switch (action.type) {

case 'ADD_MESSAGE':

case 'DELETE_MESSAGE': {

const threadIndex = findThreadIndex(state, action);

const oldThread = state[threadIndex];

const newThread = {

...oldThread,

messages: messagesReducer(oldThread.messages, action),

};

return [

...state.slice(0, threadIndex),

newThread,

...state.slice(

threadIndex + 1, state.length

),

];

}

default: {

return state;

}

}

}

switch is nice here because this:

redux/chat_intermediate/src/complete/App-10.js

switch (action.type) {

case 'ADD_MESSAGE':

case 'DELETE_MESSAGE': {

Reads a bit clearer than the alternative:

if (action.type === 'ADD_MESSAGE' || action.type === 'DELETE_MESSAGE') {

// ...

}

WOW! eBook
www.wowebook.org

Intermediate Redux 532

This readability concern will be exacerbated if we continue to introduce more actions to the system
that just affect the messages property of a given thread (like UPDATE_MESSAGE). With a switch

statement, we can cleanly specify that all of these actions share the same code block.

Other than the call to findThreadIndex(), the body of the combined action handler matches what
we had individually for each above.

Adding DELETE_MESSAGE to messagesReducer()

The threadsReducer() function now treats ADD_MESSAGE and DELETE_MESSAGE actions in the exact
same way. When the reducer receives a DELETE_MESSAGE action, it will call messagesReducer()with
a list of messages and the action. The list of messages corresponds to an individual thread’s messages
property. The action carries the directive for which message to remove.

Let’s add the DELETE_MESSAGE logic to messagesReducer(). You can keep the if/else clause for now
or change to switch:

redux/chat_intermediate/src/complete/App-10.js

function messagesReducer(state, action) {

switch (action.type) {

case 'ADD_MESSAGE': {

const newMessage = {

text: action.text,

timestamp: Date.now(),

id: uuid.v4(),

};

return state.concat(newMessage);

}

case 'DELETE_MESSAGE': {

return state.filter(m => m.id !== action.id);

}

default: {

return state;

}

}

}

Remember, state here is the array of messages. The logic for “filtering out” the message is the same
that we had in threadsReducer().

At this point, we’ve broken out the logic to manage state across three reducer functions. Each
function manages a different part of the state tree. Our tree of reducer functions is combined up
at reducer(), which is the function that we pass to createStore().

WOW! eBook
www.wowebook.org

Intermediate Redux 533

The complexity of both our app and our state increased significantly in this chapter. We now see
how using reducer composition allows us to manage this complexity. We have a pattern for scaling
our system to handle the addition of many more actions and pieces of state.

There’s one more improvement we can make. While the logic for managing state updates is
contained within our reducers, the initial state of the app is defined elsewhere, in initialState.
Let’s bring the parts of this initialization closer to their respective reducers. This will scale better as
our state tree grows. In addition, it means all of the logic around a particular part of the state tree
is contained inside of its reducer.

Defining the initial state in the reducers

Right now, we declare our initialState object and then pass it into createStore():

const store = createStore(reducer, initialState);

This argument is not required. Let’s change this line so that we no longer pass in initialState:

const store = createStore(reducer);

What will happen?

The createStore() function in the redux library contains one key difference from the one we wrote
in the last chapter. After the store is initialized but right before it’s returned, createStore() actually
dispatches an initialization action. That dispatch call looks like this:

// ...

// Inside of `createStore()` in `redux`

dispatch({ type: '@@redux/INIT' });

return { // returns store object

dispatch,

subscribe,

getState,

}

}

While the initialization action has a type, chances are you’ll never need to use it.

The important part is that because we didn’t specify an initialState, state will be undefined

when createStore() dispatches the initialization action. The only time state will be undefined
is for this first dispatch.

Therefore, we can have our reducers specify the initial state for their part of the state tree whenever
state is undefined.

WOW! eBook
www.wowebook.org

Intermediate Redux 534

Initial state in reducer()

When createStore() dispatches the initialization object, reducer() will receive a state that is
undefined.

In this situation, we want to set state to a blank object ({}). This will enable reducer() to delegate
the initialization of each property in the state object to its reducer. We’ll see how this works in
practice shortly.

We can use ES6’s default arguments to achieve this:

redux/chat_intermediate/src/complete/App-11.js

function reducer(state = {}, action) {

When reducer() receives a state of undefined, state is set to {}.

Importantly, when reducer() then calls each of its sub-reducers, each one of them will receive a
state argument that is undefined.

A state that is undefined is the canonical way to initialize a reducer in Redux. While we could
use this special initialization action object’s type, with ES6’s default arguments just relying on an
undefined state is much easier.

For more info on default arguments, see Appendix B.

Adding initial state to activeThreadIdReducer()

We can use default arguments to initialize the state in activeThreadIdReducer(). We want the
initial state to be '1-fca2', the id we’ll specify for our first thread:

redux/chat_intermediate/src/complete/App-11.js

function activeThreadIdReducer(state = '1-fca2', action) {

Let’s recap the initialization flow for activeThreadIdReducer().

At the end of createStore(), right before the function returns the new store object, it dispatches
the initialization action. Then:

1. reducer() is called with a state of undefined and the initialization action object
2. state defaults to {}

3. reducer() calls activeThreadIdReducer()with state.activeThreadId, which is undefined
4. activeThreadIdReducer() sets state to '1-fca2' with its default argument
5. The else clause in activeThreadIdReducer() returns state ('1-fca2')

WOW! eBook
www.wowebook.org

Intermediate Redux 535

Adding initial state to threadsReducer()

We’ll use the same strategy for threadsReducer(). Its initial state is more complex, so we’ll split it
up over multiple lines:

redux/chat_intermediate/src/complete/App-11.js

function threadsReducer(state = [

{

id: '1-fca2',

title: 'Buzz Aldrin',

messages: messagesReducer(undefined, {}),

},

{

id: '2-be91',

title: 'Michael Collins',

messages: messagesReducer(undefined, {}),

},

], action) {

If we weren’t initializing our app with two threads already in state, the default argument
for threadsReducer() would just be []:

function threadsReducer(state = [], action) {

// ...

}

Now, let’s set the default argument in messagesReducer(). While we were initializing one of the
threads with a message before, we don’t need that anymore:

redux/chat_intermediate/src/complete/App-11.js

function messagesReducer(state = [], action) {

We could have just set the messages property in the initial state for threads to []. But by calling
messagesReducer() with undefined, we’re still delegating initialization responsibility of messages
to messagesReducer().

We could have done this too:

WOW! eBook
www.wowebook.org

Intermediate Redux 536

// ...

{

id: '2-be91',

title: 'Michael Collins',

messages: messagesReducer(

undefined, { type: '@@redux/INIT' }

),

},

// ...

But passing along a blank action object is sufficient because we won’t ever need to switch off of the
special type of the initialization action object.

Last, go ahead and remove initialState from App.js. We don’t need it anymore.

Let’s kick the tires and make sure things are still working.

Try it out

Save App.js. Make sure the server is running, and then load http://localhost:3000 in your
browser.

As expected, everything works as before: we can add and delete messages and switch between tabs.
The only difference is that we no longer have a default message initialized with the state.

While on the surface the behavior has not changed, we know that under the hood our code is a lot
cleaner.

Using combineReducers() from redux

The pattern we implemented of combining different reducers to manage distinct parts of the state
tree is a common one in Redux. In fact, the redux library includes a function combineReducers()

that can generate a top-level reducer() function like the one we wrote by hand.

You can pass combineReducers() an object that specifies to which function it should delegate each
property of the state object. To see how it works, let’s use it now.

First, import the function from the redux library:

redux/chat_intermediate/src/complete/App-12.js

import { createStore, combineReducers } from 'redux';

Then, let’s replace our definition of reducer():

WOW! eBook
www.wowebook.org

Intermediate Redux 537

redux/chat_intermediate/src/complete/App-12.js

const reducer = combineReducers({

activeThreadId: activeThreadIdReducer,

threads: threadsReducer,

});

We’re telling combineReducers() that our state object has two properties, activeThreadId and
threads. We set those properties to the functions that handle them.

combineReducers() returns a reducer function that behaves exactly like the combinatorial re-
ducer() function we wrote by hand.

A common pattern is to have the name of the reducer function match that of the
property it manages. If we renamed activeThreadIdReducer() to activeThreadId()

and threadsReducer() to threads(), we could then use ES6’s shorthand notation for
maximum terseness:

const reducer = combineReducers({

activeThreadId,

threads,

});

We append Reducer to the names of all our reducer functions here because our app is
entirely contained in one file. When a Redux app reaches a certain size, it usually makes
sense to break out the reducer functions into their own file, like reducers.js. At that point,
appending Reducer to each function name is no longer necessary and you could apply this
shorthand.

Next up

After adding complexity to the app and its state with the introduction of threads, we did some
significant refactoring with our reducer logic. At first, our single reducer function was managing
many different parts of the state tree and was duplicating logic. With the introduction of reducer
composition, we managed to break all our state management apart into smaller pieces.

Our app now neatly isolates responsibility. Not only does this make the code easier to read, but it
sets us up for scale.

If we wanted to add a new action to the system that deals with messages, we wouldn’t have to
worry about logic around managing threads. We’d re-use the same code path as ADD_MESSAGE and
DELETE_MESSAGE in threadsReducer() and write all action-specific logic in messagesReducer().

WOW! eBook
www.wowebook.org

Intermediate Redux 538

If we wanted to add an entirely new piece of state to the system — like a notifications panel — the
management of that state would be entirely isolated to its own function. We wouldn’t have to tread
lightly over existing code.

There’s an opportunity to refactor our React components as well. We’ll be focusing on our
organization of React components in the next chapter.

WOW! eBook
www.wowebook.org

Using Presentational and Container
Components with Redux
In the last chapter, we added complexity to both the state as well as the view-layer of our application.
To support threads in our app, we nested message objects inside of thread objects in our state tree.
By using reducer composition, we were able to break up the management of our more complex state
tree into smaller parts.

We added a new React component to support our threaded model, ThreadTabs, which lets the user
switch between threads on the view. We also added some complexity to existing components.

At themoment, we have four React components in our app. Every React component interacts directly
with the Redux store. App subscribes to the store and uses getState() to read the state and passes
down this state as props to its children. Child components dispatch actions directly to the store.

In this chapter, we’ll explore a new paradigm for organizing our React components. We can divide
up our React components into two types: presentational components and container components.
We’ll see how doing so limits knowledge of our Redux store to container components and provides
us with flexible and re-usable presentational components.

Presentational and container components

In React, a presentational component is a component that just renders HTML. The component’s
only function is presentational markup. In a Redux-powered app, a presentational component does
not interact with the Redux store.

The presentational component accepts props from a container component. The container compo-
nent specifies the data a presentational component should render. The container component also
specifies behavior. If the presentational component has any interactivity — like a button — it calls
a prop-function given to it by the container component. The container component is the one to
dispatch an action to the Redux store:

Take a look at the ThreadTabs component:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 540

redux/chat_intermediate/src/complete/App-12.js

class ThreadTabs extends React.Component {

handleClick = (id) => {

store.dispatch({

type: 'OPEN_THREAD',

id: id,

});

};

render() {

const tabs = this.props.tabs.map((tab, index) => (

<div

key={index}

className={tab.active ? 'active item' : 'item'}

onClick={() => this.handleClick(tab.id)}

>

{tab.title}

</div>

));

return (

<div className='ui top attached tabular menu'>

{tabs}

</div>

);

}

}

At the moment, this component both renders HTML (the text field input) and communicates with
the store. It dispatches the OPEN_THREAD action whenever a tab is clicked.

But what if we wanted to have another set of tabs in our app? This other set of tabs would probably
have to dispatch another type of action. So we’d have to write an entirely different component even
though the HTML it renders would be the same.

What if we instead made a generic tabs component, say Tabs? This presentational component would
not specify what happens when the user clicks a tab. Instead, we could wrap it in a container
component wherever we want this particular markup in our app. That container component could
then specify what action to take by dispatching to the store.

We’ll call our container component ThreadTabs. It will do all of the communicating with the store
and let Tabs handle the markup. In the future, if we wanted to use tabs elsewhere — say, in a
“contacts” view that has a tab for each group of contacts — we could re-use our presentational
component:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 541

Splitting up ThreadTabs

We’ll split up ThreadTabs by first writing the presentational component Tabs. This component will
only be concerned with rendering the HTML— the array of horizontal tabs. It will also expect a prop,
onClick. The presentational component will allow its container component to specify whatever
behavior it wants when a tab is clicked.

Let’s add Tabs to App.js now. Write it above the current ThreadTab component. The JSX for the
HTML markup is the same as before:

redux/chat_intermediate/src/complete/App-13.js

const Tabs = (props) => (

<div className='ui top attached tabular menu'>

{

props.tabs.map((tab, index) => (

<div

key={index}

className={tab.active ? 'active item' : 'item'}

onClick={() => props.onClick(tab.id)}

>

{tab.title}

</div>

))

}

</div>

);

A unique aspect of our new presentational component is how it’s declared. So far, we’ve been using
ES6 classes like this:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 542

class App extends React.Component {

// ...

}

React components declared in this manner are wrapped in React’s component API. This declaration
gives the component all of the React-specific features that we’ve been using, like lifecycle hooks and
state management.

However, as we cover in the “Advanced Components” chapter, React also allows you to declare
stateless functional components. Stateless functional components, like Tabs, are just JavaScript
functions that return markup. They are not special React objects.

Because Tabs does not need any of React’s component methods, it can be a stateless component.

In fact, all our presentational components can be stateless components. This reinforces their
single responsibility of rendering markup. The syntax is terser. What’s more, the React core team
recommends using stateless components whenever possible. Because these components are not
“dressed up” with any of the capabilities of React component objects, the React team anticipates
there will be many performance advantages introduced for stateless components in the near future.

As we can see, the first argument passed in to a stateless component is props:

redux/chat_intermediate/src/complete/App-13.js

const Tabs = (props) => (

Because Tabs is not a React component object, it does not have the special property this.props.
Instead, parents pass props to stateless components as an argument. So we’ll access this component’s
props everywhere using props as opposed to this.props.

Our map call for Tabs is in-line, nested inside of the div tag in the function’s return value.

You could also put this logic above the function’s return statement, like we had before in
the render function of ThreadTabs. It’s a matter of stylistic preference.

Our presentational component is ready. Let’s see what the container component that uses it looks
like. Modify the current ThreadTabs component:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 543

redux/chat_intermediate/src/complete/App-13.js

class ThreadTabs extends React.Component {

render() {

return (

<Tabs

tabs={this.props.tabs}

onClick={(id) => (

store.dispatch({

type: 'OPEN_THREAD',

id: id,

})

)}

/>

);

}

}

Although we don’t use any of React’s component methods, we’re still using an ES6 class component
as opposed to declaring a stateless component. We’ll see why in a moment.

Our container component specifies the props and behavior for our presentational component. We
set the prop tabs to this.props.tabs, specified by App. Next, we set the prop onClick to a function
that calls store.dispatch(). We expect Tabs to pass the id of the clicked tab to this function.

If we were to test the app out now, we’d be happy to note that our new container/presentational
component combination is working.

However, there’s one odd thing about ThreadTabs: It sends actions to the store directlywith dispatch,
yet at the moment it’s reading from the store indirectly through props (through this.props.tabs).
App is the one reading from the store and this data trickles down to ThreadTabs. But if ThreadTabs
is dispatching directly to the store, is this indirection for reading from the store necessary?

Instead, we can have all of our container components be responsible for both sending actions to the
store and reading from it.

In order to achieve this with ThreadTabs, we can subscribe directly to the store in componentDid-

Mount, the same way that App does:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 544

redux/chat_intermediate/src/complete/App-14.js
class ThreadTabs extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

Then, inside of render, we can read state.threads directly from the store with getState(). We’ll
generate tabs here using the same logic that we used in App:

redux/chat_intermediate/src/complete/App-14.js
render() {

const state = store.getState();

const tabs = state.threads.map(t => (

{

title: t.title,

active: t.id === state.activeThreadId,

id: t.id,

}

));

Now we don’t need to read from this.props at all. We pass Tabs the tabs variable that we created:

redux/chat_intermediate/src/complete/App-14.js
return (

<Tabs

tabs={tabs}

onClick={(id) => (

store.dispatch({

type: 'OPEN_THREAD',

id: id,

})

)}

/>

);

Our Tabs component is purely presentational. It specifies no behavior of its own and could be
dropped-in anywhere in the app.

The ThreadTabs component is a container component. It renders no markup. Instead, it interfaces
with the store and specifies which presentational component to render. The container component is
the connector of the store to the presentational component.

Our presentational and container component combination, in full:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 545

redux/chat_intermediate/src/complete/App-14.js

const Tabs = (props) => (

<div className='ui top attached tabular menu'>

{

props.tabs.map((tab, index) => (

<div

key={index}

className={tab.active ? 'active item' : 'item'}

onClick={() => props.onClick(tab.id)}

>

{tab.title}

</div>

))

}

</div>

);

class ThreadTabs extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

render() {

const state = store.getState();

const tabs = state.threads.map(t => (

{

title: t.title,

active: t.id === state.activeThreadId,

id: t.id,

}

));

return (

<Tabs

tabs={tabs}

onClick={(id) => (

store.dispatch({

type: 'OPEN_THREAD',

id: id,

})

)}

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 546

/>

);

}

}

In addition to the ability to re-use our presentational component elsewhere in the app, this paradigm
gives us another significant benefit: We’ve de-coupled our presentational view code entirely from
our state and its actions. As we’ll see, this approach isolates all knowledge of Redux and our store to
our app’s container components. This minimizes the switching costs in the future. If we wanted to
move our app to another state management paradigm, we wouldn’t need to touch any of our app’s
presentational components.

Splitting up Thread

Let’s continue refactoring with our new design pattern.

Thread receives the thread as a prop and contains all the markup for rendering the messages inside
of that thread as well as MessageInput. The component will dispatch to the store a DELETE_MESSAGE
action if a message is clicked.

Part of rendering the view for a thread involves rendering the view for its messages. We could
have separate container and presentational components for threads and messages. In this setup, the
presentational component for a thread would render the container component for a message.

But because we don’t anticipate ever rendering a list of messages outside of a thread, it’s reasonable
to just have the container component for the thread also manage the presentational component for
a message.

We can have one container component, ThreadDisplay. This container component will render the
presentational component Thread:

For the list of messages, we can have Thread render another presentational component, MessageList.

But what about the component MessageInput? Like our previous version of ThreadTabs, the
component contains two responsibilities. The component renders markup, a single text field with

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 547

a submit button. In addition, it specifies the behavior for what should happen when the form is
submitted.

We could, instead, just have a generic presentational component. TextFieldSubmit only renders
markup and allows its parent to specify what happens when the text field is submitted. ThreadDis-
play, through Thread, could control the behavior of this text field.

With this design, we’d have one container component for a thread up top. The presentational
component Thread would be a composite of two child presentational components, MessageList
and TextFieldSubmit:

Let’s first rename our current Thread component to ThreadDisplay to avoid confusion:

// Rename from `Thread`

class ThreadDisplay extends React.Component {

// ...

};

We’ll begin at the bottom, writing the presentational components TextFieldSubmit and Message-

List. We’ll work our way up to Thread and then ThreadDisplay.

TextFieldSubmit

Like with ThreadTabs, MessageInput has two distinct roles: the component both renders the HTML
for an input field but also specifies what the behavior around submitting that input field should be
(dispatching ADD_MESSAGE).

If we remove the dispatch call from MessageInput, we’d be left with a generic component that
just rendered markup: a text field with an adjacent submit button. The presentational component
will allow its container component to specify whatever behavior it wants when the input field is
submitted.

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 548

Let’s rename MessageInput to TextFieldSubmit tomake it more generic. The only additional change
we need to make is in handleSubmit(). We’ll have TextFieldSubmit expect a single prop, onSubmit.
Instead of dispatching to the store directly, it will invoke this prop-function:

redux/chat_intermediate/src/complete/App-14.js

class TextFieldSubmit extends React.Component {

state = {

value: '',

};

onChange = (e) => {

this.setState({

value: e.target.value,

})

};

handleSubmit = () => {

this.props.onSubmit(this.state.value);

this.setState({

value: '',

});

};

MessageList

The MessageList component will accept two props: messages and onClick. As before, this presen-
tational component will not specify any behavior. As a stateless component, it will only render
HTML.

Write it below TextFieldSubmit and above the ThreadDisplay component in App.js:

redux/chat_intermediate/src/complete/App-14.js

const MessageList = (props) => (

<div className='ui comments'>

{

props.messages.map((m, index) => (

<div

className='comment'

key={index}

onClick={() => props.onClick(m.id)}

>

<div className='text'>

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 549

{m.text}

@{m.timestamp}

</div>

</div>

))

}

</div>

);

The map that we perform over props.messages is the same logic we had previously in Thread. We
perform it in-line, nested inside of the div tag which is responsible for styling. The three changes:

• We perform the map over props.messages as opposed to this.props.threads

• The onClick attribute is now set to props.onClick

• For brevity, we’re using the variable m in place of message

You could optionally break this presentational component down further by adding another
component, Message. The markup for each message is still simple enough that we opted
not to do this just yet here.

Thread

We have two presentational components related to displaying a thread. One is MessageList, which
renders all of the messages in that thread. The other is TextFieldSubmit, a generic text field entry
that we’re going to have submit new messages to the thread.

We’re collecting these two presentational components under Thread, another presentational com-
ponent. The container component ThreadDisplay will render Thread which in turn will render
MessageList and TextFieldSubmit.

We anticipate that ThreadDisplay will pass Thread three props:

• thread: The thread itself
• onMessageClick: The message click handler
• onMessageSubmit: The text field submit handler

We’ll have Thread pass along the appropriate props to each of its child presentational components:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 550

redux/chat_intermediate/src/complete/App-14.js

const Thread = (props) => (

<div className='ui center aligned basic segment'>

<MessageList

messages={props.thread.messages}

onClick={props.onMessageClick}

/>

<TextFieldSubmit

onSubmit={props.onMessageSubmit}

/>

</div>

);

ThreadDisplay

ThreadDisplay (previously named Thread) is our container component. Like with our two previous
container components, it will subscribe to the store. The component will be responsible for both
reading from the store and dispatching actions to it.

First, subscribe to the store in componentDidMount:

redux/chat_intermediate/src/complete/App-14.js

class ThreadDisplay extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

ThreadDisplay will read from the store directly to get the active thread. The container component
will then render Thread, passing in the props thread and onMessageClick.

Inside of render, we’ll use the same logic we had used in App to grab the active thread:

redux/chat_intermediate/src/complete/App-14.js

render() {

const state = store.getState();

const activeThreadId = state.activeThreadId;

const activeThread = state.threads.find(

t => t.id === activeThreadId

);

We return Thread, passing it thread as well as specifying its behavior for onMessageClick and
onMessageSubmit:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 551

redux/chat_intermediate/src/complete/App-14.js

return (

<Thread

thread={activeThread}

onMessageClick={(id) => (

store.dispatch({

type: 'DELETE_MESSAGE',

id: id,

})

)}

onMessageSubmit={(text) => (

store.dispatch({

type: 'ADD_MESSAGE',

text: text,

threadId: activeThreadId,

})

)}

/>

);

Our container component ThreadDisplay, in full:

redux/chat_intermediate/src/complete/App-14.js

class ThreadDisplay extends React.Component {

componentDidMount() {

store.subscribe(() => this.forceUpdate());

}

render() {

const state = store.getState();

const activeThreadId = state.activeThreadId;

const activeThread = state.threads.find(

t => t.id === activeThreadId

);

return (

<Thread

thread={activeThread}

onMessageClick={(id) => (

store.dispatch({

type: 'DELETE_MESSAGE',

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 552

id: id,

})

)}

onMessageSubmit={(text) => (

store.dispatch({

type: 'ADD_MESSAGE',

text: text,

threadId: activeThreadId,

})

)}

/>

);

}

}

We’ve split up all of our view components into container and presentational components. Our
two container components are communicating directly with the store, performing both reads
(getState()) and sending actions (dispatch()).

Because of this, we actually don’t need App to talk to the store at all. The render function for App
right now reads from the store and then sends props down to its children. Now that its children are
communicating with the store, it’s no longer necessary that App supply them with any props.

Removing store from App

Because our container components are now interfacing with the store themselves, we can remove
all communication with the store from App. In fact, we can just turn App into a stateless component:

redux/chat_intermediate/src/complete/App-15.js

const App = () => (

<div className='ui segment'>

{/* `Thread` changed to `ThreadDisplay` below */}

<ThreadTabs />

<ThreadDisplay />

</div>

);

Quite a contrast to the top-level component of some of our previous apps, no?

Due to a combination of our new container and presentational component paradigm and a Redux
state manager, the top-level component for this app is just specifying what container components to

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 553

include on the page. All of the responsibility for reading and writing to state has been pushed down
to each one of our container components.

Because we’re not dispatching actions directly from our leaf components, we’ve isolated all
knowledge of the Redux store to our container components. We’re free to re-use our presentational
components in other contexts within our app. What’s more, if we wanted to switch state man-
agement paradigms from Redux to something else, we would only need to modify our container
components.

Our container components all look pretty similar. They subscribe to the store and then map state
and actions to props on a presentational component. In the next section, we’ll explore an option for
reducing some of the ceremony around writing container components.

But for now, let’s pause briefly to verify that everything still works as before.

Try it out

Save App.js. While we’ve made some big architectural changes to our React components, viewing
the app at http://localhost:3000 everything is working as before.

Generating containers with react-redux

Looking at our two container components (ThreadTabs and ThreadDisplay), they have similar
behavior:

• They subscribe to the store in componentDidMount.
• They might have some logic to massage data from state into a format fit as a prop for the
presentational component (like tabs in ThreadTabs).

• They map actions on the presentational component (like click events) to functions that
dispatch to the store.

Because container components rely on presentational components to render markup, they just
contain “glue” code between the store and presentational components.

A popular library, react-redux, gives us a couple conveniences when writing React apps that use a
Redux store. The primary convenience is its connect() function.

The connect() function in react-redux generates container components. For each presentational
component, we can write functions that specify how state should map to props and how events
should map to dispatches.

Let’s see what this looks like in action.

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 554

The Provider component

Before we can use connect() to generate container components, we need to make a small addition
to our app.

Right now, our containers are referencing the store variable directly. This works because we declare
this variable inside the same file as our components.

In order for connect() to be able to generate container components, it needs some canonical
mechanism for containers to access the Redux store. The function can’t rely on the store variable
being declared and available in the same file.

To solve this, the react-redux library supplies a special Provider component. You can wrap your
top-level component in Provider. Providerwill then make the store available to all components via
React’s context feature.

Whenwe use connect() to generate container components, those container components will assume
that the store is available to them via context.

Context is a React feature that you can use to make certain data available to all React
components. We talk about context in the “Advanced Component Configuration” chapter.

With props, data is explicitly passed down the component hierarchy. A parent must specify
what data is available to its children.

Context allows you to make data available implicitly to all components in a tree. Any
component can “opt-in” to receiving context and that component’s parent doesn’t need to
do anything.

While we cover context elsewhere in the book, it is a rarely used feature in React. The React
core team actively discourages its use, except in special circumstances.

Wrapping App in Provider

Inside of package.json, we’re already including the react-redux library:

"react-redux": "5.0.4",

To use the Provider component, we first include it at the top of App.js:

redux/chat_intermediate/src/complete/App-15.js

import { Provider } from 'react-redux';

To allow our generated container components to access the store through context, we need to wrap
App in Provider.

At the bottom of App.js, we’ll declare a new component, WrappedApp. WrappedApp will return the
App component wrapped in the Provider component. We’ll export WrappedApp from the file:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 555

redux/chat_intermediate/src/complete/App-15.js

const WrappedApp = () => (

<Provider store={store}>

<App />

</Provider>

);

export default WrappedApp;

Provider expects to receive the prop store. The store is now available anywhere in our component
hierarchy under the context variable store.

It’s also common to import Provider into index.js and wrap the App component in it
there.

Using connect() to generate ThreadTabs

The ThreadTabs component connects the presentational component Tabs with our Redux store. It
does so by:

• Subscribing to the store in componentDidMount

• Creating a tabs variable based on the store’s threads property and using that for the prop
tabs on Tabs

• Setting the onClick prop on Tabs to a function that dispatches an OPEN_THREAD action

We can use connect() to generate this component.

We need to pass two arguments to connect(). The first will be a function that maps the state to the
props of Tabs. The second will be a function that maps dispatch calls to the component’s props.

We’ll see how this works by implementing it.

Mapping state to props

First, import the connect() function from the react-redux library:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 556

redux/chat_intermediate/src/complete/App-16.js

import { Provider, connect } from 'react-redux';

At the moment, we perform our “mapping” between the state and the props for Tabs inside of the
render function for ThreadTabs by creating the tabs variable.

We’ll write a function that connect()will use to perform this same operation.We’ll call this function
mapStateToTabsProps().

Whenever the state is changed, this function will be invoked to determine how to map the new state
to the props for Tabs.

Declare the function above ThreadTabs in App.js. The function expects to receive the state as an
argument:

redux/chat_intermediate/src/complete/App-16.js

const mapStateToTabsProps = (state) => {

We can copy and paste the logic that we had in ThreadTabs to produce the variable tabs, based on
state.threads:

redux/chat_intermediate/src/complete/App-16.js

const tabs = state.threads.map(t => (

{

title: t.title,

active: t.id === state.activeThreadId,

id: t.id,

}

));

Our state-to-props mapping function needs to return an object. The properties on this object are the
prop names for Tabs. Because the prop is called tabs and the variable we’re setting it to is also tabs,
we can use the ES6 object shorthand:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 557

redux/chat_intermediate/src/complete/App-16.js

return {

tabs,

};

};

Our mapStateToTabsProps() function, in full:

redux/chat_intermediate/src/complete/App-16.js

const mapStateToTabsProps = (state) => {

const tabs = state.threads.map(t => (

{

title: t.title,

active: t.id === state.activeThreadId,

id: t.id,

}

));

return {

tabs,

};

};

This function encapsulates the logic that was previously in ThreadTabs, describing how the state
maps to the prop tabs for Tabs. Now we have to do the same for the prop onClick, which maps to
a dispatch call.

Mapping dispatches to props

We’ll declare this function below mapStateToTabsProps(). We’ll call it mapDispatchToTabsProps():

redux/chat_intermediate/src/complete/App-16.js

const mapDispatchToTabsProps = (dispatch) => (

We’ll pass this function second to connect(). It will be invoked on setup with dispatch passed in
as an argument.

Like with mapStateToTabsProps(), we’ll return an object that maps the prop onClick to the function
that will perform the dispatching. This function is identical to the one that ThreadTabs previously
specified:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 558

redux/chat_intermediate/src/complete/App-16.js

const mapDispatchToTabsProps = (dispatch) => (

{

onClick: (id) => (

dispatch({

type: 'OPEN_THREAD',

id: id,

})

),

}

);

We now have a function that maps the store’s state to the prop tabs on Tabs and another that maps
the prop onClick to a function that dispatches OPEN_THREAD.

We can now replace our ThreadTabs component by using connect(). Delete the entire ThreadTabs
component currently in App.js.

The first argument to connect() is the function that maps the state to props. The second argument
is the function that maps props to dispatch functions. connect() returns a function that we will
immediately invoke with the presentational component we’d like to “connect” to the store with our
container component:

// Signature of `connect()`

// (Note this is partial, we see the full signature later)

connect(

mapStateToProps(state),

mapDispatchToProps(dispatch),

)(PresentationalComponent)

Let’s use connect() to create ThreadTabs:

redux/chat_intermediate/src/complete/App-16.js

const ThreadTabs = connect(

mapStateToTabsProps,

mapDispatchToTabsProps

)(Tabs);

On the surface it may not look like it, but ThreadTabs is a React container component, not too unlike
the one we had before.

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 559

Using connect() to generate ThreadDisplay

The next component we’ll generate with connect() is ThreadDisplay.

The container component specifies three props on Thread:

• thread

• onMessageClick

• onMessageSubmit

State to props

We’ll call this mapping function mapStateToThreadProps(). It maps one prop:

• thread: maps to the active thread in state

Dispatch to props

We’ll call this mapping function mapDispatchToThreadProps(). It maps two props:

• onMessageClick: maps to a function that dispatches DELETE_MESSAGE
• onMessageSubmit: maps to a function that dispaches ADD_MESSAGE

mapStateToThreadProps()

We’ll write our state-to-props glue function above ThreadDisplay in App.js.

mapStateToThreadProps() accepts the argument state. We have it return an object that maps the
thread property to the active thread in state:

redux/chat_intermediate/src/complete/App-16.js

const mapStateToThreadProps = (state) => (

{

thread: state.threads.find(

t => t.id === state.activeThreadId

),

}

);

This follows from the same logic that ThreadDisplay used to set the thread property of Thread.

mapDispatchToThreadProps()

Below mapStateToThreadProps(), we’ll write our dispatch-to-props glue function.

The first dispatch prop we’ll write is that for onMessageClick. This function accepts an id and
dispatches a DELETE_MESSAGE action. Again, this logic matches that of ThreadDisplay:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 560

redux/chat_intermediate/src/complete/App-16.js

const mapDispatchToThreadProps = (dispatch) => (

{

onMessageClick: (id) => (

dispatch({

type: 'DELETE_MESSAGE',

id: id,

})

),

Next, we need to define the dispatch function for onMessageSubmit.

As you recall, inside of ThreadDisplay, this function dispatched an ADD_MESSAGE action like this:

store.dispatch({

type: 'ADD_MESSAGE',

text: text,

threadId: activeThreadId,

})

connect() will not pass our dispatch-to-props function the state. How do we get the active thread’s
id, then?

We might be tempted to try something like this:

store.dispatch({

type: 'ADD_MESSAGE',

text: text,

// just read `activeThreadId` from the store directly

threadId: store.getState().activeThreadId,

})

For the purposes of our app, this will work just fine. store is defined in this file, so we could just
read from it directly.

But, it’s preferable that the mapping functions that you pass to connect() do not access the store
directly.

Why so?

We’re about to replace our declaration of ThreadDisplay with a container component generated
by connect(). Powerfully, after we’ve done so, the only reference to the store from our React
components will be right here:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 561

<Provider store={store}>

<App />

</Provider>

Isolating the reference to store to just one location has two huge benefits.

The first benefit is one we covered earlier when we discussed container components. The less
references we have to store, the less work we’d have to do if we wanted to move from Redux to
some other state management paradigm. Our mapping functions are just JavaScript functions and
could conceivably perform mapping for some other type of store, so long as the API for the store
was somewhat similar to that of our Redux store.

The more immediate benefit is for testing. When writing tests for a React app, you might want to
inject a fake store into your app. With a fake store, you could specify what it should return for each
spec or assert that certain methods on that store are called.

By passing the store as a prop to Provider and not referencing it directly anywhere else in the app,
we could easily swap in a mock store during tests.

So, we need the id of the thread we’re displaying in order to dispatch our ADD_MESSAGE action. But
we don’t have access to this property inside our dispatch-to-props function.

connect() allows you to pass in a third function, what it calls mergeProps. So, in full, the three
functions you can pass to connect():

// Full function signature of `connect()`

connect(

mapStateToProps(state, [ownProps]),

mapDispatchToProps(dispatch, [ownProps]),

mergeProps(stateProps, dispatchProps, [ownProps])

)

In connect(), ownProps refers to the props set on the container component that we’re
generating. In this instance, these would be any props that App sets on either of our
container components, ThreadTabs or ThreadDisplay.

Accepting and using ownProps is optional. Because App does not specify any props on our
container components, none of our mapping functions use this second argument.

mergeProps is called with two arguments: stateProps and dispatchProps. These are just the objects
that are returned by mapStateToProps and mapDispatchToProps.

So we can pass connect() a third function, mergeThreadProps(). This function will be invoked with
two arguments:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 562

• The object we return in mapStateToThreadProps()

• The object we return in mapDispatchToThreadProps()

connect() will use the object returned by mergeThreadProps() as the final object to determine the
props for Thread.

In sequence, connect() will do the following:

1. Call mapStateToThreadProps() with state

2. Call mapDispatchToThreadProps() with dispatch

3. Call mergeThreadProps() with the results of the two previous map functions (stateProps
and dispatchProps)

4. Use the object returned by mergeThreadProps() to set the props on Thread

Inside of mergeThreadProps(), we’ll need access to two items to create our ADD_MESSAGE dispatch
function:

• The id of the thread
• The dispatch function itself

We’ll get the id of the thread via stateProps, as that object has the full thread object under thread.

To get access to dispatch, we can pass it along in mapDispatchToThreadProps().

As such, our mapDispatchToThreadProps() function will define two properties:

• onMessageClick

• dispatch

The dispatch-to-props function, in full:

redux/chat_intermediate/src/complete/App-16.js

const mapDispatchToThreadProps = (dispatch) => (

{

onMessageClick: (id) => (

dispatch({

type: 'DELETE_MESSAGE',

id: id,

})

),

dispatch: dispatch,

}

);

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 563

Now we’ll define our final mapping function. Again, this “merging” function will be passed the
results of our state-to-props mapping function and our dispatch-to-props mapping function. The
object it returns is the one that connect() will use to bind the props of Thread.

We’ll declare this function below mapDispatchToThreadProps(). Our merging function receives two
arguments:

redux/chat_intermediate/src/complete/App-16.js

const mergeThreadProps = (stateProps, dispatchProps) => (

We want to create a new object that contains:

• All the properties from stateProps

• All the properties from dispatchProps

• An additional property, onMessageSubmit

Let’s see what this looks like:

redux/chat_intermediate/src/complete/App-16.js

const mergeThreadProps = (stateProps, dispatchProps) => (

{

...stateProps,

...dispatchProps,

onMessageSubmit: (text) => (

dispatchProps.dispatch({

type: 'ADD_MESSAGE',

text: text,

threadId: stateProps.thread.id,

})

),

}

);

We copy both stateProps and dispatchProps over to our new object using the spread operator
(...).

onMessageSubmit dispatches the same ADD_MESSAGE action that ThreadDisplay previously dis-
patched. Note that we’re grabbing the dispatch function from dispatchProps:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 564

redux/chat_intermediate/src/complete/App-16.js

dispatchProps.dispatch({

And then, we’re grabbing the thread’s id from stateProps:

redux/chat_intermediate/src/complete/App-16.js

threadId: stateProps.thread.id,

With our two mapping functions and one merge function prepared, we can now generate Thread-
Display with connect().

We’ll declare ThreadDisplay below mergeThreadProps():

redux/chat_intermediate/src/complete/App-16.js

const ThreadDisplay = connect(

mapStateToThreadProps,

mapDispatchToThreadProps,

mergeThreadProps

)(Thread);

Be sure to remove the old declaration of the ThreadDisplay component from App.js.

Using the mergeProps argument of connect() feels like a bit of a workaround. This is because the
parameters for using connect() are quite strict. This is by design. The library enforces this usage
for both performance reasons and to prevent a few possible developer mistakes.

However, with our merge function, we got connect() to generate a ThreadDisplay component as
desired. We removed some of the boilerplate around our container components. And, we’ve isolated
the connection between Redux and React to a single area — as a prop for Provider.

Let’s verify everything is working properly.

Try it out

Make sure the server is running. Navigate to http://localhost:3000 and observe that all of the
functionality of the app is working.

Action creators

Right now, in every instance where we want to dispatch an action, we declare an action object of a
certain type as well as its required properties. For example, for the DELETE_MESSAGE action:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 565

dispatch({

type: 'DELETE_MESSAGE',

id: id,

})

In the current iteration of the app, we only dispatch each type of action from a single location. As
Redux apps grow, it’s common for the same action to be dispatched from multiple locations.

A popular pattern is to use action creators to create the action objects. An action creator is a function
that returns an action object. An action creator for our DELETE_MESSAGE action would look like this:

// Example action creator for `DELETE_MESSAGE`

function deleteMessage(id) {

return {

type: 'DELETE_MESSAGE',

id: id,

};

}

Then, anywhere in our app, if we wanted to dispatch a DELETE_MESSAGE action, we could just use
our action creator:

dispatch(deleteMessage(id));

It’s a light abstraction that hides the action’s type as well as its property names from React
components. More importantly, using action creators enables certain advanced patterns, like
coupling an API request with an action dispatch.

Let’s swap out our action objects and use action creators instead.

First, we’ll write our action creators. Let’s declare them below the line where we initialize the store
with createStore().

We already saw what the deleteMessage() action creator looks like. The action creator is a function
that accepts the id of the message to be deleted. It then returns an object of type DELETE_MESSAGE:

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 566

redux/chat_intermediate/src/complete/App-17.js

function deleteMessage(id) {

return {

type: 'DELETE_MESSAGE',

id: id,

};

}

The action creator addMessage() expects both a text and threadId argument:

redux/chat_intermediate/src/complete/App-17.js

function addMessage(text, threadId) {

return {

type: 'ADD_MESSAGE',

text: text,

threadId: threadId,

};

}

And openThread expects the id of the thread to open:

redux/chat_intermediate/src/complete/App-17.js

function openThread(id) {

return {

type: 'OPEN_THREAD',

id: id,

};

}

We can now work down App.js and replace action objects with our new action creators.

Inside mapDispatchToTabsProps():

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 567

redux/chat_intermediate/src/complete/App-17.js

const mapDispatchToTabsProps = (dispatch) => (

{

onClick: (id) => (

dispatch(openThread(id))

),

}

);

Then mapDispatchToThreadProps():

redux/chat_intermediate/src/complete/App-17.js

const mapDispatchToThreadProps = (dispatch) => (

{

onMessageClick: (id) => (

dispatch(deleteMessage(id))

),

dispatch: dispatch,

}

);

And finally mergeThreadProps():

redux/chat_intermediate/src/complete/App-17.js

const mergeThreadProps = (stateProps, dispatchProps) => (

{

...stateProps,

...dispatchProps,

onMessageSubmit: (text) => (

dispatchProps.dispatch(

addMessage(text, stateProps.thread.id)

)

),

}

);

Another benefit of using action creators is that they list out all of the possible actions in our system in
one place. We no longer have to infer the shapes of possible actions by hunting through the reducers
or React components. This is exacerbated as the number of actions in a system grows.

WOW! eBook
www.wowebook.org

Using Presentational and Container Components with Redux 568

Conclusion

Over the last three chapters, we’ve explored the fundamentals of the Redux design pattern. The
architecture of our Redux-powered chat app is a stark difference from what it would be if we’d used
React’s component state.

We don’t have to worry about pipelining props through tons of intermediary components, as we
define functionality close to leaf components in our container components. Consider the scenario
where we wanted to add more data to each thread, like a profile picture of the user. We’d just have to
tweak the state-to-props mapping function in our container component to make the profile picture’s
URL available to our presentational component.

Furthermore, instead of a heavy top-level component that performs all of our state management, we
have a series of reducer functions that each handle their own part of our state tree. The advantage
here is accentuated if one action should affect multiple parts of the state tree.

Imagine if we introduced a notifications counter to the chat app. The counter indicates the number
of unread threads. Every time the user opened a thread, we’d want to decrement this counter.

In the component-state paradigm, this means that the function — say, handleThreadOpen()—would
not only affect the activeThreadId part of the state tree. It would also be responsible for modifying
the notifications counter. In this model, single actions that affect multiple parts of the state tree can
become cumbersome, quickly.

With Redux, the affect of a given action on each part of the state tree is isolated to each reducer. In
our case, we wouldn’t have to touch activeThreadIdReducer() to incorporate a new notifications
counter. The affect of OPEN_THREAD on the notifications counter would be isolated to the reducer for
that piece of state.

Asynchronicity and server communication

The last concept you’ll need to begin composing real-world applications with Redux is how to handle
server communication.

Redux does not have an established mechanism for handling asynchronicity built-in. Instead, there
are a variety of tools and patterns within the Redux ecosystem for handling asynchronicity.

While asynchronicity in Redux is outside the scope of this book, with the Redux fundamentals
covered in the last few chapters you’re equipped to integrate these patterns and libraries into your
own applications.

The most popular strategy is to use a light piece of middleware called redux-thunk91. Using redux-

thunk, you can have a dispatch call execute a function as opposed to dispatching an action directly
to the store. Inside of that function, you can make a network request and dispatch an action when
the request finishes.

91https://github.com/gaearon/redux-thunk

WOW! eBook
www.wowebook.org

https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk

Using Presentational and Container Components with Redux 569

For a detailed example of using redux-thunk to handle asynchronicity, check out this tutorial on the
Redux site: http://redux.js.org/docs/advanced/AsyncActions.html92.

92http://redux.js.org/docs/advanced/AsyncActions.html

WOW! eBook
www.wowebook.org

http://redux.js.org/docs/advanced/AsyncActions.html
http://redux.js.org/docs/advanced/AsyncActions.html

Using GraphQL
Over the last few chapters, we’ve explored how to build React applications that interact with servers
using JSON and HTTP APIs. In this chapter, we’re going to explore GraphQL, which is a specific
API protocol developed by Facebook that is a natural fit in the React ecosystem.

What is GraphQL? Most literally it means “Graph Query Language”, which may sound familiar if
you’ve worked with other query languages like SQL. If your server “speaks” GraphQL, then you
can send it a GraphQL query string and expect a GraphQL response. We’ll dive into the particulars
soon, but the features of GraphQL make it particularly well-suited for cross-platform applications
and large product teams.

To discover why, let’s start with a little show-and-tell.

Your First GraphQL Query

Typically GraphQL queries are sent using HTTP requests, similar to how we sent API requests
in earlier chapters; however, there is usually just one URL endpoint per-server that handles all
GraphQL requests.

GraphQLHub93 is a GraphQL service that we’ll use throughout this chapter to learn about GraphQL.
Its GraphQL endpoint is https://www.graphqlhub.com/graphql, and we issue GraphQL queries
using an HTTP POST method. Fire up a terminal and issue this cURL command:

$ curl -H 'Content-Type:application/graphql' -XPOST https://www.graphqlhub.com/g\

raphql?pretty=true -d '{ hn { topStories(limit: 2) { title url } } }'

{

"data": {

"hn": {

"topStories": [

{

"title": "Bank of Japan Is an Estimated Top 10 Holder in 90% of the Ni\

kkei 225",

"url": "http://www.bloomberg.com/news/articles/2016-04-24/the-tokyo-wh\

ale-is-quietly-buying-up-huge-stakes-in-japan-inc"

},

{

"title": "Dropbox as a Git Server",

93https://www.graphqlhub.com/

WOW! eBook
www.wowebook.org

https://www.graphqlhub.com/
https://www.graphqlhub.com/

Using GraphQL 571

"url": "http://www.anishathalye.com/2016/04/25/dropbox-as-a-true-git-s\

erver/"

}

]

}

}

}

It may take a second to return, but you should see a JSON object describing the title and url of the
top stories on Hacker News94. Congratulations, you’ve just executed your first GraphQL query!

Let’s break down what happened in that cURL. We first set the Content-Type header to applica-

tion/graphql - this is how the GraphQLHub server knows that we’re sending a GraphQL request,
which is a common pattern for many GraphQL servers (we’ll see later on in Writing Your GraphQL
Server).

Next we specified a POST to the /graphql?pretty=true endpoint. The /graphql portion is the
path, and the pretty query parameters instructs the server to return the data in a human-friendly,
indented format (instead of returning the JSON in one line of text).

Finally, the -d argument to our cURL command is how we specify the body of the POST request.
For GraphQL requests, the body is often a GraphQL query. We had to write our request in one line
for cURL, but here’s what our query looks like when we expand and indent it properly:

1 // one line

2 { hn { topStories(limit: 2) { title url } } }

3

4 // expanded

5 {

6 hn {

7 topStories(limit: 2) {

8 title

9 url

10 }

11 }

12 }

This is a GraphQL query. On the surface it may look similar to JSON, and they do have a tree
structure and nested brackets in common, but there are crucial differences in syntax and function.

Notice that the structure of our query is the same structure returned in the JSON response. We
specified some properties named hn, topStories, title, and url, and the response object has that

94https://news.ycombinator.com

WOW! eBook
www.wowebook.org

https://news.ycombinator.com/
https://news.ycombinator.com/

Using GraphQL 572

exact tree structure - there are no extra or missing entries. This is one of the key features of GraphQL:
you request the specific data you want from the server, and no other data is returned implicitly.

It isn’t obvious from this example, but GraphQL not only tracks the properties available to query,
but the type of each property as well (“type” as in number, string, boolean, etc). This GraphQL server
knows that topStories will be a list of objects consisting of title and url entries, and that title
and url are strings. The type system is much more powerful than just strings and objects, and really
saves time in the long-run as a product grows more complex.

GraphQL Benefits

Now that we’ve seen a bit of GraphQL in action, you may be wondering, “why anyone would prefer
GraphQL over URL-centric APIs such as REST?” At first glance, it seems like strictly more work and
setup than traditional protocols - what do we get for the extra effort?

First, our API calls become easier to understand by declaring the exact data we want from the
server. For a newcomer to a web app codebase, seeing GraphQL queries makes it immediately
obvious what data is coming from the server versus what data is derived on the clients.

GraphQL also opens doors for better unit and integration testing: it’s easy to mock data on the client,
and it’s possible to assert that your server GraphQL changes don’t break GraphQL queries in client
code.

GraphQL is also designed with performance in mind, especially with respect to mobile clients.
Specifying only the data needed in each query prevents over-fetching (i.e., where the server retrieves
and transmits data that ultimately goes unused by the client). This reduces network traffic and helps
to improve speed on size-sensitive mobile environments.

The development experience for traditional JSON APIs is often acceptable at best (and infuriating
more often). Most APIs are lacking in documentation, or worse have documentation that is
inconsistent with the behavior of the API. APIs can change and it’s not immediately obvious (i.e.
with compile-time checks) what parts of your application will break. Very few APIs allow for
discovery of properties or new endpoints, and usually it occurs in a bespoke mechanism.

GraphQL dramatically improves the developer experience - its type system provides a living form
of self-documentation, and tooling like GraphiQL (which we play with in this chapter) allow for
natural exploration of a GraphQL server.

WOW! eBook
www.wowebook.org

Using GraphQL 573

Navigating a Schema with GraphiQL

Finally, the declarative nature of GraphQL pairs nicely with the declarative nature of React. A few
projects, including the Relay framework from Facebook, are trying to bring the idea of “colocated
queries” in React to life. Imagine writing a React component that automatically fetches the data
it needs from the server, with no glue code around issuing API calls or tracking the lifecycle of a
request.

All of these benefits compound as your team and product grow, which is why it evolved to be the
primary way data is exchanged between client and server at Facebook.

GraphQL vs. REST

We’ve mentioned alternative protocols a bit, but let’s compare GraphQL to REST specifically.

One drawback to REST is “endpoint creep.” Imagine you’re building a social network app and start
with a /user/:id/profile endpoint. At first the data this endpoint returns is the same for every
platform and every part of the app, but slowly your product evolves and accumulates more features
that fit under the “profile” umbrella. This is problematic for new parts of the app that only need
some profile data, such as tooltips on a news feed. So you might end up creating something like
/user/:id/profile_short, which is a restricted version of the full profile.

As you run into more cases where new endpoints are required (imagine a profile_medium!), you
now duplicate some data with calls to /profile and /profile_short, possibly wasting server and
network resources. It also makes the development experience harder to understand - where does a
developer find out what data is returned in each variation? Are your docs up-to-date?

An alternative to creating N endpoints is to add some GraphQL-esque functionality to query pa-
rameters, such as /user/:id/profile?include=user.name,user.id. This allows clients to specify
the data they want, but still lacks many of the features of GraphQL that make such a system
work in the long-run. For example, that sort of API there is still no strong typing information that
enables resilient unit testing and long-lived code. This is especially critical for mobile apps, where
old binaries might exist in the wild for long periods of time.

WOW! eBook
www.wowebook.org

Using GraphQL 574

Lastly the tooling for developing against and debugging REST APIs is often lack-luster because
there are so few commonalities among popular APIs. At the lowest level you have very general
purpose tools like cURL and wget, some APIs might support Swagger95 or other documentation
formats, and at the highest level for specific APIs like Elasticsearch or Facebook’s Graph API you
may find bespoke utilities. GraphQL’s type system supports introspection (in other words, you can
use GraphQL itself to discover information about a GraphQL server), which enables pluggable and
portable developer tools.

GraphQL vs. SQL

It’s also worthwhile to compare GraphQL to SQL (in the abstract, not tied to a specific database
or implementation). There’s some precedent for using SQL for web apps with the Facebook Query
Language (FQL)96 - what makes GraphQL a better choice?

SQL is very helpful for accessing relational databases and works well with the way such databases
are structured internally, but it is not how front-end applications are oriented to consume data.
Dealing with concepts like joins and aggregations at the browser level feels like an abstraction leak
- instead, we usually do want to think of information as a graph. We often think, “Get me this
particular user, and then get me the friends of that user,” where “friends” could be any type of
connection, like photos or financial data.

There’s also a security concern - it’s awfully tempting to shove SQL from the web apps straight into
the underlying databases, which will inevitably lead to security issues. And as we’ll see later on,
GraphQL also enables precise access control logic around who can see what kinds of data, and is
generally more flexible and less likely to be as insecure as using raw SQL.

Remember that using GraphQL does not mean you have to abandon your backend SQL databases
- GraphQL servers can sit on top of any data source, whether it’s SQL, MongoDB, Redis, or even a
third-party API. In fact, one of the benefits of GraphQL is that it is possible to write a single GraphQL
sever that serves as an abstraction over several data stores (or other APIs) simultaneously.

Relay and GraphQL Frameworks

We’ve talked a lot about why you should consider GraphQL, but haven’t gone much into how you
use GraphQL. We’ll start to uncover more about that very soon, but we should mention Relay.

Relay97 is Facebook’s framework for connecting React components to a GraphQL server. It allows
you to write code like this, which shows how an Item component can automatically retrieve data
from a Hacker News GraphQL server:

95http://swagger.io/
96https://en.wikipedia.org/wiki/Facebook_Query_Language
97https://facebook.github.io/relay/

WOW! eBook
www.wowebook.org

http://swagger.io/
https://en.wikipedia.org/wiki/Facebook_Query_Language
https://en.wikipedia.org/wiki/Facebook_Query_Language
https://facebook.github.io/relay/
http://swagger.io/
https://en.wikipedia.org/wiki/Facebook_Query_Language
https://facebook.github.io/relay/

Using GraphQL 575

1 class Item extends React.Component {

2 render() {

3 let item = this.props.item;

4

5 return (

6 <div>

7 <h1>{item.title}</h1>

8 <h2>{item.score} - {item.by.id}</h2>

9 <hr />

10 </div>

11);

12 }

13 };

14

15 Item = Relay.createContainer(Item, {

16 fragments: {

17 item: () => Relay.QL`

18 fragment on HackerNewsItem {

19 id

20 title,

21 score,

22 url

23 by {

24 id

25 }

26 }

27 `

28 },

29 });

Behind the scenes, Relay handles intelligently batching and caching data for improved performance
and a consistent user experience. We’ll go in-depth on Relay later on, but this should give you an
idea of how nicely GraphQL and React can work together.

There are other emerging approaches on how to integrate GraphQL and React, such as Apollo98 by
the Meteor team.

You can also use GraphQL without using React - it’s easy to use GraphQL anywhere you’d
traditionally use API calls, including with other technologies like Angular or Backbone.

98http://www.apollostack.com/

WOW! eBook
www.wowebook.org

http://www.apollostack.com/
http://www.apollostack.com/

Using GraphQL 576

Chapter Preview

There are two sides to using GraphQL: as an author of a client or front-end web application, and as
an author of a GraphQL server. We’re going to cover both of these aspects in this chapter and the
next.

As a GraphQL client, consuming GraphQL is as easy as an HTTP request. We’ll cover the syntax
and features of the GraphQL language, as well as design patterns for integrating GraphQL into your
JavaScript applications. This is what we’ll cover in this chapter.

As a GraphQL server, using GraphQL is a powerful way to provide a query layer over any data
source in your infrastructure (or even third-party APIs). GraphQL is just a standard for a query
language, which means you can implement a GraphQL server in any language you like (such as
Java, Ruby, or C). We’re going to use Node for our GraphQL server implementation. We’ll cover
writing GraphQL servers in the next chapter.

Consuming GraphQL

If you’re retrieving data from a server using GraphQL - whether it’s with React, another JavaScript
library, or a native iOS app - we think of that as a GraphQL “client.” This means you’ll be writing
GraphQL queries and sending them up to the server.

Since GraphQL is its own language, we’ll spend this chapter getting you familiar with it and
learning to write idiomatic GraphQL.We’ll also cover some mechanics of querying GraphQL severs,
including various libraries and starting off with an in-browser IDE: GraphiQL.

Exploring With GraphiQL

At the start of the chapter we used GraphQLHub with cURL to execute a GraphQL query. This isn’t
the only way GraphQLHub provides access to its GraphQL endpoint: it also hosts a visual IDE called
GraphiQL99. GraphiQL is developed by Facebook and can be used hosted on any GraphQL server
with minimal configuration.

You can always issue GraphQL requests using tools like cURL or any language that supports HTTP
requests, but GraphiQL is particularly helpful while you become familiar with a particular GraphQL
server or GraphQL in general. It provides type-ahead support for errors or suggestions, searchable
documentation (generated dynamically using the GraphQL introspection queries), and a JSON
viewer that supports code folding and syntax highlighting.

Head to https://graphqlhub.com/playground100 and get your first look at GraphiQL:

99https://github.com/graphql/graphiql
100https://graphqlhub.com/playground

WOW! eBook
www.wowebook.org

https://github.com/graphql/graphiql
https://graphqlhub.com/playground
https://github.com/graphql/graphiql
https://graphqlhub.com/playground

Using GraphQL 577

Empty GraphiQL

Not much going on yet - go ahead and enter the GraphQL query we cURL’d from earlier:

GraphiQL query

As you type the query, you’ll notice the helpful typeahead support. If you make mistakes, such as
entering a field that doesn’t exist, GraphiQL will warn you immediately:

GraphiQL error

This is a great example of GraphQL’s type system at work. GraphiQL knows what fields and types

WOW! eBook
www.wowebook.org

Using GraphQL 578

exist, and in this case the field urls does not exist on the HackerNewsItem type. We’ll explore how
types get their fields and names later on.

Hit the “Play” button in the top navigation bar to execute your query. You’ll see the new data appear
in the right pane:

GraphiQL data

See that “Docs” button in the top right corner of GraphiQL? Give that a click to expand the full
documentation browser:

GraphiQL docs

Feel free to click around and choose-your-own-adventure, but eventually come back to the page in
the screenshot (the top-level page) and search that HackerNewsItem type we ran into trouble with
earlier:

WOW! eBook
www.wowebook.org

Using GraphQL 579

GraphiQL search

Click the matching entry. This takes you to the documentation describing the HackerNewsItem type,
which includes a description (written by a human, not generated) and a list of all the fields on the
type. You can click the fields and their types to find out more information:

GraphiQL HackerNewsItem

GraphiQL HackerNewsUser

As you can see, the by field of HackerNewsItem has the type HackerNewsUser, which has its own set
of fields and links. Let’s change our query to grab the information about the author:

WOW! eBook
www.wowebook.org

Using GraphQL 580

GraphiQL query with HackerNewsUser

Notice how the by field now shows up both in our query and in the final data - ta da!

Keep GraphQLHub’s GraphiQL open in a tab as we start to dig into the mechanics of GraphQL.

GraphQL Syntax 101

Let’s dig into the semantics of GraphQL. We’ve used some terms like “query”, “field”, and “type”,
but we haven’t properly defined them yet, and there are still a few more to cover before we delve
further into our work. For a complete and formal examination of these topics, you can always refer
to the GraphQL specification101.

The entire string you send to a GraphQL server is called a document. A document can have one or
more operations - so far our example documents have just only a query operation, but you can also
send mutation operations.

A query operation is read-only - when you send a query, you’re asking the server to give you some
data. A mutation is intended to be a write followed by a fetch; in other words, “Change this data,
and then give me some other data.” We’ll explore mutations more in a bit, but they use the same
type system and have the same syntax as queries.

Here’s an example of a document with just one query:

101https://facebook.github.io/graphql/

WOW! eBook
www.wowebook.org

https://facebook.github.io/graphql/
https://facebook.github.io/graphql/

Using GraphQL 581

1 query getTopTwoStories {

2 hn {

3 topStories(limit: 2) {

4 title

5 url

6 }

7 }

8 }

Note that we have prefixed our original query with query getTopTwoStories, which is the full and
formal way to specify an operation within a document. First we declare the type of operation (query
or mutation) and then the name of the operation (getTopTwoStories). If your GraphQL document
contains just one operation, you can omit the formal declaration and the GraphQL will assume you
mean a query:

1 {

2 hn {

3 topStories(limit: 2) {

4 title

5 url

6 }

7 }

8 }

In the case that your document has multiple operations, you need to give each of them a unique
name. Here’s an example of a document with several operations:

1 query getTopTwoStories {

2 hn {

3 topStories(limit: 2) {

4 title

5 url

6 }

7 }

8 }

9

10 mutation upvoteStory {

11 hn {

12 upvoteStory(id: "11565911") {

13 id

14 score

15 }

WOW! eBook
www.wowebook.org

Using GraphQL 582

16 }

17 }

Generally you won’t be sending multiple operations to the server, as the GraphQL specification
states a server can only run one operation per document.

Multiple operations are allowed in a document for advanced performance optimizations102

detailed by Facebook.

So that’s documents and operations, now let’s dig into a typical query. An operation is composed of
selections, which are generally fields. Each field in GraphQL represents a piece of data, which can
either be an irreducible scalar type (defined below) or a more complex type composed of yet more
scalars and complex types.

In our previous examples, title and url are scalar fields (as string is a scalar type), and hn and
topStories are complex types.

A unique trait of GraphQL is that you must specify your selection until it is entirely composed of
scalar types. In other words, this query is invalid because hn and topStories are complex types and
the query does not end in any scalar fields:

1 {

2 hn {

3 topStories(limit: 2) {

4 }

5 }

6 }

If you try this in GraphiQL, it will tell you eagerly that it is invalid:

GraphiQL error without scalar

More philosophically, this means that GraphQL queries must be unambiguous and reinforces the
concept that GraphQL is a protocol where you fetch only the data you demand.

102https://github.com/facebook/graphql/issues/29#issuecomment-118994619

WOW! eBook
www.wowebook.org

https://github.com/facebook/graphql/issues/29#issuecomment-118994619
https://github.com/facebook/graphql/issues/29#issuecomment-118994619

Using GraphQL 583

Scalar types include Int, Float, String, Boolean and ID (coerced to a string). GraphQL provides
ways of composing these scalars into more complex types using Object, Interface, Union, Enum,
and List types. We’ll go into each of those later, but it should be intuitive that they allow you to
compose different scalar (and complex) types to create powerful type hierarchies.

Additionally, fields can have arguments. It’s useful to think of all fields as being functions, and some
of them happen to take arguments like functions in other programming languages. Arguments are
declared between parenthesis after the name of a field, are unordered, and can even be optional. In
our previous example, limit is an argument to topStories:

1 {

2 hn {

3 topStories(limit: 10) {

4 url

5 }

6 }

7 }

Arguments are also typed in the same way as fields. If we try to use a string, GraphiQL shows us
the error in our ways:

GraphiQL error argument type

It turns out that limit is actually an optional argument for this GraphQL server, and omitting it is
still a perfectly valid query:

1 {

2 hn {

3 topStories {

4 url

5 }

6 }

7 }

The arguments to a GraphQL field can also be complex objects, referred to as input objects. These
not just the string or numeric scalars we’ve shown, but are arbitrarily deeply nested maps of keys

WOW! eBook
www.wowebook.org

Using GraphQL 584

and values. Here’s an example where the argument storyData takes an input object which has a url
property:

1 {

2 hn {

3 createStory(storyData: { url: "http://fullstackreact.com" }) {

4 url

5 }

6 }

7 }

The collection of fields of a GraphQL server is called its schema. Tools like GraphiQL can download
the entire schema (we’ll show how to do that later) and use that for auto-complete and other
functionality.

Complex Types

We’ve discussed scalars but only alluded to complex types, though we’ve been using them in our
examples. The hn and topStories fields are examples of Object and List type fields, respectively.
In GraphiQL we can explore their exact types - search HackerNewsAPI to see details about hn:

HackerNewsAPI type

Unions

What do you do if your field should actually be more than one type? For example, if your schema
has some kind of universal search functionality, it’s likely that it will return many different types.

WOW! eBook
www.wowebook.org

Using GraphQL 585

So far we’ve only seen examples where each field is one type, either a scalar or a complex object -
how would we handle something like search?

GraphQL provides a few mechanisms for this use-case. First is unions, which allow you to define
a new type that is one of a list of other types. This is example of unions comes straight from the
GraphQL spec103:

1 union SearchResult = Photo | Person

2

3 type Person {

4 name: String

5 age: Int

6 }

7

8 type Photo {

9 height: Int

10 width: Int

11 }

12

13 type SearchQuery {

14 firstSearchResult: SearchResult

15 }

This syntax look unfamiliar? It’s an informal variant of pseudo-code used by the GraphQL spec to
describe GraphQL schemas - we won’t be writing any code using this format, it’s purely to make it
easier to describe GraphQL types independent of server code.

In that example, the SearchQuery type has a firstSearchResult field which may either be a Photo
or Person type. The types in a union don’t have to be objects - they can be scalars, other unions, or
even a mix.

Fragments

If you look closer, you’ll notice there are no fields in common between Person and Photo. How do
we write a GraphQL query which handles both cases? In other words, if our search returns a Photo,
how do we know to return the height field?

This is where fragments come into play. Fragments allow you to group sets of fields, independent of
type, and re-use them throughout your query. Here’s what a query with fragments could look like
for the above schema:

103https://facebook.github.io/graphql/#sec-Unions

WOW! eBook
www.wowebook.org

https://facebook.github.io/graphql/#sec-Unions
https://facebook.github.io/graphql/#sec-Unions

Using GraphQL 586

1 {

2 firstSearchResult {

3 ... on Person {

4 name

5 }

6 ... on Photo {

7 height

8 }

9 }

10 }

The ... on Person bit is referred to as an inline fragment. In plain-English we could read this as,
“If the firstSearchResult is a Person, then return the name; if it’s a Photo, then return the height.”

Fragments don’t have to be inline; they can be named and re-used throughout the document. We
could rewrite the above example using named fragments:

1 {

2 firstSearchResult {

3 ... searchPerson

4 ... searchPhoto

5 }

6 }

7

8 fragment searchPerson on Person {

9 name

10 }

11

12 fragment searchPhoto on Photo {

13 height

14 }

This would allow us to use searchPerson in other parts of the query without duplicating the same
inline fragment everywhere.

Interfaces

In addition to unions, GraphQL also supports interfaces, which you might be familiar with from
programming languages like Java. In GraphQL, if an object type implements an interface, then the
GraphQL server enforces that the type will have all the fields the interface requires. A GraphQL type
that implements an interface may also have its own fields that are not specified by the interface, and
a single GraphQL type can implement multiple interfaces.

To continue the search example, you can imagine our search engine having this type of schema:

WOW! eBook
www.wowebook.org

Using GraphQL 587

1 interface Searchable {

2 searchResultPreview: String

3 }

4

5 type Person implements Searchable {

6 searchResultPreview: String

7 name: String

8 age: Int

9 }

10

11 type Photo implements Searchable {

12 searchResultPreview: String

13 height: Int

14 width: Int

15 }

16

17 type SearchQuery {

18 firstSearchResult: Searchable

19 }

Let’s break this down. Our firstSearchResult is now guaranteed to return a type that implements
Searchable. Because this otherwise unknown type implements Searchable,

These are the primitives of GraphQL - operations, types (scalar and complex), and fields - and we
can use them to compose higher-order patterns.

Exploring a Graph

We’ve explored the “QL” of GraphQL, but haven’t touched too much on the “Graph” part.

Whenwe say “Graph”, we don’t mean in the sense of a bar chart or other data visualizations
- we mean a graph in the more mathematical sense104.

A graph is composed of a set of objects that are linked together. Each object is called a node, and
the link between a pair of objects is called an edge. You might not be used to thinking about your
product’s data with this vocabulary, but it is surprisingly representative of most applications.

Let’s consider the graph of a Facebook user:

104https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Using GraphQL 588

Facebook Graph

But also consider the graph of a productivity application like Asana:

WOW! eBook
www.wowebook.org

Using GraphQL 589

Asana Graph

Even though Asana is not really a social network, the product’s data still forms a graph.

Note that just because your product’s data resembles a graph structure doesn’t mean you need to
use a graph database: Facebook and Asana’s underlying datastore is often MySQL, which doesn’t
natively support graph operations. Any data store, whether a relational database, key-value store,
or document store, can be exposed as a graph in GraphQL.

The ideal GraphQL schema closely models the shape and terms of a mathematical graph. Here’s a
preview of the type of graph-like schema we’ll be exploring:

1 {

2 viewer {

3 id

4 name

5 likes {

6 edges {

7 cursor

8 node {

9 id

10 name

11 }

12 }

WOW! eBook
www.wowebook.org

Using GraphQL 590

13 }

14 }

15 node(id: "123123") {

16 id

17 name

18 }

19 }

Adding these extra layers of fields (edges, node, etc) may seem like over-engineering when coming
from something like REST. However, these patterns emerged from building Facebook and have
provides a foundation as your product grows and adds new features.

The patterns we’re going to describe in the next few sections are derived from the GraphQL patterns
required by Relay105. Even if you don’t use Relay, this way of thinking of your GraphQL schema
will prevent you from “fighting the framework” and it wouldn’t be surprising if future GraphQL
front-end libraries beyond Relay continue to embrace them.

Graph Nodes

When querying a graph, you generally need to start your query with a node. You app is either
fetching fields directly on a node or finding out about what connections it has.

For example, the querying “the current user’s feed” in Facebook would start with the current user’s
node, and explore all “feed item” nodes connected to it.

In idiomatic GraphQL, you generally define a simple Node interface like this:

1 interface Node {

2 id: ID

3 }

So anything that implements this interface is expected to have an id field - that’s it. Remember from
earlier that the ID scalar type is casted to a string. If you’re coming from the REST world, this is
sort of like when you can query a resource using a URL like /$nouns/:id.

One key difference that idiomatic GraphQL and other protocols is all of your node IDs should be
globally unique. In other words, it would be invalid to have a User with an ID of “1” and a Photo
with an ID of “1”, as the IDs would collide.

The reason behind this is that you should also expose a top-level field that lets you query arbitrary
nodes by ID, something like this:

105https://facebook.github.io/relay/docs/graphql-relay-specification.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/relay/docs/graphql-relay-specification.html
https://facebook.github.io/relay/docs/graphql-relay-specification.html
https://facebook.github.io/relay/docs/graphql-relay-specification.html

Using GraphQL 591

1 {

2 node(id: "the_id") {

3 id

4 }

5 }

If you have IDs that collide across types, it’s impossible to determine what to return from that field.
If you’re using a relational database, this might be puzzling because by default primary keys are
only guaranteed to be unique per-table. A common technique is to prefix your database IDs with a
string that corresponds to the type and makes the IDs unique again. In pseudo-code:

1 const findNode = (id) => {

2 const [prefix, dbId] = id.split(":");

3 if (prefix === 'users') {

4 return database.usersTable.find(dbId);

5 }

6 else if (...) {

7 }

8 };

9

10 const getUser = (id) => {

11 let user = database.usersTable.find(id);

12 user.id = `users:${user.id}`;

13 return user;

14 };

Whenever our GraphQL server returns a user (via getUser), it changes the database ID to make
it unique. Then when we lookup a node (via findNode), we read the “scope” of the ID and act
appropriately. This also highlights a benefit of why IDs are strings in GraphQL, because they allow
for readable changes like these.

Why do we want the ability to query any node using the node(id:) field? It makes it easier for our
web applications to “refresh” stale data without having to keep track of where a piece of data comes
from in the schema. If we know a todo-list item changed it’s state, our app should be able to look-up
the latest state from the server without knowing what project or group it belongs to.

Generally our apps don’t query global node IDs from the start - how do we describe the “current
user’s node” in GraphQL? It turns out the viewer pattern comes in handy.

Viewer

In addition to the node(id:) field, it’s very helpful if your GraphQL schema has a top-level viewer
field. The “viewer” represents the current user and the connections to that user. At the schema-level,
the viewer’s type should implement the Node interface like any other node type.

WOW! eBook
www.wowebook.org

Using GraphQL 592

If you’re coming from REST, this either happens implicitly or all of your endpoints are prefixed
being with a path like /users/me/$resources. GraphQL tends to prefer explicit behaviors, which is
why the viewer field tends to exist.

Imagine we’re writing a Slack app with GraphQL. Everything is viewer-centric in a messaging app
(“what messages do I have”, “what channels am I subscribed to”, etc), so our queries would look
something like this:

1 {

2 viewer {

3 id

4 messages {

5 participants {

6 id

7 name

8 }

9 unreadCount

10 }

11 channels {

12 name

13 unreadCount

14 }

15 }

16 }

If we didn’t have the top-level viewer field on its own, we’d either have to make two server calls
(“get me the ID of the current user, and then get me the messages for that user”) or make top-level
messages and channels fields that implicitly return the data for the current user.

When we implement our own GraphQL server later on, we’ll see that using a viewer field also
makes it easier to implement authorization logic (i.e. prevent one user from seeing another user’s
messages).

Graph Connections and Edges

In that last example of a viewer-centric query, we had two fields that you can think of as connections
to sets of other nodes (messages and channels). For simple and small sets of data, we could just
return an array of all these nodes - but what happens if the data set is very large? If we were loading
something like posts of Reddit, we definitely couldn’t fit them into one array.

The usual way to load large sets of data is pagination. Many APIs will let you pass some kind of
query parameters like ?page=3 or ?limit=25&offset=50 to iterate over a bigger list. This works well
for apps where the data is relatively stable, but can accidentally lead to a poor experience in apps

WOW! eBook
www.wowebook.org

Using GraphQL 593

where data updates in near-real-time: something like Twitter’s feed is may add new tweets while
the user is browsing, which will throw off the offset calculations and lead to duplicated data when
loading new pages.

Idiomatic GraphQL takes a strong opinion on how to solve that problem using cursor-based
pagination. Instead of using pages or limits and offsets, GraphQL requests pass cursors (usually
strings) to specify the location in the list to load next.

In plain-English, a GraphQL request retrieves an initial set of nodes and each node is returned with
a unique cursor; when the app needs to load more data, it sends a new request equivalent to, “Give
me the 10 nodes after cursor XYZ.”

Let’s try using a GraphQL endpoint that supports cursors. Take a look at this query that you can
send to GraphQLHub:

1 {

2 hn2 {

3 nodeFromHnId(id:"dhouston", isUserId:true) {

4 ... on HackerNewsV2User {

5 submitted(first: 2) {

6 pageInfo {

7 hasNextPage

8 hasPreviousPage

9 startCursor

10 endCursor

11 }

12 edges {

13 cursor

14 node {

15 id

16 ... on HackerNewsV2Comment {

17 text

18 }

19 }

20 }

21 }

22 }

23 }

24 }

25 }

Pretty big query there, let’s break it down - first we get our initial node using nodeFromHnId (which
retrieves the node for Drew Houston106’s Hacker News account). We then grab the first two nodes
in the submitted connection.

106https://en.wikipedia.org/wiki/Drew_Houston

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Drew_Houston
https://en.wikipedia.org/wiki/Drew_Houston

Using GraphQL 594

A GraphQL connection has two fields, pageInfo and edges. pageInfo is metadata about that
particular “page” (remember that this is more of a moving “window” than a page). Your front-end
code can use this metadata to determine when and how to load more information - for example, if
hasNextPage is true then can show the appropriate button to load more items. The edges field is a
list of the actual nodes. Each entry in edges contains the cursor for that node, as well as the node
itself.

Notice that the node id and cursor are separate fields - in some systems it may be appropriate to
use id as part of the cursor (such as if your identifiers are atomically incrementing integers), but
others may prefer to make cursor a function of timestamp, offset, or both. In general, cursors are
intended to be opaque strings, and may become invalid after a certain period of time (in the case
that the backend is caching search results temporarily).

Let’s say this is the data returned by that query:

{

"nodeFromHnId": {

"submitted": {

"pageInfo": {

"hasNextPage": true,

"hasPreviousPage": false,

"startCursor": "YXJyYXljb25uZWN0aW9uOjE=",

"endCursor": "YXJyYXljb25uZWN0aW9uOjI="

},

"edges": [

{

"cursor": "YXJyYXljb25uZWN0aW9uOjE=",

"node": {

"id": "aXRlbTo1MzgxNjk0",

"text": "it's not going anywhere :)<p>(actually, come work on it: <a\

href=\"https://www.dropbox.com/jobs\" rel=\"nofollow\">https://www.dropbox.com/\

jobs :))"

}

},

{

"cursor": "YXJyYXljb25uZWN0aW9uOjI=",

"node": {

"id": "aXRlbTo0NjgxMzY2",

"text": "yes we are :)"

}

}

]

}

WOW! eBook
www.wowebook.org

Using GraphQL 595

}

}

Take a look at how some of the fields match up - the first cursor in edgesmatches the startCursor,
as well as the endCursor matching the last node’s cursor. Our front-end code could use endCursor
to construct the query to fetch the next set of data using the after argument:

{

hn2 {

nodeFromHnId(id:"dhouston", isUserId:true) {

... on HackerNewsV2User {

submitted(first: 2, after: "YXJyYXljb25uZWN0aW9uOjI=") {

pageInfo {

hasNextPage

hasPreviousPage

startCursor

endCursor

}

edges {

cursor

node {

id

... on HackerNewsV2Comment {

text

}

}

}

}

}

}

}

}

The other arguments that exist on connections are before and after (which accept cursors), and
first and last (which accepts integers).

The cursor pattern may come off as verbose if you’re used to pagination in REST, but give it five
minutes and explore the Hacker News pagination API we demonstrated. Cursors are robust to real-
time updates and allow for more reusable app-level code when loading nodes. When we implement
our own GraphQL server in a bit, we’ll show how to implement this kind of schema and you’ll see
it isn’t as daunting as it may initially appear.

WOW! eBook
www.wowebook.org

Using GraphQL 596

Mutations

When we first introduced operations, we mentioned that mutation exists alongside the read-only
query operation. Most apps will need a way to write data to the server, which is the intended use
for mutations.

With REST-like protocols, mutations are generally occur with POST, PUT, and DELETE HTTP
requests. In that sense, both GraphQL and REST try to separate read-only requests from writes.
So what do we gain with GraphQL? Because GraphQL mutations leverage GraphQL’s type system,
you can declare the data you want returned following your mutation.

For example, you can try this mutation on GraphQLHub to edit an in-memory key value store:

1 mutation {

2 keyValue_setValue(input: {

3 clientMutationId: "browser", id: "this-is-a-key", value: "this is a value"

4 }) {

5 item {

6 value

7 id

8 }

9 }

10 }

The mutation field here is keyValue_setValue, and it takes an input argument that gives infor-
mation what key and value to set. But we also get to pick and choose the fields returned by the
mutation, namely the item and whatever set of fields we want from that. If you run that request,
you’ll get back this sort of payload:

1 {

2 "data": {

3 "keyValue_setValue": {

4 "item": {

5 "value": "some value",

6 "id": "someKey"

7 }

8 }

9 }

10 }

In a REST world, we would be stuck with whatever data the request returns, and as our product
evolves wemay have tomakemany changes to that payload on the client and server. Using GraphQL
means that our server and client will be more resilient and flexible in the future.

WOW! eBook
www.wowebook.org

Using GraphQL 597

Other than requiring specifying the mutation operation type, everything about mutations is normal
GraphQL: you have types, fields, and arguments. As we’ll see later on when we implement our own
GraphQL schema, implementing them on the server is similar as well.

Subscriptions

We’ve discussed the two main types of GraphQL operations, query and mutation, but there is a
third type of operation currently in development: subscription. The use-case of subscriptions is to
handle the kinds of real-time updates seen in apps like Twitter and Facebook, where the number of
likes or comments on an item will update without manual refreshing by the user.

This provides a great user experience, but is often complicated to implement on a technical level.
GraphQL takes the opinion that the server should publish the set of events that it’s possible to
subscribe to (such as new likes to a post) and clients can opt-in to subscribing to them. Check out
the example subscription that Facebook gives in their documentation107:

1 input StoryLikeSubscribeInput {

2 storyId: string

3 clientSubscriptionId: string

4 }

5

6 subscription StoryLikeSubscription($input: StoryLikeSubscribeInput) {

7 storyLikeSubscribe(input: $input) {

8 story {

9 likers { count }

10 likeSentence { text }

11 }

12 }

13 }

Issuing a GraphQL request with this subscription essentially tells the server, “Hey, here’s the
data I want whenever a StoryLikeSubscription occurs, and here’s my clientSubscriptionId so
you know where to find me.” Note that the use of clientSubscriptionId or any details about
what subscription operations should look like is not specific by GraphQL; it merely reserves the
subscription operation type as an acceptable and defers to each application on how to handle
real-time updates.

The mechanics of how the clients subscribe to updates are outside of the scope of GraphQL -
Facebook mentions using MQTT108 with the clientSubscriptionId, but other possibilities include

107http://graphql.org/blog/subscriptions-in-graphql-and-relay/
108https://en.wikipedia.org/wiki/MQTT

WOW! eBook
www.wowebook.org

http://graphql.org/blog/subscriptions-in-graphql-and-relay/
https://en.wikipedia.org/wiki/MQTT
http://graphql.org/blog/subscriptions-in-graphql-and-relay/
https://en.wikipedia.org/wiki/MQTT

Using GraphQL 598

WebSockets109, Server-Sent Events110, or any of a number of other mechanisms. In pseudo-code, the
process looks like:

1 var clientSubscriptionId = generateSubscriptionId();

2 // this "channel" could be WebSockets, MQTT, etc

3 connectToRealtimeChannel(clientSubscriptionId, (newData) => {});

4 // send the GraphQL request to tell the server to start sending updates

5 sendGraphQLSubscription(clientSubscriptionId);

The way GraphQL has decided to implement subscriptions, where a server allows a finite list of
possible events, is different than the way other frameworks like Meteor handle updates, where all
data is subscribable by default. As Facebook details in their writing111, that type of system is generally
very difficult to engineer, especially at scale.

GraphQL With JavaScript

So far we’ve been using cURL and GraphiQL for all of our GraphQL queries, but at the end of the day
we’re going to be writing JavaScript web apps. How do we send GraphQL requests in the browser?

Well, you can use any HTTP library you like - jQuery’s AJAX methods will work, or even raw
XmlHttpRequests, which enables you to use GraphQL in older non-ES2015 apps. But because we’re
examining howmodern JavaScript apps work in the React ecosystem, we’re going to examine ES2015
fetch.

Fire up Chrome, open up the GraphQLHub website112 and open a JavaScript debugger.

You can open the Chrome DevTools JavaScript Debugger by clicking the Chrome “ham-
burger” icon and picking More Tools > Developer Tools or by right-clicking on the page,
pick Inspect, and then clicking on the Console tab.

Modern versions of Chrome support fetch out of the box, which makes it handy for prototyping,
but you can also use any other tooling that supports poly-filling fetch. Give this code a shot:

109https://en.wikipedia.org/wiki/WebSocket
110https://en.wikipedia.org/wiki/Server-sent_events
111http://graphql.org/blog/subscriptions-in-graphql-and-relay/#why-not-live-queries
112https://www.graphqlhub.com/

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/Server-sent_events
http://graphql.org/blog/subscriptions-in-graphql-and-relay/#why-not-live-queries
https://www.graphqlhub.com/
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/Server-sent_events
http://graphql.org/blog/subscriptions-in-graphql-and-relay/#why-not-live-queries
https://www.graphqlhub.com/

Using GraphQL 599

1 var query = ' { graphQLHub } ';

2 var options = {

3 method: 'POST',

4 body: query,

5 headers: {

6 'content-type': 'application/graphql'

7 }

8 };

9

10 fetch('https://graphqlhub.com/graphql', options).then((res) => {

11 return res.json();

12 }).then((data) => {

13 console.log(JSON.stringify(data, null, 2));

14 });

The configuration here should look similar to our settings for cURL. We use a POST method, set the
appropriate content-type header, and then use our GraphQL query string as the request body. Give
your code a moment and you should see this output:

1 {

2 "data": {

3 "graphQLHub": "Use GraphQLHub to explore popular APIs with GraphQL! Created \

4 by Clay Allsopp @clayallsopp"

5 }

6 }

Congratulations, you just ran a GraphQL query with JavaScript! Because GraphQL requests are Just
HTTP at the end of the day, you can incrementally move your API calls over to GraphQL, it doesn’t
have to be done in one big-bang.

Making API calls is usually a fairly low-level operation, though - how can it integrate into a larger
app?

GraphQL With React

This book is all about React, so it’s about time we integrate GraphQL with React, right? Almost!

The most promising way of using GraphQL and React is Relay, to which we’re dedicating an
entire chapter. Relay automates many of the best practices for React/GraphQL applications, such
as caching, cache-busting, and batching. It would be a tall-order to cover the mechanics of how
Relay does these things, and ultimately using Relay is the better solution than writing your own.

WOW! eBook
www.wowebook.org

Using GraphQL 600

But adopting Relay may have more friction in an existing app, so it’s worthwhile to discuss a few
techniques for adding GraphQL to an existing React app.

If you’re using Redux, you can probably swap out your REST or other API calls with GraphQL calls
using the fetch technique we showed earlier. You won’t get the colocated queries API that Relay or
other GraphQL-specific libraries provide, but GraphQL’s benefits (such as development experience
and testability) will still shine.

There are burgeoning alternatives to Relay as well. Apollo113 is a collection of projects including
react-apollo114. react-apollo allows you to colocate views and their GraphQL queries in amanner
similar to Relay, but uses Redux under-the-hood to store your GraphQL cache and data. Here’s an
example of a simple Apollo component:

1 class AboutGraphQLHub extends React.Component {

2 render() {

3 return <div>{ this.props.about.graphQLHub }</div>;

4 }

5 }

6

7 const mapQueriesToProps = () => {

8 return {

9 about : {

10 query: '{ graphQLHub }'

11 }

12 };

13 };

14

15 const ConnectedAboutGraphQLHub = connect({

16 mapQueriesToProps

17 })(AboutGraphQLHub);

Building upon Redux means you can more easily integrate it into an existing Redux store like any
other middleware or reducer:

113http://apollostack.com
114http://docs.apollostack.com/apollo-client/react.html

WOW! eBook
www.wowebook.org

http://apollostack.com/
http://docs.apollostack.com/apollo-client/react.html
http://apollostack.com/
http://docs.apollostack.com/apollo-client/react.html

Using GraphQL 601

1 import ApolloClient from 'apollo-client';

2 import { createStore, combineReducers, applyMiddleware } from 'redux';

3

4

5 const client = new ApolloClient();

6

7 const store = createStore(

8 combineReducers({

9 apollo: client.reducer(),

10 // other reducers here

11 }),

12 applyMiddleware(client.middleware())

13);

Check out the Apollo docs115 if this sounds like it could be a good fit for your project.

Wrapping Up

Now you’ve written a few GraphQL queries, learned about different its features, and even written
a bit of code to get GraphQL in your browser. If you have an existing GraphQL server for your
product, it might be okay to move on and jump to the chapter on Relay - but in most cases you’ll
also need to draft your own GraphQL server. Excelsior!

115http://docs.apollostack.com/index.html

WOW! eBook
www.wowebook.org

http://docs.apollostack.com/index.html
http://docs.apollostack.com/index.html

GraphQL Server
Writing a GraphQL Server

In order to use Relay or any other GraphQL library, you need a server that speaks GraphQL. In this
chapter, we’re going to write a backend GraphQL server with NodeJS and other technologies we’ve
used in earlier chapters.

We’re using Node because we can leverage the tooling used elsewhere in the React ecosystem, and
Facebook targets Node for many of their backend libraries. However, there are GraphQL server
libraries in every popular language, such as Ruby116, Python117, and Scala118. If your existing backend
uses a framework in a language other than JavaScript, such as Rails, it might make sense to look into
a GraphQL implementation in your current language.

The lessons we’ll go over in this section, such as how to design a schema and work with an existing
SQL database, are applicable to all GraphQL libraries and languages. We encourage you to follow
along with the section and apply what you learn to your own projects, regardless of language.

Let’s get to it!

Special setup for Windows users

Windows users require a little additional setup to install the packages for this chapter. Specifically,
the sqlite3 package that we use can be a bit difficult to install on some Windows versions.

1. Install windows-build-tools

windows-build-tools allows you to compile native Node modules, which is necessary for the
sqlite3 package.

After you’ve setup Node and npm, install windows-build-tools globally:

1 npm install --global --production windows-build-tools

2. Add python to your PATH

After installing windows-build-tools, you need to ensure python is in your PATH. This means that
typing python into your terminal and pressing enter should invoke Python.

windows-build-tools installs Python here:

116https://github.com/rmosolgo/graphql-ruby
117https://github.com/graphql-python/graphene
118https://github.com/sangria-graphql/sangria

WOW! eBook
www.wowebook.org

https://github.com/rmosolgo/graphql-ruby
https://github.com/graphql-python/graphene
https://github.com/sangria-graphql/sangria
https://github.com/rmosolgo/graphql-ruby
https://github.com/graphql-python/graphene
https://github.com/sangria-graphql/sangria

GraphQL Server 603

1 C:\<Your User>\.windows-build-tools\python27

Python comes with a script to add itself to your PATH. To run that script in PowerShell:

1 > $env:UserProfile\.windows-build-tools\python27\scripts\win_add2path.py

If you’re getting an error that this script is not found, verify the version number for Python
above is correct by looking inside the C:\<Your User>\.windows-build-tools directory.

After running this, you must restart your computer. Sometimes just restarting PowerShell works.
In any case, you can verify that Python is properly installed by invoking python in the terminal.
Doing so should start a Python console:

1 > python

Game Plan

At a high-level, here’s what we’re going to do:

• Create an Express119 HTTP server
• Add an endpoint which accepts GraphQL requests
• Construct our GraphQL schema
• Write the glue-code that resolves data for each GraphQL field in our schema
• Support GraphiQL so we can debug and iterate quickly

The schema we’re going to draft is going to be for a social network, a sort of “Facebook-lite,” backed
by a SQLite database. This will show common GraphQL patterns and techniques to efficiently
engineer GraphQL servers talking to existing data stores.

Express HTTP Server

Let’s start setting up our web server. Create a new directory called graphql-server and run some
initial npm commands:

119http://expressjs.com

WOW! eBook
www.wowebook.org

http://expressjs.com/
http://expressjs.com/

GraphQL Server 604

$ mkdir graphql-server

$ cd ./graphql-server

$ npm init

hit enter a bunch, accept the defaults

$ npm install babel-register@6.3.13 babel-preset-es2015@6.3.13 express@4.13.3 --\

save --save-exact

$ echo '{ "presets": ["es2015"] }' > .babelrc

Let’s run through what happened: we created a new folder called graphql-server and then jumped
inside of it. We ran npm init, which creates a package.json for us. Then we installed some
dependencies, Babel and Express. The name Babel should be familiar from earlier chapters - in this
case, we installed babel-register to transpile NodeJS files and babel-preset-es2015 to instruct
Babel on how to transpile said files. The final command created a file called .babelrc, which
configured Babel to use the babel-preset-es2015 package.

Create a new file named index.js, open it, and add these lines:

1 require('babel-register');

2

3 require('./server');

Not a lot going on here, but it’s important. By requiring babel-register, every subsequent call to
require (or import when using ES2015) will go through Babel’s transpiler. Babel will transpile the
files according to the settings in .babelrc, which we configured to use the es2015 settings.

For our next trick, create a new file named server.js. Open it and add a quick line to debug that
our code is working:

1 console.log({ starting: true });

If you run node index.js, you should see this happen:

$ node index.js

{ starting: true }

Wonderful start! Now let’s add some HTTP.

Express is a very powerful and extensible HTTP framework, so we’re not going to go too in-depth;
if you’re ever curious to learn more about it, check out their documentation120.

Open up server.js again and add code to configure Express:

120http://expressjs.com

WOW! eBook
www.wowebook.org

http://expressjs.com/
http://expressjs.com/

GraphQL Server 605

1 console.log({ starting: true });

2

3 import express from 'express';

4

5 const app = express();

6

7 app.use('/graphql', (req, res) => {

8 res.send({ data: true });

9 });

10

11 app.listen(3000, () => {

12 console.log({ running: true });

13 });

The first few lines are straight-forward - we import the express package and create a new instance
(you can think of this as creating a new server). At the end of the file, we tell that server to start
listening for traffic on port 3000 and show some output after that’s happening.

But before we start the server, we need to tell it how to handle different kinds of requests. app.use is
howwe’re going to do that today. It’s first argument is the path to handle, and the second argument is
a handler function. req and res are shorthand for “request” and “response”, respectively. By default,
paths registered with app.use will respond on all HTTP methods, so as of now GET /graphql and
POST /graphql do the same thing.

Let’s give a shot and test it out. Run your server againwith node index.js, and in a separate terminal
fire off a cURL:

$ node index.js

{ starting: true }

{ running: true }

$ curl -XPOST http://localhost:3000/graphql

{"data":true}

$ curl -XGET http://localhost:3000/graphql

{"date":true}

We have a working HTTP server! Now time to “do some GraphQL,” so to speak.

Tired of restarting your server after every change? You can setup a tool like Nodemon121

to automatically restart your server when you make edits. npm install -g nodemon &&

nodemon index.js should do the trick.

121https://github.com/remy/nodemon#nodemon

WOW! eBook
www.wowebook.org

https://github.com/remy/nodemon#nodemon
https://github.com/remy/nodemon#nodemon

GraphQL Server 606

Adding First GraphQL Types

We need to install some GraphQL libraries; stop your server if it’s running, and run these commands:

$ npm install graphql@0.6.0 express-graphql@0.5.3 --save --save-exact

Both have “GraphQL” in their name, so that should sound promising. These are two libraries
maintained by Facebook and also serve as reference implementations for GraphQL libraries in other
languages.

The graphql library122 exposes APIs that let us construct our schema, and then exposes an API
for resolving raw GraphQL document strings against that schema. It can be used in any JavaScript
application, whether an Express web server like in this example, or another servers like Koa, or even
in the browser itself.

In contrast, the express-graphql package123 is meant to be used only with Express. It handles
ensuring that HTTP requests and responses are correctly formatted for GraphQL (such dealing with
the content-type header), and will eventually allows us to support GraphiQL with very little extra
work.

Let’s get to it - open up server.js and add these lines after you create the app instance:

5 const app = express();

6

7 import graphqlHTTP from 'express-graphql';

8 import { GraphQLSchema, GraphQLObjectType, GraphQLString } from 'graphql';

9

10 const RootQuery = new GraphQLObjectType({

11 name: 'RootQuery',

12 description: 'The root query',

13 fields: {

14 viewer: {

15 type: GraphQLString,

16 resolve() {

17 return 'viewer!';

18 }

19 }

20 }

21 });

22

23 const Schema = new GraphQLSchema({

122https://github.com/graphql/graphql-js
123https://github.com/graphql/express-graphql

WOW! eBook
www.wowebook.org

https://github.com/graphql/graphql-js
https://github.com/graphql/express-graphql
https://github.com/graphql/graphql-js
https://github.com/graphql/express-graphql

GraphQL Server 607

24 query: RootQuery

25 });

26

27 app.use('/graphql', graphqlHTTP({ schema: Schema }));

Note that we’ve changed our previous arguments to app.use (this replaces the app.use from before).

There’s a bunch of interesting things going on here, but let’s skip to the good part first. Start up your
server (node index.js) and run this cURL command:

$ curl -XPOST -H 'content-type:application/graphql' http://localhost:3000/graphq\

l -d '{ viewer }'

{"data":{"viewer":"viewer!"}}

If you see the above output then your server is configured correctly and resolving GraphQL requests
accordingly. Now let’s walk through how it actually works.

First we import some dependencies from the GraphQL libraries:

7 import graphqlHTTP from 'express-graphql';

8 import { GraphQLSchema, GraphQLObjectType, GraphQLString } from 'graphql';

The graphql library exports many objects and you’ll become familiar with them as we write more
code. The first two we use are GraphQLObjectType and GraphQLString:

10 const RootQuery = new GraphQLObjectType({

11 name: 'RootQuery',

12 description: 'The root query',

13 fields: {

14 viewer: {

15 type: GraphQLString,

16 resolve() {

17 return 'viewer!';

18 }

19 }

20 }

21 });

When you create a new instance of GraphQLObjectType, it’s analogous to defining a new class. It’s
required that we give it a name and optional (but very helpful for documentation) that we set a
description.

WOW! eBook
www.wowebook.org

GraphQL Server 608

The name field sets the type name in the GraphQL schema. For instance, if want to define a fragment
on this type, we would write ... on RootQuery in our query. If we changed name to something
like AwesomeRootQuery, we would need to change our fragment to ... on AwesomeRootQuery, even
though the JavaScript variable is still RootQuery.

That defines the type, now we need to give it some fields. Each key in the fields object defines a
new corresponding field, and each field object has some required properties.

We need to give it:

• a type - the GraphQL library exports the basic scalar types, such as GraphQLString.
• a resolve function to return the value of the field - for now, we have the hard-coded value
'viewer!'.

Next we create an instance of GraphQLSchema:

23 const Schema = new GraphQLSchema({

24 query: RootQuery

25 });

Hopefully the naming makes it clear that this is the top-level GraphQL object.

You can only resolve queries once you have an instance of a schema - you can’t resolve query strings
against object types by themselves.

Schemas have two properties: query and mutation, which corresponds to the two types of operations
we discussed earlier. Both of these take an instance of a GraphQL type, and for now we just set the
query to RootQuery.

One quick note on naming things (one of the Hard Problems of computer science): we generally refer
to the top-level query of a schema as the root. You’ll see many projects that have similar RootQuery-
named types.

Finally we hook it all up to Express:

27 app.use('/graphql', graphqlHTTP({ schema: Schema }));

Instead of manually writing a handler function, the graphqlHTTP function will generate one using
our Schema. Internally, this will grab our GraphQL query from the request and hand it off to the
main GraphQL library’s resolving function.

Adding GraphiQL

Earlier we used GraphQLHub’s hosted instance of GraphiQL, the GraphQL IDE. What if I told you
that you could add GraphiQL to our little GraphQL server with just one change?

Try adding the graphiql: true option to graphqlHTTP:

WOW! eBook
www.wowebook.org

GraphQL Server 609

27 app.use('/graphql', graphqlHTTP({ schema: Schema, graphiql: true }));

Restart your server, head to Chrome, and open http://localhost:3000/graphql. You should see
something like this:

Empty GraphiQL

If you open the “Docs” sidebar, you’ll see all the information we entered about our Schema - the
RootQuery, the description, and it’s viewer field:

Server Docs

You’ll also get auto-complete for our fields:

Server Autocomplete

We get all of this goodness for free by using graphql-express.

WOW! eBook
www.wowebook.org

GraphQL Server 610

It’s also possible to setup GraphiQL if you’re using another JavaScript framework or an
entirely different language, read GraphiQL’s documentation124 for details.

You’ll notice that our typeahead suggests some interesting fields like __schema, even though
we didn’t define that. This is something we’ve alluded to throughout the chapter: GraphQL’s
introspection features.

Server Introspection

Let’s dig into it a bit further.

Introspection

Go ahead and run this GraphQL query inside of our server’s GraphiQL instance:

1 {

2 __schema {

3 queryType {

4 name

5 fields {

6 name

7 type {

8 name

9 }

10 }

11 }

12 }

13 }

__schema is a “meta” field that automatically exists on every GraphQL root query operation. It has a
whole tree of its own types and their fields, which you can read about in the GraphQL introspection
spec125. GraphiQL’s auto-complete will also give you helpful information and let you explore the
possibilities of __schema and the other introspection field, __type.

After running that query, you’ll get some data back like this:

124https://github.com/graphql/graphiql#getting-started
125https://facebook.github.io/graphql/#sec-Schema-Introspection

WOW! eBook
www.wowebook.org

https://github.com/graphql/graphiql#getting-started
https://facebook.github.io/graphql/#sec-Schema-Introspection
https://facebook.github.io/graphql/#sec-Schema-Introspection
https://github.com/graphql/graphiql#getting-started
https://facebook.github.io/graphql/#sec-Schema-Introspection

GraphQL Server 611

1 {

2 "data": {

3 "__schema": {

4 "queryType": {

5 "name": "RootQuery",

6 "fields": [

7 {

8 "name": "viewer",

9 "type": {

10 "name": "String"

11 }

12 }

13]

14 }

15 }

16 }

17 }

This is essentially a JSON description of our server’s schema. This is how GraphiQL populates
it’s documentation and auto-complete, by issuing an introspection query as the IDE boots up.
Since every GraphQL server is required to support introspection, tooling is often portable across
all GraphQL servers (again, regardless of the language or library they were implemented with).

We won’t do anything else with introspection for this chapter, but it’s good to know that it exists
and how it works.

Mutation

So far we’ve set the root query of our schema, but we mentioned that we can also set the root
mutation. Remember from earlier that mutations are the correct place for “writes” to happen in
GraphQL - whenever you want to add, update, or remove data, it should occur through a mutation
operation. As we’ll see, mutations differ very little from queries other than the implicit contract that
writes should not happen in queries.

To demonstratemutations, we’ll create a simple API to get and set in-memory node objects, similar to
the idiomatic Node pattern we described earlier. For now, instead of returning objects that implement
a Node interface, we’re going to return a string for our nodes.

Let’s start by importing some new dependencies from the GraphQL library:

8 import { GraphQLSchema, GraphQLObjectType, GraphQLString,

9 GraphQLNonNull, GraphQLID } from 'graphql';

WOW! eBook
www.wowebook.org

GraphQL Server 612

GraphQLID is the JavaScript analog to the ID scalar type, while GraphQLNonNull is something we
haven’t quite covered yet. It turns out that GraphQL’s type system not only tracks the types and
interfaces of fields, but also whether or not they can be null. This is especially handy for field
arguments, which we’ll get to in a second.

Next we need to create a type for our mutation. Take a second to think about what that code will
look like, given that it should be fairly similar to our RootQuery type. What kinds of invocations and
properties will we need?

After you’ve given it some thought, compare it to the actual implementation:

35 let inMemoryStore = {};

36 const RootMutation = new GraphQLObjectType({

37 name: 'RootMutation',

38 description: 'The root mutation',

39 fields: {

40 setNode: {

41 type: GraphQLString,

42 args: {

43 id: {

44 type: new GraphQLNonNull(GraphQLID)

45 },

46 value: {

47 type: new GraphQLNonNull(GraphQLString),

48 }

49 },

50 resolve(source, args) {

51 inMemoryStore[args.key] = args.value;

52 return inMemoryStore[args.key];

53 }

54 }

55 }

56 });

At the very top we initialize a “store” for our nodes. This will only live in-memory, so whenever you
restart the server it will clear the data - but you can start to imagine this being a key-value service like
Redis or Memcached. Creating an instance of GraphQLObjectType, setting the name, description,
and fields should all look familiar.

One new thing here is dealing with field arguments using the args property. Similar to how we
set the names of fields with the fields property, the keys of the args object are the names of the
arguments allowed by the field.

We specify each argument’s type, wrapped as an instance of GraphQLNonNull. For arguments, this
means that the query must specify a non-null value for each argument. Our resolve function

WOW! eBook
www.wowebook.org

GraphQL Server 613

takes this into account - resolve gets passed several arguments, the second of which is an object
containing the field arguments (we’ll touch on source later on).

When we set a value in inMemoryStore, that is the “write” of our mutation. We also return a value
in the resolve function, to cooperate with the type of the setNode field. In this case it happens to
be a string, but you can imagine it being a complex type like User or something bespoke for the
mutation.

Now that we have our mutation type, we add it to our schema:

58 const Schema = new GraphQLSchema({

59 query: RootQuery,

60 mutation: RootMutation,

61 });

For one last bit of housekeeping, we’ll go ahead and add a node field to our query:

14 fields: {

15 viewer: {

16 type: GraphQLString,

17 resolve() {

18 return 'viewer!';

19 }

20 },

21 node: {

22 type: GraphQLString,

23 args: {

24 id: {

25 type: new GraphQLNonNull(GraphQLID)

26 }

27 },

28 resolve(source, args) {

29 return inMemoryStore[args.key];

30 }

31 }

32 }

Restart your server and give this query a run in GraphiQL:

WOW! eBook
www.wowebook.org

GraphQL Server 614

1 mutation {

2 setNode(id: "id", value: "a value!")

3 }

Notice that we have to explicitly state the mutation operation type, since GraphQL assumes query
otherwise. Running the mutation should return the new value:

1 {

2 "data": {

3 "node": "a value!"

4 }

5 }

You can then confirm that the mutation worked by running a fresh query:

1 query {

2 node(id: "id")

3 }

Mutations aren’t too conceptually complicated, and most apps will need them to write data back to
the server eventually. Relay has a slightly more rigorous pattern to defining mutations, which we’ll
get to in due time.

This mutation changed an in-memory data structure, but most products’ data lives in datastores like
Postgres or MySQL. It’s time to explore how we work with those environments.

Rich Schemas and SQL

As we mentioned earlier, we’re going to build a small Facebook clone using SQLite. It’s going to
show how to communicate with a database, how to handle authorization and permissions, and
some performance tips to make it runs smoothly.

Before we dive into the code, here’s what our database is going to look like:

• A users table, which has id, name, and about columns
• A users_friends table, which has user_id_a, user_id_b, and level columns
• A posts column, which has body, user_id, level, and created_at columns

The level columns are going to represent a hierarchical “privacy” setting for friendships and posts.
The possible levels we’ll use are top, friend, acquaintance, and public. If a post has a level of
acquaintance, then only friends with that level or “higher” can see it. public posts can be seen by
anyone, even if the user isn’t a friend.

WOW! eBook
www.wowebook.org

GraphQL Server 615

To implement this in NodeJS, we’re going to use the node-sql126 and sqlite3127 packages. There are
many options when working with database in NodeJS, and you should do your own research before
using any mission-critical libraries in production, but these should suffice for our learning.

Setting Up The Database

Time to install some more libraries! Run this to add them to our project:

$ npm install sqlite@0.0.4 sqlite3@3.1.3 --save --save-exact

$ mkdir src

We’ll eventually want three files. On macOS or Linux, you can run:

$ touch src/tables.js src/database.js src/seedData.js

Windows users can create them as we go.

Now let’s create a database. SQLite databases exist in files, so there’s no need to start a separate
process or install more dependencies. For legibility, we’re going to start splitting our code into
multiple files, which is the set of files we created with touch.

First we define our tables - you can read node-sql’s documentation for specifics, but it’s pretty
legible. Open up tables.js and add these definitions:

1 import sql from 'sql';

2

3 sql.setDialect('sqlite');

4

5 export const users = sql.define({

6 name: 'users',

7 columns: [{

8 name: 'id',

9 dataType: 'INTEGER',

10 primaryKey: true

11 }, {

12 name: 'name',

13 dataType: 'text'

14 }, {

15 name: 'about',

16 dataType: 'text'

126https://github.com/brianc/node-sql
127https://github.com/mapbox/node-sqlite3

WOW! eBook
www.wowebook.org

https://github.com/brianc/node-sql
https://github.com/mapbox/node-sqlite3
https://github.com/brianc/node-sql
https://github.com/mapbox/node-sqlite3

GraphQL Server 616

17 }]

18 });

19

20 export const usersFriends = sql.define({

21 name: 'users_friends',

22 columns: [{

23 name: 'user_id_a',

24 dataType: 'int',

25 }, {

26 name: 'user_id_b',

27 dataType: 'int',

28 }, {

29 name: 'level',

30 dataType: 'text',

31 }]

32 });

33

34 export const posts = sql.define({

35 name: 'posts',

36 columns: [{

37 name: 'id',

38 dataType: 'INTEGER',

39 primaryKey: true

40 }, {

41 name: 'user_id',

42 dataType: 'int'

43 }, {

44 name: 'body',

45 dataType: 'text'

46 }, {

47 name: 'level',

48 dataType: 'text'

49 }, {

50 name: 'created_at',

51 dataType: 'datetime'

52 }]

53 });

node-sql lets us craft and manipulate SQL queries using JavaScript objects, similar to how the
GraphQL JavaScript library enables us to work with GraphQL. There’s nothing “happening” in this
particular file, but we’ll consume the objects it exports soon.

Now we need to create the database and load it with some data. Included with the materials for this

WOW! eBook
www.wowebook.org

GraphQL Server 617

course, inside the graphql-server/src directory, is a data.json file. Go ahead and copy that into
the src directory of the project we’re working on. You can also come up with your own data, but
the examples we’ll work through will assume you’re using the included data file.

To copy the data from data.json into the database, we need to write a bit of code. First open up
src/database.js and define some simple exports:

1 import sqlite3 from 'sqlite3';

2

3 import * as tables from './tables';

4

5 export const db = new sqlite3.Database('./db.sqlite');

6

7 export const getSql = (query) => {

8 return new Promise((resolve, reject) => {

9 console.log(query.text);

10 console.log(query.values);

11 db.all(query.text, query.values, (err, rows) => {

12 if (err) {

13 reject(err);

14 } else {

15 resolve(rows);

16 }

17 });

18 });

First we define our database file and export it so other code can use it. We also export a getSql

function, which will run our queries as asynchronous promises. The GraphQL JS library uses
promises to handle asynchronous resolving, which we’ll leverage soon.

Then open up the src/seedData.js file we created earlier and start by adding this createDatabase
function:

1 import * as data from './data';

2 import * as tables from './tables';

3 import * as database from './database';

4

5 const sequencePromises = function (promises) {

6 return promises.reduce((promise, promiseFunction) => {

7 return promise.then(() => {

8 return promiseFunction();

9 });

10 }, Promise.resolve());

WOW! eBook
www.wowebook.org

GraphQL Server 618

11 };

12

13 const createDatabase = () => {

14 let promises = [tables.users, tables.usersFriends, tables.posts].map((table) =\

15 > {

16 return () => database.getSql(table.create().toQuery());

17 });

18

19 return sequencePromises(promises);

20 };

Recall that the exports of tables.js are the objects created by node-sql. When we want to create
a database query with node-sql, we use the .toQuery() function and then pass it into the getSql
function we just wrote in database.js. In plain-English, our new createDatabase function runs
queries that create each table. We use Promise.all to make sure all of the tables are created before
moving on to any next steps in the promise chain.

After the tables are setup, we need to add our data from data.json. Write this new insertData

function next:

21 const insertData = () => {

22 let { users, posts, usersFriends } = data;

23

24 let queries = [

25 tables.users.insert(users).toQuery(),

26 tables.posts.insert(posts).toQuery(),

27 tables.usersFriends.insert(usersFriends).toQuery(),

28];

29

30 let promises = queries.map((query) => {

31 return () => database.getSql(query);

32 });

33 return sequencePromises(promises);

34 };

Similar to createDatabase, we create queries using toQuery and then execute them using getSql.
Finally we tie it all together at the end of the file by invoking our two functions:

WOW! eBook
www.wowebook.org

GraphQL Server 619

36 createDatabase().then(() => {

37 return insertData();

38 }).then(() => {

39 console.log({ done: true });

40 });

To get this code to run, you can invoke this shell command:

$ node -e 'require("babel-register"); require("./src/seedData");'

{ done: true }

You should now have a db.sqlite file at the top of your project! You can use many graphical tools
to explore your SQLite database, such as DBeaver128, or you can verify that it has some data with
this one-line command:

$ sqlite3 ./db.sqlite "select count(*) from users"

5

Now it’s time to hook up the GraphQL schema to our newly created database.

Schema Design

In our earlier examples, the resolve functions in our GraphQL schema would just return constant or
in-memory values, but now they need to return data from our database. We also need corresponding
GraphQL types for our users and posts table, and to add the corresponding fields to our original
root query.

Before we dive into the code, we should take a minute to consider how our final GraphQL queries
are going to look. Generally it’s a good practice to start with the viewer, since most of our data will
flow through that field.

In this case, the viewer will be the current user. A user has friends, so we’ll need a list for that, as
well as a connection for the posts authored by that user. The viewer also has a newsfeed, which is
a connection to posts authored by other users. We’ll want all of these connections to be idiomatic
GraphQL and include features like proper pagination, in case the entire newsfeed or friends list gets
too long to compute or send in one response.

Given all of that information, we expect our viewer to enable queries like this:

128http://dbeaver.jkiss.org/

WOW! eBook
www.wowebook.org

http://dbeaver.jkiss.org/
http://dbeaver.jkiss.org/

GraphQL Server 620

1 {

2 viewer {

3 friends {

4 # connection fields for Users

5 }

6

7 posts {

8 # connection fields for Posts

9 }

10

11 newsfeed {

12 # connection fields for Posts

13 }

14 }

15 }

Remember that we want all of our objects to also be nodes in a graph, in accordance with idiomatic
GraphQL. Eventually, all of the data returned in newsfeed will need to be authorization-aware,
taking into account the friendship level between the author of a given post and the viewer.

We should add support for queries that fetch arbitrary nodes using a top-level node(id:) field like
this:

1 {

2 node(id: "123") {

3 ... on User {

4 friends {

5 # friends

6 }

7 }

8

9 ... on Post {

10 author {

11 posts {

12 # connection fields

13 }

14 }

15

16 body

17 }

18 }

19 }

WOW! eBook
www.wowebook.org

GraphQL Server 621

As we mentioned in an earlier section, this field is valuable to help front-end code re-fetch the
current state of any node without knowing it’s position in the hierarchy.

This may be surprising, but the GraphQL convention is to fetch lots of different types of objects
from the same top-level node field. SQL databases usually have a different table for each type, and
REST APIs use distinct endpoints per type, but idiomatic GraphQL fetches all objects the same way
as long as you have an identifier. This also means that IDs need to be globally unique, or else a
GraphQL server can’t tell the difference between a User with id: 1 and a Post with id: 1.

Object and Scalar Types

To start making these queries possible, we’ll create a new file to hold these types called src/-

types.js.

The first type we need to define is the Node interface. Recall that for a type to be a valid Node, it
needs to have a globally-unique id field. To implement that in JavaScript, we start by importing
some APIs and creating an instance of GraphQLInterfaceType:

1 import {

2 GraphQLInterfaceType,

3 GraphQLObjectType,

4 GraphQLID,

5 GraphQLString,

6 GraphQLNonNull,

7 GraphQLList,

8 } from 'graphql';

9

10 import * as tables from './tables';

11

12 export const NodeInterface = new GraphQLInterfaceType({

13 name: 'Node',

14 fields: {

15 id: {

16 type: new GraphQLNonNull(GraphQLID)

17 }

Aside from using a new class, everything looks familiar to how we create instance of GraphQLOb-
jectType. Notice that the id field does not have a resolve function. Fields in interfaces are not
expected to have default implementations of resolve, and even if you do provide one it will be
ignored. Instead, each object type that implements Node should define its own resolve (we’ll get to
that in a second).

In addition to defining fields, GraphQLInterfaceType instances must also define a resolveType

function. Remember that our top-level node(id:) field only guarantees that some kind of Node will

WOW! eBook
www.wowebook.org

GraphQL Server 622

be returned, it does not make any guarantees about which specific type. In order for GraphQL to
do further resolution (such as using partial fragments, i.e. ... on User), we need to inform the
GraphQL engine of the concrete type for a particular object.

We can implement it like this:

11 export const NodeInterface = new GraphQLInterfaceType({

12 name: 'Node',

13 fields: {

14 id: {

15 type: new GraphQLNonNull(GraphQLID)

16 }

17 },

18 resolveType: (source) => {

19 if (source.__tableName === tables.users.getName()) {

20 return UserType;

21 }

22 return PostType;

23 }

24 });

The resolveType function takes in raw data as its first argument (in this case, sourcewill be the data
returned directly from the database), and is expected to return an instance of GraphQLObjectType
that implement the interface. We use the __tableName property of source, which isn’t an actual
column in the database - we’ll see how that gets injected later.

We return some objects, UserType and PostType, that we haven’t defined quite yet. Add their
definitions below resolveType:

26 const resolveId = (source) => {

27 return tables.dbIdToNodeId(source.id, source.__tableName);

28 };

29

30 export const UserType = new GraphQLObjectType({

31 name: 'User',

32 interfaces: [NodeInterface],

33 fields: {

34 id: {

35 type: new GraphQLNonNull(GraphQLID),

36 resolve: resolveId

37 },

38 name: {

39 type: new GraphQLNonNull(GraphQLString)

WOW! eBook
www.wowebook.org

GraphQL Server 623

40 },

41 about: {

42 type: new GraphQLNonNull(GraphQLString)

43 }

44 }

45 });

46

47 export const PostType = new GraphQLObjectType({

48 name: 'Post',

49 interfaces: [NodeInterface],

50 fields: {

51 id: {

52 type: new GraphQLNonNull(GraphQLID),

53 resolve: resolveId

54 },

55 createdAt: {

56 type: new GraphQLNonNull(GraphQLString),

57 },

58 body: {

59 type: new GraphQLNonNull(GraphQLString)

60 }

61 }

Most of the code should look similar to everything we’ve been working with so far. We define new
instances of GraphQLObjectType, add NodeInterface to their interfaces property, and implement
their fields. Some of the fields are wrapped in GraphQLNonNull, which enforces that they must
exist. If you don’t provide an implementation of resolve to a field, it will do a simple property
lookup on the underlying source data - for example, the name field will invoke source.name.

We do provide an implementation of resolve for id on both of these types, which both use the same
resolveId function. Even though our NodeInterface code couldn’t provide a default resolve, we
can still share code by referencing the same variable.

Our implementation of resolveId uses tables.dbIdToNodeId, which we haven’t defined in ta-

bles.js. Open up tables.js and add these two new exported functions at the bottom:

WOW! eBook
www.wowebook.org

GraphQL Server 624

55 export const dbIdToNodeId = (dbId, tableName) => {

56 return `${tableName}:${dbId}`;

57 };

58

59 export const splitNodeId = (nodeId) => {

60 const [tableName, dbId] = nodeId.split(':');

61 return { tableName, dbId };

62 };

Earlier we mentioned that Node IDs must be globally unique, but looking at our data.json we have
some row ID collisions. This is not uncommon in relational databases like Postgres and MySQL, so
we have to write some logic which coerces the row integer ID into a unique string. In a production
application, you may want to obfuscate IDs to leak less information about your database, but using
the raw table name will make it easier to debug for now.

We’re almost ready to run a GraphQL query! Head to server.js, import some of the types we just
authored, and change the RootQuery to have only the new node field that we want:

11 import {

12 NodeInterface,

13 UserType,

14 PostType

15 } from './src/types';

16

17 import * as loaders from './src/loaders';

18

19 const RootQuery = new GraphQLObjectType({

20 name: 'RootQuery',

21 description: 'The root query',

22 fields: {

23 node: {

24 type: NodeInterface,

25 args: {

26 id: {

27 type: new GraphQLNonNull(GraphQLID)

28 }

29 },

30 resolve(source, args) {

31 return loaders.getNodeById(args.id);

32 }

33 }

34 }

35 });

WOW! eBook
www.wowebook.org

GraphQL Server 625

We also imported a new file, src/loaders.js, which we need to edit. Its purpose will be to expose
APIs that load data from the source - we don’t want to clutter our server or top-level schema code
with code that directly accesses the database.

Create that src/loaders.js file and add this small function:

1 import * as database from './database';

2 import * as tables from './tables';

3

4 export const getNodeById = (nodeId) => {

5 const { tableName, dbId } = tables.splitNodeId(nodeId);

6

7 const table = tables[tableName];

8 const query = table

9 .select(table.star())

10 .where(table.id.equals(dbId))

11 .limit(1)

12 .toQuery();

13

14 return database.getSql(query).then((rows) => {

15 if (rows[0]) {

16 rows[0].__tableName = tableName;

17 }

18 return rows[0];

19 });

20 };

This should look similar to the code we wrote in seedData - we use the node-sql APIs to construct
a SQL query based on the nodeId provided. Remember that this nodeId is the globally-unique node
ID, not a row ID, so we extract the database-specific information with tables.splitNodeId.

One trickwe perform is attaching the __tableName property. This helps us in our earlier resolveType
function, and anywhere else we may need to tie an object back to its underlying table. It’s safe to
add this because we don’t expose the __tableName property explicitly in the GraphQL schema, so
malicious consumers can’t access it.

A very subtle but important thing happening with all of this code is that loaders.getNodeById
returns a Promise (which is why we can attach the __tableName using .then), and ultimately that
promise is returned in resolve. Promises are how GraphQL handles asynchronous field resolution,
which usually occurs with database queries and any third-party API calls. If you’re using an API
that doesn’t natively support promises, you can refer to the Promise API129 to convert callback-based
APIs to promises.

129https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Creating_a_Promise

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Creating_a_Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Creating_a_Promise

GraphQL Server 626

One last step, we need to tell our GraphQLSchema about all the possible types in our schema. You
have to do this if you use interfaces, so GraphQL can compute the list of types that implement any
interfaces.

60 const Schema = new GraphQLSchema({

61 types: [UserType, PostType],

62 query: RootQuery,

63 mutation: RootMutation,

64 });

And that’s it! Restart your server, open upGraphiQL (still available at http://localhost:3000/graphql),
and try this query:

1 {

2 node(id:"users:4") {

3 id

4 ... on User {

5 name

6 }

7 }

8 }

You should see this data returned:

1 {

2 "data": {

3 "node": {

4 "id": "users:4",

5 "name": "Roger"

6 }

7 }

8 }

You can play around with other node IDs, such as "posts:4" and ... on Post. Before we move
on, reflect on what’s going on under the hood: we request a particular node ID, which invokes a
database call, and then each field gets resolve‘d against the database source data.

We could write a very simple front-end app against our current server at this point, but we have
more of our schema to fill-out. Let’s work on some of those friends list and posts connections.

Lists

We mentioned earlier that the friends field should return a list of User types. Let’s take baby steps
towards that goal and return a simple list of IDs for now.

First let’s edit our UserType. Open up types.js and a new friends field:

WOW! eBook
www.wowebook.org

GraphQL Server 627

43 about: {

44 type: new GraphQLNonNull(GraphQLString)

45 },

46 friends: {

47 type: new GraphQLList(GraphQLID),

48 resolve(source) {

49 return loaders.getFriendIdsForUser(source).then((rows) => {

50 return rows.map((row) => {

51 return tables.dbIdToNodeId(row.user_id_b, row.__tableName);

52 });

53 })

54 }

55 }

We set the friends field to return a GraphQLList of IDs. GraphQLList works similarly to the
GraphQLNonNullwe saw earlier, wrapping an inner type in its constructor. Inside resolvewe invoke
a new loader (to-be-written), and then coerce its results to the globally-unique IDs we expect.

Add an import at the top of the file to prepare for our new loader:

10 import * as tables from './tables';

11 import * as loaders from './loaders';

Edit loaders.js with that new getFriendIdsForUser function:

21 export const getFriendIdsForUser = (userSource) => {

22 const table = tables.usersFriends;

23 const query = table

24 .select(table.user_id_b)

25 .where(table.user_id_a.equals(userSource.id))

26 .toQuery();

27

28 return database.getSql(query).then((rows) => {

29 rows.forEach((row) => {

30 row.__tableName = tables.users.getName();

31 });

32 return rows;

33 });

34 };

That’s all the new code we have to write - fire up GraphiQL and run this query:

WOW! eBook
www.wowebook.org

GraphQL Server 628

1 {

2 node(id:"users:4") {

3 id

4 ... on User {

5 name

6 friends

7 }

8 }

9 }

Confirm that your results are equal to this:

1 {

2 "data": {

3 "node": {

4 "id": "users:4",

5 "name": "Roger",

6 "friends": [

7 "users:1",

8 "users:3",

9 "users:2"

10]

11 }

12 }

13 }

Performance: Look-Ahead Optimizations

This is great, but there’s some sneaky business going on under-the-hood that we should explore.
When we resolve the original node field, that executes one database query (loaders.getNodeById).
Then after that node is resolved, we execute another database query (loaders.getFriendIdsForUser).
If you extend this pattern to a larger application, you can imagine lots of database queries getting
fired - at worst, one per field. But we know that in SQL it’s possible to express these two queries
with one efficient SQL query.

It turns out the GraphQL library provides a way of doing these sort of optimizations, where we
want to “look ahead” at the rest of the GraphQL query and perform more efficient resolution calls.
It may not be appropriate to do this in every case, but certain products and workloads may benefit
tremendously.

Open up server.js and let’s do a bit of work on the node field’s resolve function. Aside from
source and args, GraphQL passes two more variables to resolve: context and info. We’ll use
context later to help with authentication and authorization; info is a bag of objects, including an

WOW! eBook
www.wowebook.org

GraphQL Server 629

abstract syntax tree (AST) of the entire GraphQL query. We’ll do a simple traversal of the AST and
determine if we should run a more efficient loader:

23 node: {

24 type: NodeInterface,

25 args: {

26 id: {

27 type: new GraphQLNonNull(GraphQLID)

28 }

29 },

30 resolve(source, args, context, info) {

31 let includeFriends = false;

32

33 const selectionFragments = info.fieldASTs[0].selectionSet.selections;

34 const userSelections = selectionFragments.filter((selection) => {

35 return selection.kind === 'InlineFragment' && selection.typeCondition.\

36 name.value === 'User';

37 })

38

39 userSelections.forEach((selection) => {

40 selection.selectionSet.selections.forEach((innerSelection) => {

41 if (innerSelection.name.value === 'friends') {

42 includeFriends = true;

43 }

44 });

45 });

46

47 if (includeFriends) {

48 return loaders.getUserNodeWithFriends(args.id);

49 }

50 else {

51 return loaders.getNodeById(args.id);

52 }

53 }

54 }

There’s a lot happening as we traverse the AST, and we won’t go into detail on most of the specifics.
If you end up performing these look-ahead optimizations in your code, you can console.log each
level of the tree and determine what information you can access.

Essentially we look for User fragments on the node field’s selection set, and determine if the fragment
accesses the friends field. If it does, thenwe run a new loader; else, we fall back to the original loader.

Now let’s take a look at the new loaders.getUserNodeWithFriends function:

WOW! eBook
www.wowebook.org

GraphQL Server 630

37 export const getUserNodeWithFriends = (nodeId) => {

38 const { tableName, dbId } = tables.splitNodeId(nodeId);

39

40 const query = tables.users

41 .select(tables.usersFriends.user_id_b, tables.users.star())

42 .from(

43 tables.users.leftJoin(tables.usersFriends)

44 .on(tables.usersFriends.user_id_a.equals(tables.users.id))

45)

46 .where(tables.users.id.equals(dbId))

47 .toQuery();

48

49

50 return database.getSql(query).then((rows) => {

51 if (!rows[0]) {

52 return undefined;

53 }

54

55 const __friends = rows.map((row) => {

56 return {

57 user_id_b: row.user_id_b,

58 __tableName: tables.users.getName()

59 }

60 });

61

62 const source = {

63 id: rows[0].id,

64 name: rows[0].name,

65 about: rows[0].about,

66 __tableName: tableName,

67 __friends: __friends

68 };

69 return source;

70 });

71 };

This starts getting a bit complicated, and very specific to this product and the frameworks we chose -
which is a common pattern when working on performance optimizations. Our SQL query now grabs
all of the friends and the user’s profile simultaneously, eliminating a database round-trip. We then
load those friends into a __friends property (we’ve chosen to continue the __ prefix for “private”
properties), and can access it inside of types.js:

WOW! eBook
www.wowebook.org

GraphQL Server 631

46 friends: {

47 type: new GraphQLList(GraphQLID),

48 resolve(source) {

49 if (source.__friends) {

50 return source.__friends.map((row) => {

51 return tables.dbIdToNodeId(row.user_id_b, row.__tableName);

52 });

53 }

54

55 return loaders.getFriendIdsForUser(source).then((rows) => {

56 return rows.map((row) => {

57 return tables.dbIdToNodeId(row.user_id_b, row.__tableName);

58 });

59 })

60 }

61 }

Other applications might perform look-ahead optimizations differently - instead of making globbing
multiple SQL queries into one, theymight warm a cache in the background. The important takeaway
is that resolve accepts many arguments which let you short-circuit the usual recursive resolution
flow.

Lists Continued

Our friends field returns a complete list of IDs (performantly, might I add), but what we really want
is a list to their full User types. For large lists, we’d probably want to use an idiomatic GraphQL
connection (which we’ll implement soon) but we’ll allow the friends field to return all entries on
each query.

We’ll start by removing the logic we added for performance optimization. Since our application is
about to change a bit, we can revisit performance once its capabilities have stabilized.

30 resolve(source, args, context, info) {

31 return loaders.getNodeById(args.id);

32 }

Next we need to change the type returned by our friends field to a list of User. Since we already
have a loader for loading arbitrary nodes by ID, there’s not much code we need to write:

WOW! eBook
www.wowebook.org

GraphQL Server 632

32 export const UserType = new GraphQLObjectType({

33 name: 'User',

34 interfaces: [NodeInterface],

35 // Note that this is now a function

36 fields: () => {

37 return {

38 id: {

39 type: new GraphQLNonNull(GraphQLID),

40 resolve: resolveId

41 },

42 name: { type: new GraphQLNonNull(GraphQLString) },

43 about: { type: new GraphQLNonNull(GraphQLString) },

44 friends: {

45 type: new GraphQLList(UserType),

46 resolve(source) {

47 return loaders.getFriendIdsForUser(source).then((rows) => {

48 const promises = rows.map((row) => {

49 const friendNodeId = tables.dbIdToNodeId(row.user_id_b, row.__tabl\

50 eName);

51 return loaders.getNodeById(friendNodeId);

52 });

53 return Promise.all(promises);

54 })

55 }

56 }

57 };

58 }

59 });

We now set the friends type to GraphQLList(UserType). Because of how JavaScript variable
hoisting works, we have to change the fields property to a function instead of an object in
order to pick up a “recursive” type definition (where a type returns a field of itself). We invoke
loaders.getNodeById on all of the IDs we previously retrieved and voila! Restart your server and
execute this kind of query in GraphiQL:

WOW! eBook
www.wowebook.org

GraphQL Server 633

1 {

2 node(id:"users:4") {

3 ... on User {

4 friends {

5 id

6 about

7 name

8 }

9 }

10 }

11 }

Which should return this data:

1 {

2 "data": {

3 "node": {

4 "friends": [

5 {

6 "id": "users:1",

7 "about": "Sports!",

8 "name": "Harry"

9 },

10 {

11 "id": "users:3",

12 "about": "Love books",

13 "name": "Hannah"

14 },

15 {

16 "id": "users:2",

17 "about": "I'm the best",

18 "name": "David"

19 }

20]

21 }

22 }

23 }

You can even go a step further and query the friends of friends!

WOW! eBook
www.wowebook.org

GraphQL Server 634

Connections

Now we want to implement idiomatic connection fields. Instead of returning a simple list, we’re
going to return a more complicated (but powerful) structure. Although there is additional work,
connections fields are most appropriate for lists that would otherwise be large or unbounded. It
might be prohibitive or wasteful to return a huge list in one query, so GraphQL schemas prefer to
break up these fields into smaller paginated chunks.

Instead of using literal page numbers, recall from the last chapter that idiomatic GraphQL uses
opaque strings called cursors. Cursors are more resilient to real-time changes to your data, which
might lead to duplicates in simple page-based systems. The pageInfo field of a connection gives
metadata to help with making new requests, while the edges field will hold the actual data for each
item.

Instead of the previous query which used lists for friends, we want something like this for posts:

1 {

2 node(id:"users:1") {

3 ... on User {

4 posts(first: 1) {

5 pageInfo {

6 hasNextPage

7 hasPreviousPage

8 startCursor

9 endCursor

10 }

11 edges {

12 cursor

13 node {

14 id

15 body

16 }

17 }

18 }

19 }

20 }

21 }

Instead of just returning a list of PostType, the posts field will now return a PostsConnection type.

Define the PageInfo, PostEdge, and PostsConnection types in your types.js, in addition to
importing more types from the graphql library:

WOW! eBook
www.wowebook.org

GraphQL Server 635

1 import {

2 GraphQLInterfaceType,

3 GraphQLObjectType,

4 GraphQLID,

5 GraphQLString,

6 GraphQLNonNull,

7 GraphQLList,

8 GraphQLBoolean,

9 GraphQLInt,

10 } from 'graphql';

34 const PageInfoType = new GraphQLObjectType({

35 name: 'PageInfo',

36 fields: {

37 hasNextPage: {

38 type: new GraphQLNonNull(GraphQLBoolean)

39 },

40 hasPreviousPage: {

41 type: new GraphQLNonNull(GraphQLBoolean)

42 },

43 startCursor: {

44 type: GraphQLString,

45 },

46 endCursor: {

47 type: GraphQLString,

48 }

49 }

50 });

51

52 const PostEdgeType = new GraphQLObjectType({

53 name: 'PostEdge',

54 fields: () => {

55 return {

56 cursor: {

57 type: new GraphQLNonNull(GraphQLString)

58 },

59 node: {

60 type: new GraphQLNonNull(PostType)

61 }

62 }

63 }

64 });

WOW! eBook
www.wowebook.org

GraphQL Server 636

65

66 const PostsConnectionType = new GraphQLObjectType({

67 name: 'PostsConnection',

68 fields: {

69 pageInfo: {

70 type: new GraphQLNonNull(PageInfoType)

71 },

72 edges: {

73 type: new GraphQLList(PostEdgeType)

74 }

75 }

These are mostly just type definitions with no inherent resolve functions for now. Different
applications will have different ways and patterns for resolving connections, so don’t consider some
of the implementation details here as the gospel for your own work.

Now we need to hook up our UserType to the new types we created and actually create the posts
field.

100 }

101 },

102 posts: {

103 type: PostsConnectionType,

104 args: {

105 after: {

106 type: GraphQLString

107 },

108 first: {

109 type: GraphQLInt

110 },

111 },

112 resolve(source, args) {

113 return loaders.getPostIdsForUser(source, args).then(({ rows, pageInfo \

114 }) => {

115 const promises = rows.map((row) => {

116 const postNodeId = tables.dbIdToNodeId(row.id, row.__tableName);

117 return loaders.getNodeById(postNodeId).then((node) => {

118 const edge = {

119 node,

120 cursor: row.__cursor,

121 };

122 return edge;

123 });

WOW! eBook
www.wowebook.org

GraphQL Server 637

124 });

125

126 return Promise.all(promises).then((edges) => {

127 return {

128 edges,

129 pageInfo

130 }

131 });

132

133 })

134 }

135 }

136 };

137 }

138 });

This should look familiar to how we implement our friends field, aside from the new arguments.
Remember that this field does not return a list of PostType - it returns a PostsConnectionType,
which is an object with pageInfo and edges keys.

We use a new loader method, getPostIdsForUser, and pass it the args to our resolver. We’ll
implement this loader very soon, and it will not only return the associated rows but also a pageInfo
structure that corresponds to the PageInfoType. We then load the nodes for each of the identifiers
and create the wrap them into a PostEdgeType with the row’s cursor.

There are ways to make this more efficient at the JavaScript and database levels, but for now let’s
focus on making our code work by implementing getPostIdsForUser.

This loader will determine what data to fetch based on the pagination arguments and what cursors
to assign the rows returned. The algorithm for slicing and pagination through your data based on the
arguments is rather complex when supporting all possibilities, and you can read about it in detail in
the Relay specification130. For brevity, we’re only going to support the after and first arguments.

We start by defining the new function and parsing the arguments:

74 export const getPostIdsForUser = (userSource, args) => {

75 let { after, first } = args;

76 if (!first) {

77 first = 2;

78 }

In other words, if the user does not supply an argument for first, then we will return two posts.
Then we start to construct our SQL query:

130https://facebook.github.io/relay/graphql/connections.htm#sec-Pagination-algorithm

WOW! eBook
www.wowebook.org

https://facebook.github.io/relay/graphql/connections.htm#sec-Pagination-algorithm
https://facebook.github.io/relay/graphql/connections.htm#sec-Pagination-algorithm

GraphQL Server 638

80 const table = tables.posts;

81 let query = table

82 .select(table.id, table.created_at)

83 .where(table.user_id.equals(userSource.id))

84 .order(table.created_at.asc)

85 .limit(first + 1);

We grab first + 1 rows as a cheap method to determine if there are any more rows beyond
what the user wants. Our query is ordered by created_at ASC, which is important in order to get
deterministic data upon successive queries.

Next we account for an after cursor that may be passed:

87 if (after) {

88 // parse cursor

89 const [id, created_at] = after.split(':');

90 query = query

91 .where(table.created_at.gt(after))

92 .where(table.id.gt(id));

Our cursors in this example are strings composed of row IDs and row dates. Generally cursors will
be based upon some date in most systems, since keeping IDs as incrementing integers is less common
when working with high scale data.

We can finally execute our database query:

94 return database.getSql(query.toQuery()).then((allRows) => {

95 const rows = allRows.slice(0, first);

96

97 rows.forEach((row) => {

98 row.__tableName = tables.posts.getName();

99 row.__cursor = row.id + ':' + row.created_at;

Remember that we actually queried one more row than the user requested, which is why we have
to slice the rows returned. We also construct the cursor for each row and set the __tableName

property so that our future JOIN queries will work.

Now that we have our rows, we execute it and start to create our pageInfo object:

WOW! eBook
www.wowebook.org

GraphQL Server 639

102 const hasNextPage = allRows.length > first;

103 const hasPreviousPage = false;

104

105 const pageInfo = {

106 hasNextPage: hasNextPage,

107 hasPreviousPage: hasPreviousPage,

108 };

109

110 if (rows.length > 0) {

111 pageInfo.startCursor = rows[0].__cursor;

112 pageInfo.endCursor = rows[rows.length - 1].__cursor;

113 }

Keeping a reference to allRows lets us calculate hasNextPage; because we don’t support the before
and last arguments, we always set hasPreviousPage to false. Setting startCursor and endCursor

is as simple as grabbing the first and last elements of our rows array.

We return both the rows and pageInfo objects to finish the loader - finally! Restart your server and
try the query we described at the start of the section:

1 {

2 node(id:"users:1") {

3 ... on User {

4 posts(first: 1) {

5 pageInfo {

6 hasNextPage

7 hasPreviousPage

8 startCursor

9 endCursor

10 }

11 edges {

12 cursor

13 node {

14 id

15 body

16 }

17 }

18 }

19 }

20 }

21 }

In response you should get the first post by this user:

WOW! eBook
www.wowebook.org

GraphQL Server 640

1 {

2 "data": {

3 "node": {

4 "posts": {

5 "pageInfo": {

6 "hasNextPage": true,

7 "hasPreviousPage": false,

8 "startCursor": "1:2016-04-01",

9 "endCursor": "1:2016-04-01"

10 },

11 "edges": [

12 {

13 "cursor": "1:2016-04-01",

14 "node": {

15 "id": "posts:1",

16 "body": "The team played a great game today!"

17 }

18 }

19]

20 }

21 }

22 }

23 }

See that endCursor? Now try running a query with that cursor as the after value:

1 {

2 node(id:"users:1") {

3 ... on User {

4 posts(first: 1, after:"1:2016-04-01") {

5 pageInfo {

6 hasNextPage

7 hasPreviousPage

8 startCursor

9 endCursor

10 }

11 edges {

12 cursor

13 node {

14 id

15 body

16 }

WOW! eBook
www.wowebook.org

GraphQL Server 641

17 }

18 }

19 }

20 }

21 }

This returns the next (and final, judging from hasNextPage) post in the series:

1 {

2 "data": {

3 "node": {

4 "posts": {

5 "pageInfo": {

6 "hasNextPage": false,

7 "hasPreviousPage": false,

8 "startCursor": "2:2016-04-02",

9 "endCursor": "2:2016-04-02"

10 },

11 "edges": [

12 {

13 "cursor": "2:2016-04-02",

14 "node": {

15 "id": "posts:2",

16 "body": "Honestly I didn't do so well at yesterday's game, but eve\

17 ryone else did."

18 }

19 }

20]

21 }

22 }

23 }

24 }

Congratulations, you’ve now implemented cursor-based pagination! Youmight be able to use simple
lists for static data, but using cursors prevents all kinds of frontend bugs and complexity for data
that updates relatively often. It also allows you to leverage Relay’s understanding of pagination and
build paginated or infinite-scrolling UIs very quickly.

Authentication

Earlier we noted that in our social network the friendships have “levels,” which posts should respect.
For example, if a post has a level of friend, then only my friends with a level of friend or higher
(instead of acquaintance or a lower level) should see it.

WOW! eBook
www.wowebook.org

GraphQL Server 642

This topic is generally referred to as authorization. GraphQL has no inherit notion or opinions on
authorization, which makes it quite flexible for implementing controls on who can see what data
in your schemas. This also means you need to take care to ensure that youâ€™re not accidentally
exposing data that should be hidden to the user.

We’re going to add a small authentication layer to our server, which verifies that the GraphQL query
is allowed to be processed, as well as the authorization logic to control who can see the different
posts. The techniques we’ll use are definitely not the only ways to implement these features with
GraphQL, but should spark some ideas that might apply to your product.

For authentication, we’re going to use HTTP basic authentication131. There are a myriad of protocols
for authentication, such as OAuth, JSON web tokens, and cookies, and the choice is ultimately very
unique to each product. HTTP basic auth is fairly simple to add to our current NodeJS server, which
is the primary reason in this case.

First, install the basic-auth-connect package, which provides a very simple API to allow certain
credentials access:

$ npm i basic-auth-connect@1.0.0 --save --save-exact

Then in our server code, import the module:

3 import express from 'express';

4 import basicAuth from 'basic-auth-connect';

5

6 const app = express();

Right before we add our GraphQL endpoint, add a new call to app.use. Remember that Express will
trigger each app.use function in the order they are added - if we put the new basicAuth function
after our graphqlHTTP function, the ordering would be incorrect.

67 app.use(basicAuth(function(user, pass) {

68 return user === 'harry' && pass === 'mypassword1';

69 }));

70

71 app.use('/graphql', graphqlHTTP({ schema: Schema, graphiql: true }));

For now, we’ll allow any user with the right password. Restart your server and try running this
cURL command to test a simple query:

131https://en.wikipedia.org/wiki/Basic_access_authentication

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

GraphQL Server 643

$ curl -XPOST -H 'content-type:application/graphql' http://localhost:3000/graphq\

l -d '{ node(id:"users:4") { id } }'

Unauthorized

Since we didn’t specify a username or password, our query fails. Try this next command to correctly
pass our credentials:

$ curl -XPOST -H 'content-type:application/graphql' --user 1:mypassword1 http://\

localhost:3000/graphql -d '{ node(id:"users:4") { id } }'

{"data":{"node":{"id":"users:4"}}}

Great, now our authentication is working. You can also try this in Chrome and Firefox, which allow
a GUI for entering the username and password.

The important concept here is that authentication is generally decoupled from a GraphQL schema.
It’s definitely possible to pass the username and password into a GraphQL query to authenticate the
user (over HTTPS of course), but idiomatic GraphQL tends to separate the concerns.

Authorization

Now, onto tackling authorization. Remember in the last chapter we brought up the idea of a viewer
field, which represents the logged-in users node in the data graph. We’re going to add that field to
our schema and allow our resolution code to be aware of the viewer’s permissions.

By using basic-auth-connect, we can access to a user property on every Express request. The
specifics on how you determine the user making each request will vary depending on your
authentication library, but we simple need to take that request.user property and forward to our
GraphQL resolver:

77 app.use('/graphql', graphqlHTTP((req) => {

78 const context = 'users:' + req.user;

79 return { schema: Schema, graphiql: true, context: context, pretty: true };

80 }));

Instead of always returning the same schema and graphiql settings for all requests, we now return
a different configuration object for each GraphQL query. This new configuration has the context
property set to the username, like the user1 from the example earlier.

The next question is how do we access that context inside our GraphQL fields? Recall from earlier
in the chapter that each resolve function gets passed some arguments. We’ve become very familiar
with the args argument, but it turns out the context is also passed.

Here’s how we add the viewer field with that knowledge:

WOW! eBook
www.wowebook.org

GraphQL Server 644

20 const RootQuery = new GraphQLObjectType({

21 name: 'RootQuery',

22 description: 'The root query',

23 fields: {

24 viewer: {

25 type: NodeInterface,

26 resolve(source, args, context) {

27 return loaders.getNodeById(context);

28 }

29 },

If you restart your server, you should be able to cURL the endpoint like so:

$ curl -XPOST -H 'content-type:application/graphql' --user 1:mypassword1 http://\

localhost:3000/graphql -d '{ viewer { id } }'

{

"data": {

"viewer": {

"id": "users:1"

}

}

}

You can explore using the ... on User inline fragment to query more properties. We are able to
provide this sort of consistent API with minimal code changes because we modeled our application
data as a graph - neat!

Not only can top-level viewer field access the context, but all resolve functions have access,
regardless of their depth in the hierarchy. This makes it very simple to add authorization checks
to our posts field.

We start by forwarding the context argument in our resolve function:

112 resolve(source, args, context) {

113 return loaders.getPostIdsForUser(source, args, context).then(({ rows, \

114 pageInfo }) => {

GraphQL schemas should not handle authorization logic directly, which is likely to duplicate logic
from your main codebase. Instead, that responsibility should fall into the underlying data loading
libraries or services, as we show here.

Inside our getPostIdsForUser, we need to load each post’s level from the database before we can
use it. All we have to do is add it to our select arguments:

WOW! eBook
www.wowebook.org

GraphQL Server 645

106 let query = table

107 .select(table.id, table.created_at, table.level)

108 .where(table.user_id.equals(userSource.id))

109 .order(table.created_at.asc)

110 .limit(first + 10);

In addition to running the database query to get all of the posts, we’re also going to run another
query to get all of the user access levels for our context. We’ll use that list of levels to filter down
the results our database query.

120 return Promise.all([

121 database.getSql(query.toQuery()),

122 getFriendshipLevels(context)

123]).then(([allRows, friendshipLevels]) => {

124 allRows = allRows.filter((row) => {

125 return canAccessLevel(friendshipLevels[userSource.id], row.level);

126 });

127 const rows = allRows.slice(0, first);

We’re referencing two new functions that have yet to be implemented, getFriendshipLevels and
canAccessLevel. Before we get to that, note that this does potentially introduce a bug into our
system. We were calculating hasNextPage based on the length of allRows, but now allRows can be
truncated depending on privacy settings. This highlights some of the complexity of systems that are
highly aware of authorization; a naive mitigation of this is to just read more rows eagerly from the
database, which we changed above (first + 10).

The getFriendshipLevels definition is similar to our other queries:

74 const getFriendshipLevels = (nodeId) => {

75 const { dbId } = tables.splitNodeId(nodeId);

76

77 const table = tables.usersFriends;

78 let query = table

79 .select(table.star())

80 .where(table.user_id_a.equals(dbId));

81

82 return database.getSql(query.toQuery()).then((rows) => {

83 const levelMap = {};

84 rows.forEach((row) => {

85 levelMap[row.user_id_b] = row.level;

86 });

87 return levelMap;

88 });

89 };

WOW! eBook
www.wowebook.org

GraphQL Server 646

At the end we transform the array of rows into an object for a slightly more efficient API (you can
also implement this transformation using a single reduce function if you’d like).

The last piece is canAccessLevel. Because our privacy settings are totally linear, we can represent
the settings as an array and use the indices as a simple comparison:

91 const canAccessLevel = (viewerLevel, contentLevel) => {

92 const levels = ['public', 'acquaintance', 'friend', 'top'];

93 const viewerLevelIndex = levels.indexOf(viewerLevel);

94 const contentLevelIndex = levels.indexOf(contentLevel);

95

96 return viewerLevelIndex >= contentLevelIndex;

97 };

That all wasn’t too bad, was it? We can test this out with some queries. Login as user 1 (so username
1 and password mypassword1) and run this query:

1 {

2 node(id:"users:2") {

3 ... on User {

4 posts {

5 edges {

6 node {

7 id

8 ... on Post {

9 body

10 }

11 }

12 }

13 }

14 }

15 }

16 }

In return, you’ll see no posts. This is because our context (user 1) is not friends with the node we’re
accessing (user 2), and their posts have a level of friend.

Now open an incognito window, login as user 5, run that same query. You’ll see a post!

WOW! eBook
www.wowebook.org

GraphQL Server 647

1 {

2 "data": {

3 "node": {

4 "posts": {

5 "edges": [

6 {

7 "node": {

8 "id": "posts:3",

9 "body": "Hard at work studying for finals..."

10 }

11 }

12]

13 }

14 }

15 }

16 }

This is because user 5 is actually a friend of user 2.

This is a simple example, but highlights a few points about GraphQL.

• GraphQL server libraries typically allow you to forward on some kind of query-level context
• Your GraphQL schema code should not concern itself with authorization logic, instead
deferring to your underlying data code

We’ve been reading data from our server for a bit, but now we should try out changing some of it
with mutations.

Rich Mutations

There’s only so much your application can do if it can only read data from the server - more often
than not, we have to upload some new data. Recall from the last chapter that in GraphQL, we call
these updates mutations.

We’re going to add a mutation to our schema which creates a new post. The field will have a string
arguments for the post body and a friendship privacy level, and it will allow us to query more
information about the resulting post object.

Earlier in this chapter we added a simple key-value mutation in our server.js file. Let’s update that
definition to use the arguments and types we expect for creating a new post:

WOW! eBook
www.wowebook.org

GraphQL Server 648

9 import { GraphQLSchema, GraphQLObjectType, GraphQLString,

10 GraphQLNonNull, GraphQLID, GraphQLEnumType } from 'graphql';

44 const LevelEnum = new GraphQLEnumType({

45 name: 'PrivacyLevel',

46 values: {

47 PUBLIC: {

48 value: 'public'

49 },

50 ACQUAINTANCE: {

51 value: 'acquaintance'

52 },

53 FRIEND: {

54 value: 'friend'

55 },

56 TOP: {

57 value: 'top'

58 }

59 }

60 });

61

62 const RootMutation = new GraphQLObjectType({

63 name: 'RootMutation',

64 description: 'The root mutation',

65 fields: {

66 createPost: {

67 type: PostType,

68 args: {

69 body: {

70 type: new GraphQLNonNull(GraphQLString)

71 },

72 level: {

73 type: new GraphQLNonNull(LevelEnum),

74 }

75 },

76 resolve(source, args, context) {

77 return loaders.createPost(args.body, args.level, context).then((nodeId) \

78 => {

79 return loaders.getNodeById(nodeId);

80 });

81 }

82 }

WOW! eBook
www.wowebook.org

GraphQL Server 649

83 }

84 });

First we instantiate a new kind of object, a GraphQLEnumType. We only briefly mentioned the Enum
GraphQL type in previous chapter, but it works similarly to how enums work in many programming
languages. Because our level argument should only be one of a fixed amount of options, we enforce
that contract at the schema level with an enum. By convention, enums in GraphQL are ALL_CAPS.

After creating our enum, we use it in the args property of our new createPostmutation. Note that
in addition to the arguments, createPost has a type of PostType, which means we eventually need
to return a post object after performing our mutating code. That work is actually deferred to a new
createPost loader, which looks like this:

151 export const createPost = (body, level, context) => {

152 const { dbId } = tables.splitNodeId(context);

153 const created_at = new Date().toISOString().split('T')[0];

154 const posts = [{ body, level, created_at, user_id: dbId }];

155

156 let query = tables.posts.insert(posts).toQuery();

157 return database.getSql(query).then(() => {

158 return database.getSql({ text: 'SELECT last_insert_rowid() AS id FROM posts'\

159 });

160 }).then((ids) => {

161 return tables.dbIdToNodeId(ids[0].id, tables.posts.getName());

162 });

163 };

This is mostly specific to our SQLite database, but you can imagine how this would work in other
frameworks or data stores. We construct our database row, insert it, and then retrieve the newly
inserted ID.

If you open up GraphiQL, you should be able to give this mutation a try:

1 mutation {

2 createPost(body:"First post!", level:PUBLIC) {

3 id

4 body

5 }

6 }

In the wild, you may run into more complex scenarios for updating data such as uploading files.
The specifics will depend on what server language and library you use, but it’s supported with

WOW! eBook
www.wowebook.org

GraphQL Server 650

Relay and GraphQL-JS. The Relay documentation132 discusses how files are handled, and you can
find examples elsewhere133 of how to leverage those within your GraphQL schema.

Relay and GraphQL

The “Facebook-lite” schema we’ve developed may be small, but it should give you an idea of how to
structure common operations in a GraphQL server. It also happens to be compatible with Relay134,
Facebook’s frontend React library for working with a GraphQL server.

In addition to publishing Relay itself, Facebook publishes a library to help you more easily construct
a Relay-compatible GraphQL server with Node. This GraphQL-Relay-JS135 package reduces much
of the boilerplate we’ve experienced, especially for some of Relay’s more powerful features.

You should read over the docs for all the details, but we’re briefly going to convert some of our code
to use this library. First we need to install it via npm:

$ npm install graphql-relay@0.4.1 --save --save-exact

GraphQL-Relay is particularly helpful with connection fields. Although we only had one proper
connection field in our schema (posts), you can imagine that repeating the types and code for each
connection in a larger app would become tiresome. Luckily, all we need is a quick import:

15 import {

16 connectionDefinitions

17 } from 'graphql-relay';

Then delete all of our existing connection types, so that we skip straight to the UserType:

34 const resolveId = (source) => {

35 return tables.dbIdToNodeId(source.id, source.__tableName);

36 };

37

38 export const UserType = new GraphQLObjectType({

39 name: 'User',

And at the very bottom, add this one-liner to define PostsConnectionType:

132https://facebook.github.io/relay/docs/api-reference-relay-mutation.html#getfiles
133http://stackoverflow.com/a/35585482
134https://facebook.github.io/relay/
135https://github.com/graphql/graphql-relay-js

WOW! eBook
www.wowebook.org

https://facebook.github.io/relay/docs/api-reference-relay-mutation.html#getfiles
http://stackoverflow.com/a/35585482
https://facebook.github.io/relay/
https://github.com/graphql/graphql-relay-js
https://facebook.github.io/relay/docs/api-reference-relay-mutation.html#getfiles
http://stackoverflow.com/a/35585482
https://facebook.github.io/relay/
https://github.com/graphql/graphql-relay-js

GraphQL Server 651

116 const { connectionType: PostsConnectionType } = connectionDefinitions({ nodeType\

117 : PostType });

Internally, this generates all the types we crafted by hand - PageInfo, PostEdge, and PostConnec-

tion. You can confirm this if you load up the GraphiQL documentation:

GraphQL Relay

In addition to connections, the GraphQL-Relay library also has functions for simplifying how node
types are structured136 and working with Relay-compatible mutations137. We’ll explore this more in
the upcoming Relay chapter, but Relay imposes some rules on how mutations work, similar to the
way that certain types and arguments required for connections.

None of the GraphQL server changes required for Relay are specific to GraphQL-JS or JavaScript
in general. Any language GraphQL server can be made compatible with Relay, and hopefully this
chapter has made you more familiar with the basic building blocks of any GraphQL schema.

Performance: N+1 Queries

Now that our schema has settled, we can reconsider performance. Before we dive in, remember that
the performance needs of different products can be incredibly disparate. Engineers should carefully
consider the costs and benefits of writing code that is more performant at the risk of additional
complexity.

Let’s consider a query like this:

136https://github.com/graphql/graphql-relay-js#object-identification
137https://github.com/graphql/graphql-relay-js#mutations

WOW! eBook
www.wowebook.org

https://github.com/graphql/graphql-relay-js#object-identification
https://github.com/graphql/graphql-relay-js#object-identification
https://github.com/graphql/graphql-relay-js#mutations
https://github.com/graphql/graphql-relay-js#object-identification
https://github.com/graphql/graphql-relay-js#mutations

GraphQL Server 652

1 {

2 node(id:"users:4") {

3 ... on User {

4 friends {

5 edges {

6 node {

7 id

8 about

9 name

10 }

11 }

12 }

13 }

14 }

15 }

Under the hood, our current GraphQL resolution code will trigger one database query to get the
node for "users:4", one query to get the list of friend IDs, and N database queries for each of the
friends edges. This is commonly referred to as the N+1 Query Problem138 and can easily occur using
any web framework or ORM. You can imagine that for a slow database or a large number of edges,
this will cause degraded performance. We can visualize this with the following raw SQL:

1 SELECT "users".* FROM "users" WHERE ("users"."id" = 4) LIMIT 1

2 SELECT "users_friends"."user_id_b" FROM "users_friends" WHERE ("users_friends"."\

3 user_id_a" = 4)

4 SELECT "users".* FROM "users" WHERE ("users"."id" = 1) LIMIT 1

5 SELECT "users".* FROM "users" WHERE ("users"."id" = 3) LIMIT 1

6 SELECT "users".* FROM "users" WHERE ("users"."id" = 2) LIMIT 1

In a perfect world, we would only need two database queries: one to retrieve the initial node, and
then one to retrieve all of the friends in one query (or within whatever paging limits we need) - in
other words, we batch all of the queries for friends. Something more like this would not:

1 SELECT "users".* FROM "users" WHERE ("users"."id" = 4) LIMIT 1

2 SELECT "users_friends"."user_id_b" FROM "users_friends" WHERE ("users_friends"."\

3 user_id_a" = 4)

4 SELECT "users".* FROM "users" WHERE ("users"."id" in (1, 3, 2)) LIMIT 3

Consider how loading a user works: it’s a call to loaders.getNodeById. Currently that function
immediately triggers a database query, but what if we could “wait” for some small amount of

138https://secure.phabricator.com/book/phabcontrib/article/n_plus_one/

WOW! eBook
www.wowebook.org

https://secure.phabricator.com/book/phabcontrib/article/n_plus_one/
https://secure.phabricator.com/book/phabcontrib/article/n_plus_one/

GraphQL Server 653

time, collect node IDs that need to be loaded, and then trigger a database query like the one
above? GraphQL and JavaScript enable intuitive techniques for batching alike queries, which we’ll
implement.

Facebook maintains a library called DataLoader139 to help, which is a generic JavaScript library
independent of React or GraphQL. You use the library to create loaders, which are objects that
automatically batch fetching of similar data. For example, you would instantiate a UserLoader to
load users from the database:

1 const UserLoader = new DataLoader((userIds) => {

2 const query = table

3 .select(table.star())

4 .where(table.id.in(userIds))

5 .toQuery();

6

7 return database.getSql(query.toQuery());

8 });

9

10 // elsewhere, loading a single user

11 function resolveUser(userId) {

12 return UserLoader.load(userId);

13 }

Notice how UserLoader.load takes a single userId as an argument, but the argument to it’s internal
function is an array of userIds. This means if we call UserLoader.load frommultiple places in rapid
succession, we have the option of crafting a more efficient database query.

In our app, most of our code touches loaders.getNodeById which makes it a strong candidate for
automatic batching. None of the code that invokes getNodeById has to change; instead, we’re going
to internally batch node fetches using DataLoader.

First, install DataLoader from npm:

$ npm install dataloader@1.2.0 --save --save-exact

Now onto our changes to loaders.js. We’re going to make one data loader per table, which is a
reasonable way to start optimizing. The code starts like this:

139https://github.com/facebook/dataloader

WOW! eBook
www.wowebook.org

https://github.com/facebook/dataloader
https://github.com/facebook/dataloader

GraphQL Server 654

1 import * as database from './database';

2 import * as tables from './tables';

3

4 import DataLoader from 'dataloader';

5

6 const createNodeLoader = (table) => {

7 return new DataLoader((ids) => {

8 const query = table

9 .select(table.star())

10 .where(table.id.in(ids))

11 .toQuery();

12

13 return database.getSql(query).then((rows) => {

14 rows.forEach((row) => {

15 row.__tableName = table.getName();

16 });

17 return rows;

18 });

19 });

20 };

Our createNodeLoader is a factory function which returns a new instance of DataLoader. We craft a
query of the form SELECT * FROM $TABLE WHERE ID IN($IDS), which lets us select multiple nodes
with a single query.

Now we need to invoke our factory function, which we’ll store in a constant:

22 const nodeLoaders = {

23 users: createNodeLoader(tables.users),

24 posts: createNodeLoader(tables.posts),

25 usersFriends: createNodeLoader(tables.usersFriends),

26 };

Finally, we change our definition of getNodeById to use the appropriate loader:

28 export const getNodeById = (nodeId) => {

29 const { tableName, dbId } = tables.splitNodeId(nodeId);

30 return nodeLoaders[tableName].load(dbId);

31 };

If you open up GraphiQL and try this query, you’ll notice the SQL logs in the server console are
appropriately batching our database fetches:

WOW! eBook
www.wowebook.org

GraphQL Server 655

1 {

2 user3: node(id:"users:3") {

3 id

4 }

5 user4: node(id:"users:4") {

6 id

7 }

8 }

$ node index.js

{ starting: true }

{ running: true }

SELECT "users".* FROM "users" WHERE ("users"."id" IN ($1, $2))

['3', '4']

Note that our higher-level GraphQL schema code is totally unaware of this optimization and didn’t
have to change at all. In general, you should prefer keeping optimizations at the loader and data
service level so all consumers can enjoy the benefits.

DataLoader is simple but powerful tool. Although we showed off its batching abilities, it can also
act as a cache - if you’d like to learn more, check out its documentation140 and consider watching
this talk by its maintainer141.

Summary

We covered a lot of ground in this chapter. We designed a schema, created a GraphQL server
from scratch, connected it to a relational database, and explored some performance optimizations.
Regardless of your production language and stack, these concepts will apply to all GraphQL
server implementations. Additionally, this should give you some more understanding and context
whenever you connect to a GraphQL server from the frontend.

We used the Facebook-maintained GraphQL-JS library in this chapter, but the GraphQL ecosystem
is exploding. Here some more popular options and technologies you might want to explore:

• GraphQL142 for Ruby
• Graphene143 for Python
• Sangria144 for Scala

140https://github.com/facebook/dataloader#getting-started
141https://www.youtube.com/watch?v=OQTnXNCDywA
142https://github.com/rmosolgo/graphql-ruby
143https://github.com/graphql-python/graphene
144https://github.com/sangria-graphql/sangria

WOW! eBook
www.wowebook.org

https://github.com/facebook/dataloader#getting-started
https://www.youtube.com/watch?v=OQTnXNCDywA
https://github.com/rmosolgo/graphql-ruby
https://github.com/graphql-python/graphene
https://github.com/sangria-graphql/sangria
https://github.com/facebook/dataloader#getting-started
https://www.youtube.com/watch?v=OQTnXNCDywA
https://github.com/rmosolgo/graphql-ruby
https://github.com/graphql-python/graphene
https://github.com/sangria-graphql/sangria

GraphQL Server 656

• Apollo Server145 for Node
• Graffiti-Mongoose146 for Node and MongoDB
• Services like Reindex147 and Graphcool148 for hosting GraphQL servers

Now that we’ve learned about consuming GraphQL and authoring a GraphQL server, it’s time to
put everything we’ve covered thus far and learn about Relay.

145http://docs.apollostack.com/apollo-server/tools.html
146https://github.com/RisingStack/graffiti-mongoose
147https://www.reindex.io/
148https://graph.cool/

WOW! eBook
www.wowebook.org

http://docs.apollostack.com/apollo-server/tools.html
https://github.com/RisingStack/graffiti-mongoose
https://www.reindex.io/
https://graph.cool/
http://docs.apollostack.com/apollo-server/tools.html
https://github.com/RisingStack/graffiti-mongoose
https://www.reindex.io/
https://graph.cool/

Relay
Introduction

Picking the right data architecture in a client-server web app can be difficult. There are a myriad of
decisions to be made when you try to implement a data architecture. For example:

• How will we fetch data from the server?
• What do we do if that fetch fails?
• How do we query dependencies and relationships between data
• How do we keep data consistent across the app?
• How can we keep developers from breaking each others’ components accidentally?
• How can we move faster and write our app-specific functionality rather than spending our
time pushing data back and forth from our server?

Thankfully, Relay has a theory on all of these issues. Even better: it’s an implementation of that
theory and it’s a joy to use, once you get it set up. But it’s natural to ask: What is Relay?

Relay is a library which connects your React components to your API server.

We talked about GraphQL earlier in the book and it may not be immediately clear what the
relationship is between Relay, GraphQL, and React. You can think of Relay as the glue between
GraphQL and React.

Relay is great because:

• components declare the data they need to operate
• it manages how and when we fetch data
• it intelligently aggregates queries, so we don’t fetch more than we need
• it gives us clear patterns for navigating relationships between our objects and mutating them

One of the most helpful things about Relay that we’ll see in this chapter is that the GraphQL
queries are co-located with the component. This gives us the benefit of being able to see a clear
specification of the values needed to render a component directly alongside the component itself.

Each component specifies what it needs and Relay figures out if there’s any duplication, before
making the query. Relay will aggregate the queries, process the responses, and then hand back to
each component just the data it asked for.

GraphQL can be used independent of Relay. You can, in theory, create a GraphQL server to have
more-or-less any schema you want. However, Relay has a specification that your GraphQL server
must follow in order to be Relay-compatible. We’ll talk about those constraints.

WOW! eBook
www.wowebook.org

Relay 658

What We’re Going to Cover

In this chapter we’re going to walk through a practical tutorial on how to setup and use Relay in
a client app.

Relay depends on a GraphQL server, which we’ve provided in the sample code, but we’re
not going to talk about the implementation details of that server.

In this chapter we’re going to:

• explain the various concepts of Relay
• describe how to setup Relay in our app (with routing)
• show how to fetch data from Relay into our components
• show how to update data on our server using mutations
• highlight tips and tricks about Relay along the way

By the end of this chapter you’ll understand what Relay is, how to use it, and have a firm foundation
for integrating Relay into your own apps.

What We’re Building

The Client

In this chapter, we’re going to build a simple bookstore. We’ll have three pages:

• A book listing page, which shows all of the books we have for sale.

WOW! eBook
www.wowebook.org

Relay 659

Books Store Page

• An author bio page, which shows an author’s information and the books they’ve authored.

Author Page

• A book listing page, which shows a single book and the authors for that book. We’ll also edit
a book on this page.

WOW! eBook
www.wowebook.org

Relay 660

Book Listing Page

The data model here is straightforward: a book has (and belongs to) many authors.

This data is provided to our app via an API server.

The Server

We’ve provided a Relay-compatible GraphQL demo server in the sample code with this app. In this
chapter we aren’t going to discuss the implementation details of the server. If you’re interested
in building GraphQL servers, checkout our chapter on GraphQL Servers.

This server was created with the library graffiti-mongoose149. If you’re using MongoDB
and mongoose150, then graffiti-mongoose is a fantastic choice for adapting your models
to GraphQL. graffiti-mongoose takes your mongoosemodels and automatically generates
a Relay-compatible GraphQL server.

That said, there are libraries that can help you generate GraphQL from your models for
every popular language. Checkout the list awesome-graphql151 to see what libraries are
available.

Try The App

You can find the project for this chapter inside the relay folder of the code download:

149https://github.com/RisingStack/graffiti-mongoose
150http://mongoosejs.com/
151https://github.com/chentsulin/awesome-graphql

WOW! eBook
www.wowebook.org

https://github.com/RisingStack/graffiti-mongoose
http://mongoosejs.com/
https://github.com/chentsulin/awesome-graphql
https://github.com/RisingStack/graffiti-mongoose
http://mongoosejs.com/
https://github.com/chentsulin/awesome-graphql

Relay 661

$ cd relay/bookstore

We’ve included the completed server and completed client. Before we can run them, we need to run
npm install on both the client and the server:

$ npm install

$ cd client

$ npm install

$ cd ..

Next, you can run them individually in two separate tabs with:

tab one

$ npm run server

tab two

$ npm run client

Or we’ve provided a convenience command that will run them both with:

$ npm start

When they’re running, you should be able to access the GraphQL server at http://localhost:3001
and the client app at http://localhost:3000.

In this chapter, we’re going to be spending time in our browser looking at both the client and the
server. We’ve installed the GraphQL GUI tool “GraphiQL” on this demo server.

Relay is based on GraphQL, and so to get a better understanding of how it works, we’re going to be
running a few queries “by hand” in this GraphiQL interface.

How to Use This Chapter

While we will introduce all of the terminology of Relay, this chapter is intended to be a guide to
working with Relay and not the API documentation.

As you’re reading this chapter, feel free to cross-reference the official docs152 to dig in to the details.

Prerequisites
This is an advanced chapter. We’re going to focus on using Relay and not re-cover
the basics of writing React apps. It’s assumed that you’re somewhat comfortable with
writing components, using props, JSX, and loading third party libraries. Relay also requires
GraphQL, and so we assume you have some familiarity with GraphQL as well.

If you don’t feel comfortable with these things, we cover all of them earlier in the book.

152https://facebook.github.io/relay/

WOW! eBook
www.wowebook.org

https://facebook.github.io/relay/
https://facebook.github.io/relay/

Relay 662

Relay 1
Currently this chapter covers Relay 1.x. There is a new version of Relay in the works, but
don’t let that stop you from learning Relay 1. There is no public release date and Facebook
employee Jaseph Savona stated on GitHub153 that Relay 2 has “definite API differences,
but the core concepts are the same and the API changes serve to make Relay simpler and
more predictable”

Some good news here is that the underlying GraphQL specification doesn’t change154. So
while, yes, Relay will have a v2 in the future. We can still use Relay 1 in our production
apps today.

If you’re interested more in the future of Relay, checkout Relay: State of the State155.

Guide to the Code Structure

In this chapter, we’ve provided the completed version of the app in relay/bookstore.

In order to break up the concepts in tomore digestible bites, we’ve broken up some of the components
into steps. We’ve included these intermediate files in relay/bookstore/client/steps.

Our Relay app contains a server, a client, and several build tools – these all add up to quite a lot of
files and directories. Here’s a brief overview of some of the directories and files you’ll find in our
project. (Don’t worry if some of this is unfamiliar, we’ll explain everything you need to know in this
chapter):

-- bookstore

|-- README.md

|-- client

| |-- config // client configuration

| | |-- babelRelayPlugin.js // our custom babel plugin

| | |-- webpack.config.dev.js // webpack configuration

| | `-- webpack.config.prod.js

| |-- package.json

| |-- public // images and index.html

| | |-- images/

| | `-- index.html

| |-- scripts // helper scripts

| | |-- build.js

| | |-- start.js

| | `-- test.js

153https://github.com/facebook/relay/issues/1369
154https://github.com/facebook/relay/issues/1369#issuecomment-266647767
155https://facebook.github.io/react/blog/2016/08/05/relay-state-of-the-state.html

WOW! eBook
www.wowebook.org

https://github.com/facebook/relay/issues/1369
https://github.com/facebook/relay/issues/1369#issuecomment-266647767
https://facebook.github.io/react/blog/2016/08/05/relay-state-of-the-state.html
https://github.com/facebook/relay/issues/1369
https://github.com/facebook/relay/issues/1369#issuecomment-266647767
https://facebook.github.io/react/blog/2016/08/05/relay-state-of-the-state.html

Relay 663

| `-- src

| |-- components // our components are here

| | |-- App.js

| | |-- AuthorPage.js

| | |-- BookItem.js

| | |-- BookPage.js

| | |-- BooksPage.js

| | |-- FancyBook.js

| | `-- TopBar.js

| |-- data // graphql metadata

| | |-- schema.graphql

| | `-- schema.json

| |-- index.js

| |-- mutations // mutations make changes

| | `-- UpdateBookMutation.js

| |-- routes.js // our routes

| |-- steps/ // intermediate files

| `-- styles // css styles here

|-- models.js // server models

|-- package.json

|-- schema.js // graphql schema on the server

|-- server.js // our server definition

|-- start-client.js

|-- start-server.js

`-- tools

`-- update-schema.js // a helper for generating the schema

Feel free to poke around at the sample code we’ve provided, but don’t worry about understanding
every file just yet. We’ll cover all of the important parts.

Relay is a Data Architecture

Relay is a JavaScript library that runs on the client-side. You connect Relay to your React components
and then Relay will fetch data from your server. Of course, your server also needs to conform to
Relay’s protocol, and we’ll talk about that, too.

Relay is designed to be the data-backbone for your React app. Thismeans that, ideally, we’d use Relay
for all of our data loading and for maintaining the central, authoritative state for our application.

Because Relay has its own store it’s able to cache data and resolve queries efficiently. If you have two
components that are concerned with the same data, Relay will combine the two queries into one and
then distribute the appropriate data to each component. This has the duel benefit of minimizing the

WOW! eBook
www.wowebook.org

Relay 664

number of server calls we need but still allowing the individual components the ability to specify
locally what data they need.

Because Relay holds a central store of your data, this means it’s not really compatible with other
data architectures that keep a central store, like Redux. You can’t have two central stores of state
and so this makes the current versions of Redux and Relay essentially incompatible.

Apollo

If you’re already using Redux but you’d like to try Relay, there’s still hope: the Apollo
project156 is a Relay-inspired library that is based on Redux. If you’re careful, you can
retrofit Apollo into your existing Redux app.

We’re not going to talk about Apollo in this chapter, but it’s a fantastic library and it’s
absolutely worth looking into for your app.

Relay GraphQL Conventions

One thing we need to clarify is the relationship between Relay and GraphQL.

Our GraphQL server defines our GraphQL schema and how to resolve queries against that schema.
GraphQL itself lets you define a wide variety of schemas. For the most part, it doesn’t dictate what
the structure of your schema should be.

Relay defines a set of conventions on top of GraphQL. In order to use Relay, your GraphQL server
must adhere to a specific set of guidelines.

At a high level, these conventions are:

1. A way to fetch any object by ID (regardless of type)
2. A way to traverse relationships between objects (called “connections”) with pagination
3. A structure around changing data with mutations

These three requirements allow us to build sophisticated, efficient apps. In this chapter, we’ll make
these generic guidelines concrete.

Let’s explore implementations of these three Relay conventions directly on our GraphQL server.
Then later in the chapter we’ll implement them in our client app.

Relay Specification Official Docs

You can checkout Facebook’s Official Documentation on the Relay/GraphQL specification
here157

156http://www.apollodata.com/
157https://facebook.github.io/relay/docs/graphql-relay-specification.html

WOW! eBook
www.wowebook.org

http://www.apollodata.com/
http://www.apollodata.com/
https://facebook.github.io/relay/docs/graphql-relay-specification.html
https://facebook.github.io/relay/docs/graphql-relay-specification.html
http://www.apollodata.com/
https://facebook.github.io/relay/docs/graphql-relay-specification.html

Relay 665

Exploring Relay Conventions in GraphQL

Make sure you have the GraphQL server running, as described above, and open it in your browser
at the address localhost:3001.

Remember that GraphiQL reads our schema and provides a documentation explorer to navigate the
types. Click on the “Docs” link in GraphiQL to show the “Root Types” of our schema.

GraphiQL Interface with Docs

Fetching Objects By ID

In our server we have two models: Author and Book. The first thing we’re going to do is look-up a
specific object by ID.

Imagine that we want to create a page that shows the information about a particular author. We
might have a URL such as /authors/abc123, where abc123 is the ID of the author. We’d want Relay
to ask our server “what is the information for the author abc123?” In that case, we’d use a GraphQL
query like we’re going to define below.

However, we have a bit of a chicken and egg problem at the moment: we don’t know the IDs of any
individual record.

So let’s load the entire list of authors’ names and ids and then take note of one of the IDs.

Enter the following query into GraphiQL:

WOW! eBook
www.wowebook.org

Relay 666

query {

authors {

id

name

}

}

And click the play button:

GraphiQL Authors with IDs

Now that we have an author ID, we can query author to get the author with a specific id:

Query:

query {

author(id: "QXV0aG9yOjY1ZmJlZjA1ZTAxZmFjMzkwY2IzZmEwNw==") {

id

name

}

}

Response:

WOW! eBook
www.wowebook.org

Relay 667

{

"data": {

"author": {

"id": "QXV0aG9yOjY1ZmJlZjA1ZTAxZmFjMzkwY2IzZmEwNw==",

"name": "Anthony Accomazzo"

}

}

}

While this is handy, from the author query we can only receive an object of type Author, so it
doesn’t fulfill the requirement of the Relay specification. The Relay specification says that we need
to have a way to query any object (Node) via the node query.

We’ll talk more about our GraphQL schema later in the chapter, but it’s worth pointing out
that both Author and Book types implement the Node-type interface.

We’ve implemented the ability to lookup a Node via node on our server, so let’s try it out. First, let’s
query just the id from node:

Query:

query {

node(id: "QXV0aG9yOjY1ZmJlZjA1ZTAxZmFjMzkwY2IzZmEwNw==") {

id

}

}

Response:

{

"data": {

"node": {

"id": "QXV0aG9yOjY1ZmJlZjA1ZTAxZmFjMzkwY2IzZmEwNw=="

}

}

}

This works! But it isn’t very useful because we don’t have any other data about the author. Let’s try
fetching the name:

Query:

WOW! eBook
www.wowebook.org

Relay 668

query {

node(id: "QXV0aG9yOjY1ZmJlZjA1ZTAxZmFjMzkwY2IzZmEwNw==") {

id

name

}

}

This fails with the error:

1 Cannot query field "name" on type "Node". Did you mean to use an inline fragment\

2 on "Author" or "Book"?

What happened here? Because Node is a generic type, we can’t query the name field. Instead we need
to provide a fragment which says, if we’re querying an Author, then return Author specific fields.
So we can adjust our query like so:

Query:

query {

node(id: "QXV0aG9yOjY1ZmJlZjA1ZTAxZmFjMzkwY2IzZmEwNw==") {

id

... on Author {

name

}

}

}

Response

{

"data": {

"node": {

"id": "QXV0aG9yOjY1ZmJlZjA1ZTAxZmFjMzkwY2IzZmEwNw==",

"name": "Anthony Accomazzo"

}

}

}

It works! We’re able to fetch an author using their ID. The key idea here is that we can query any
object in our system by using the node query by ID (which is a Relay requirement). For instance, if
we had a Book ID, we could also look up a book using the node query as well.

WOW! eBook
www.wowebook.org

Relay 669

A useful exercise would be to try looking up a Book by ID using node. Hint: You’ll need to
add a fragment on Book using the syntax: ... on Book and then specifying the Book fields
you wish to retrieve.

Globally Unique IDs

The implications here are that we actually have a globally unique ID for each object. If, for
instance, you were using a traditional SQL database (like Postgres) with auto-incrementing
IDs per-table, you may have an Authorwith ID 2 and a Bookwith ID 2. How do we resolve
this?

This issue is resolved by the GraphQL server. The idea is that you’ll have to come up with
a convention that, say, embeds the table name and numeric ID into a GUID. Then your
GraphQL server would encode and decode these IDs.

This actually is happening with the server we’ve provided. You may have noticed that our
schema models have both an id field and an _id field. What’s the difference?

The _id field is the MongoDB ID. The id field is the Relay GUID, a composite of the table
name and the _id field.

Relay uses the node interface particularly for re-fetching objects. When writing our apps, we can
have dozens of ways of loading various objects. The idea behind the node interface is to give a
consistent, easy way for Relay to ask the server “what’s the most current value for this object, given
this ID?”

Now that we can query individual Nodes, we need to talk about how we traverse relationships
between them. In our example app we’re going to show a list of books on the homepage, and we
want to be able to load the authors who wrote that book.

In Relay we will indicate a relationship between an Author and Book by using a connection.

Walking Connections

An Author may have contributed to several Books.

If you’re familiar with traditional relational databases, maybe you’ve seen this relationship modeled
with:

• An authors table which has an id

• A books table which has an id

• and an authorships table which holds both an author_id and a book_id

The idea in this scenario would be that for every Author/Book pair, you’d create this new “join
model” called an Authorshipwhich represents an Authorwho contributed to a particular Book. This
idea is sometimes referred to as “has-and-belongs-to-many”.

WOW! eBook
www.wowebook.org

Relay 670

Analogously, Relay also defines a “join model” that should be used to denote a relationship between
two models. To be precise, Relay specifies two:

1. The “connection” model which specifies a relationship between two models and keeps
pagination data and

2. The “edge” model which wraps a cursor as well as the node- (model-) specific data.

This might seem a bit of overkill the first time you come to it, but recognize that this is a powerful
and flexible model that provides consistent pagination across your models.

What’s a cursor?

When we’re traversing a large set of items, we need to keep track of where we are in that
traversal. For instance, imagine that we’re doing pagination through a list of products. The
simplest “cursor” could be the current page number (e.g. page number 3).

Of course, in real applications you may have items being added and removed to the list all
the time and so you might find that by the time you load page 4 you miss some records
(because some records have been added or deleted).

So what can we do in this case? This is where a cursor comes in. A cursor is a value take
indicates where we “are” in traversing a list. Implementations vary, but the idea is that you
can send the cursor to the server and the server give you the next page of results.

For example Twitter’s API uses cursoring and you can checkout their docs here158

Let’s try a few queries where we traverse these connections.

Here’s a query that will get an author along with all of their book names:

query {

author(id: "QXV0aG9yOmZjMjkyYmQ3ZGYwNzE4NThjMmQwZjk1NQ==") {

id

name

books {

count

edges {

node {

id

name

}

}

}

}

}

158https://dev.twitter.com/overview/api/cursoring

WOW! eBook
www.wowebook.org

https://dev.twitter.com/overview/api/cursoring
https://dev.twitter.com/overview/api/cursoring

Relay 671

GraphiQL Author with Books

Click through the documentation for Author in the GraphiQL interface. Notice that on the Author
type books doesn’t return an array of Book, but rather it:

1. accepts arguments, such as first or last and
2. Returns an AuthorBooksConnection

WOW! eBook
www.wowebook.org

Relay 672

GraphiQL Author Type

Relay was designed to handle relationships that have a huge number of items. In the case where we
have too many Books to load at once, we could use these arguments to limit the number of results
that returned. We use the first and last arguments to denote the number of items we want to
retrieve.

The AuthorBooksConnection has three fields:

• pageInfo

• edges and
• count

count gives us the total number of edges we have (the number of Books this person has authored,
in this case).

pageInfo gives us information such as if there is a previous or next page and what the start and end
cursor for this page are. We could use these cursors later on to ask for the next (or previous) page.

edges contains the list of AuthorBooksEdge. Look at the AuthorBooksEdge type in the GraphiQL
interface.

WOW! eBook
www.wowebook.org

Relay 673

GraphiQL AuthorBooksEdge Type

The AuthorBooksEdge has two fields:

• node and
• cursor

The cursor is a string we can use for pagination, from this record. Here we can see that the node is
of type Book. Within that node is the hard data that we’re looking for.

While we are using these connections for many-to-many relationships, you’d navigate one-to-many
relationships the same way. By using this standard for traversing relationships between models it’s
easy to know how to get access to related models, regardless of the type of relationship. Everything
is nodes and edges in a graph.

Additionally, by making pagination part of the standard, we’re making accommodations for real-
world data sets where we’re not going to load every piece of data in a relationship (or table) at the
same time.

Having standardized pagination as a part of Relaymake it that much easier to standardize pagination
in our React apps.

WOW! eBook
www.wowebook.org

Relay 674

Which part is Relay and which part is GraphQL?

Relay vs. GraphQL with connections and edges

To be clear, here we’re talking about Relay specification that we implement on our
GraphQL server.

The pattern of connections and edges, with the fields defined above, is part of the Relay
specification. Anytime we need a relationship between two objects (that goes beyond a
simple array) we’ll use the edge/connection paradigm.

Relay specifies the convention (e.g. that we specify first or last when retrieving a
connection, and a connection returns edges) and our GraphQL server implements how
we actually fetch those records (from the database).

Changing Data with Mutations

Mutations are how we change data in Relay/GraphQL. To change data with mutations we need to:

1. Locate the mutation we want to call
2. Specify the input arguments and
3. Specify what data we want to be returned after the mutation is finished.

Say, for instance, that we want to change an author’s bio. We could perform the following:

Query:

mutation {

updateAuthor(input: {

id: "QXV0aG9yOmZjMjkyYmQ3ZGYwNzE4NThjMmQwZjk1NQ==",

bio: "all around great guy"

}) {

changedAuthor {

id

name

bio

}

}

}

Now we can see in the response that the bio has been changed to "all around great guy".

Response:

WOW! eBook
www.wowebook.org

Relay 675

{

"data": {

"updateAuthor": {

"changedAuthor": {

"id": "QXV0aG9yOmZjMjkyYmQ3ZGYwNzE4NThjMmQwZjk1NQ==",

"name": "Ari Lerner",

"bio": "all around great guy"

}

}

}

}

In this case, themutation is updateAuthor. As you may recall from the GraphQL chapter, we change
data in GraphQL by creating a mutation query. Our server defines a mutation query for common
data operations.

For instance, if you’re familiar with the REST paradigm of Create-Read-Update-Delete (CRUD), we
might define similar mutations for our models here: createAuthor, updateAuthor, deleteAuthor.

While mutations are used generally in GraphQL, Relay, unsurprisingly, specifies some constraints
around how it expects mutations to be defined.

Mutations on the client-side can be a bit daunting. We’ll talk more about them later in the chapter.

Relay GraphQL Queries Summary

Above, we’ve just covered the three types of queries we’ll use when writing Relay apps:

1. Fetching individual records from our server
2. Traversing relationships between records, using connections and edges
3. Mutating data with mutation queries.

Now that we’ve explored our data and reviewed the conventions on our server, let’s take a look at
how Relay works inside our app.

Adding Relay to Our App

Quick Look at the Goal

Now let’s switching gears into writing our React app.

There are quite a few steps to installing Relay into our app. Before we walk through them, let’s take
a look at the goal: a basic Relay container component that loads data from our server and renders it.

WOW! eBook
www.wowebook.org

Relay 676

Once we have one component that can load data from Relay, building our app gets much easier from
there.

Belowwe’ll walk through how to build out a fullyworking Relay app, but it can also be helpful to take
a look at a single-file, “hello world” example. Below is the code for a minimal, but working Relay
app. Many of the specifics will be unfamilar, and the rest of the chapter is dedicated to explaining in
detail how to use each idea. For now, just skim this code to get an idea of the different parts involved
in working with Relay.

relay/bookstore/client/src/steps/index.minimal.js

1 /* eslint-disable react/prefer-stateless-function */

2 import React from 'react';

3 import ReactDOM from 'react-dom';

4 import Relay from 'react-relay';

5

6 import '../semantic/dist/semantic.css';

7 import './styles/index.css';

8

9 // Customize this based on your server's URL

10 const graphQLUrl = 'http://localhost:3001/graphql';

11

12 // Configure Relay with a "NetworkLayer"

13 Relay.injectNetworkLayer(

14 new Relay.DefaultNetworkLayer(graphQLUrl)

15);

16

17 // Create the top-level query that we'll execute

18 class AppQueries extends Relay.Route {

19 static routeName = 'AppQueries';

20 static queries = {

21 viewer: () => Relay.QL`

22 query {

23 viewer

24 }

25 `,

26 };

27 }

28

29 // A basic component that renders the list of authors

30 class App extends React.Component {

31 render() {

32 return (

33 <div>

WOW! eBook
www.wowebook.org

Relay 677

34 <h1>Authors list</h1>

35

36 {this.props.viewer.authors.edges.map(edge =>

37 <li key={edge.node.id}>{edge.node.name}

38)}

39

40 </div>

41);

42 }

43 }

44

45 // A Relay Container that specifies the fragment to be used in our query above

46 const AppContainer = Relay.createContainer(App, {

47 fragments: {

48 viewer: () => Relay.QL`

49 fragment on Viewer {

50 authors(first: 100) {

51 edges {

52 node {

53 id

54 name

55 }

56 }

57 }

58 }

59 `,

60 },

61 });

62

63 ReactDOM.render(

64 <Relay.Renderer

65 environment={Relay.Store}

66 Container={AppContainer}

67 queryConfig={new AppQueries()}

68 />,

69 document.getElementById('root')

70);

In the example above, our AppContainer fetches a collection of authors and renders them in a list.
Notice that this code is declarative. That is, there’s no part of the code where we’re saying “make a
post request to the server and interpret it as JSON” etc. Instead, our component declares the data it
needs, and Relay fetches it from the server and provides it to our component.

WOW! eBook
www.wowebook.org

Relay 678

A Preview of the Author Page

Let’s look at another example, taken from our Bookstore app. Here’s a version of the AuthorPage

component:

relay/bookstore/client/src/steps/AuthorPage.minimal.js

8 class AuthorPage extends React.Component {

9 render() {

10 const { author } = this.props;

11

12 return (

13 <div>

14

15 <h1>{author.name}</h1>

16 <p>

17 {/* e.g. '2 Books' or '1 Book' */}

18 {author.books.count}

19 {author.books.count > 1 ? ' Books' : ' Book'}

20 </p>

21 <p>{author.bio}</p>

22 </div>

23);

24 }

25 }

26

27 export default Relay.createContainer(AuthorPage, {

28 fragments: {

29 author: () => Relay.QL`

30 fragment on Author {

31 name

32 avatarUrl

33 bio

34 books {

35 count

36 }

37 }`,

38 },

39 });

There are two parts: 1. the Relay.createContainer statement (with a Relay.QL query) and 2. the
render() function.

WOW! eBook
www.wowebook.org

Relay 679

At a high level, what’s happening here is that our Relay.QL query specifies the data we want to load
for this author. Then the author is passed in to the component via props and we render the data.

Minimal Author

We haven’t yet talked about all of the setup that goes in
to getting our app to this point. We will. For now, just
notice that once we have everything setup, it becomes
extremely easy to load data into our components (and
it’s easy to modify our queries if we change our
mind).

Notice that when we use Relay on our component,
we have two things: 1. the createContainer and 2. a
fragment.

Containers, Queries, and Fragments

Components that need to load data from Relay are
called containers. Containers specify fragments that are
essentially “partial queries”. Fragments specify the data
this component needs to render properly.

We create a Relay container using Relay.createContainer.
We pass in our component and the required fragments
as arguments.

Your containers specify the fragments that they need
to render properly but you have to execute the queries
to render the fragments. You can think of this sort of
like components needing to be rendered into the DOM. Fragments aren’t rendered until they’re
pulled in by a query.

Each container specifies a fragment (or several) and at some point later we execute a query which
will use this fragment to fetch data.

That is, before this data will become available to the component, you have to execute a query that
contains this fragment. We’ll talk about executing queries in a few minutes.

But first, let’s talk about the Relay.QL query.

Validating Our Relay Queries at Compile Time

One of the great things about GraphQL is that we have a type-schema for our API. We can use this
to our advantage when writing client side code.

When we write query fragments in our components, it looks like this:

WOW! eBook
www.wowebook.org

Relay 680

code/relay/bookstore/client/src/steps/AuthorPage.minimal.js

28 fragments: {

29 author: () => Relay.QL`

30 fragment on Author {

31 name

32 avatarUrl

33 bio

34 books {

35 count

36 }

37 }`,

38 },

But notice that we’re putting the query in a long JavaScript string. It’s easy to write, but in a naive
implementation of handling these queries, typos could be the source of many bugs because there’s
no way to validate that the contents are well formed. In the case where something was mis-typed,
we wouldn’t even know there was a typo until one of these queries was run.

However, the good news is that there is a custom Babel plugin which will verify these queries against
our schema at compile time.

For this we’ll use the babel-relay-plugin159. This plugin:

1. reads these Relay.QL backtick strings
2. parses the GraphQL query
3. validates them against our schema
4. and converts our Relay.QL queries to a expanded function calls160

But in order to verify our schema,we need to have the schema available to our client-side build
tools.

Remember that our schema is defined by our server. It’s our GraphQL server that defines the data
models (Books and Authors, in this case) and the corresponding GraphQL schema.

So how do we make our server’s schema available to our client build-tools?We export the schema
from the server as a JSON file and copy it over.

159https://www.npmjs.com/package/babel-relay-plugin
160This is similar to how JSX works

WOW! eBook
www.wowebook.org

https://www.npmjs.com/package/babel-relay-plugin
https://www.npmjs.com/package/babel-relay-plugin

Relay 681

Building the schema.json

To provide the schema to our client build tools we’ll write a script in the server that will export the
schema to a JSON file.

We’ll then configure babel-relay-plugin to use this JSON file when we compile our client code.
It’s a little bit of work up-front, but the benefit is that we’ll get compile-time validation of or Relay
queries in our client app. This can save our team tons of time trying to track down bugs because of
invalid queries.

Here’s the script we’re using to generate our schema.json:

relay/bookstore/tools/update-schema.js

1 import fs from 'fs';

2 import path from 'path';

3 import { graphql } from 'graphql';

4 import { introspectionQuery, printSchema } from 'graphql/utilities';

5 import schema from '../schema';

6

7 // Save JSON of full schema introspection for the Babel Relay Plugin to use

8 const generateJSONSchema = async () => {

9 var result = await (graphql(schema, introspectionQuery));

10 if (result.errors) {

11 console.error(

12 'ERROR introspecting schema: ',

13 JSON.stringify(result.errors, null, 2)

14);

15 } else {

16 fs.writeFileSync(

17 path.join(__dirname, '../client/src/data/schema.json'),

18 JSON.stringify(result, null, 2)

19);

20 }

21

22 // Save user readable type system shorthand of schema

23 fs.writeFileSync(

24 path.join(__dirname, '../client/src/data/schema.graphql'),

25 printSchema(schema)

26);

27 };

28

29 generateJSONSchema().then(() => {

30 console.log("Saved to client/src/data/schema.{json,graphql}");

31 })

WOW! eBook
www.wowebook.org

Relay 682

Take a look at the dependencies we’re loading here. Besides fs and path, we have:

1. graphql, introspectionQuery, printSchema from graphql and
2. schema from ../schema.

One thing to notice is that we’re not loading anything from the relay library. This is all GraphQL.
The relay library isn’t involved. Our GraphQL schema conforms to the Relay standard, but we don’t
depend on any Relay-specific functionality. This process of exporting your schema can be done with
any GraphQL server.

We aren’t going to look deeply into the implementation of our schema. In this case, we’re
using the helper library graffiti-mongoose, but that’s really an implementation detail.
This schema can be any GraphQLSchema object.

So to use this script for your app, simply change the paths to the schema as well as the
output paths.

What’s happening here is that we’re telling the graphql library to take our schema and then
introspectionQuery and print out our schema into two files:

The introspectionQuery is a query which asks GraphQL information about what queries
it supports. You can read more about GraphQL Introspection here161

1. a machine-readable schema.json file (for our client) and
2. a human-readable schema.graphql file

Here’s a sample from the schema.graphql file:

relay/bookstore/client/src/data/schema.graphql

39 type Author implements Node {

40 name: String

41 avatarUrl: String

42 bio: String

43 createdAt: Date

44 books(after: String, first: Int, before: String, last: Int): AuthorBooksConnec\

45 tion

46 _id: ID

47

161http://graphql.org/learn/introspection/

WOW! eBook
www.wowebook.org

http://graphql.org/learn/introspection/
http://graphql.org/learn/introspection/

Relay 683

48 # The ID of an object

49 id: ID!

50 }

51

52 # A connection to a list of items.

53 type AuthorBooksConnection {

54 # Information to aid in pagination.

55 pageInfo: PageInfo!

56

57 # A list of edges.

58 edges: [AuthorBooksEdge]

59 count: Float

60 }

If we’re in the root directory for this project (relay) then we can generate this schema by running:

1 npm run generateSchema

If we ever change our schema (like adding a field to a model or adding a new model) then we need
to run this script to regenerate our schema. If we don’t regenerate the schema and try to use the new
data in our client app then babel-relay-pluginwill throw compiler errors because it will using the
old schema. So make sure if you change your models, you regenerate your schema.

Watch out for schema caching

Some webpack configurations (such as the default that is generated when you eject from
create-react-app) cache compiled scripts. If you’re using such a feature (as we are in this
app) then your schema is also cached.

This means that when you update your schema, you have to clear your react-scripts
cache. On my machine, this folder is kept in node_modules/.cache/react-scripts. So
whenever we regenerate the schema we run the following command as well to clear the
cache:

rm -rf client/node_modules/.cache/react-scripts/

Failure to clear this cache when regenerating your schemamay result in your client loading
the old, cached schema which can be confusing.

Installing babel-relay-plugin

To use babel-relay-plugin we have to:

WOW! eBook
www.wowebook.org

Relay 684

1. npm install babel-relay-plugin

2. Tell babel-relay-plugin about our schema.json
3. Configure babel to use our plugin

To do #2, see the file client/config/babelRelayPlugin.js like so:

relay/bookstore/client/config/babelRelayPlugin.js

1 var getBabelRelayPlugin = require('babel-relay-plugin');

2 var schema = require('../src/data/schema.json');

3

4 module.exports = getBabelRelayPlugin(schema.data, {

5 debug: true,

6 suppressWarnings: false,

7 enforceSchema: true

8 });

What we’re doing here is just configuring the babel-relay-plugin by adding in our own schema
and setting a few options. Now we need to add this script as a plugin to our babel config.

To do this, we’ve added the following to the client’s package.json:

"babel": {

"presets": [

"react-app"

],

"plugins": [

"./config/babelRelayPlugin"

]

},

Above, we’ve added "./config/babelRelayPlugin" to the plugins section of our babel configura-
tion in the package.json.

When you’re setting up your own app to use Relay, it’s fine if you have a different set of
presets and plugins in your app, just add this custom babelRelayPlugin to the list.

Also, if you configure babel via a .babelrc or some other way, the core idea here is to add
our custom babelRelayPlugin script to the list of plugins.

WOW! eBook
www.wowebook.org

Relay 685

Setting Up Routing

Now that we have our build tools in place, we can start integrating Relay with React. Because we’re
building amulti-page app, we’re going to need a router. For this app we’re going to use react-router
with react-router-relay.

If you’d like to see an example of a Relay app that uses Relay directly (without using
react-router then checkout the relay-starter-kit162.

react-router-relay uses react-router v2.8 (not router v4, which we covered in the
Routing Chapter.

Unfortunately, as you can see here163, there are no plans to directly support Relay in React-
Router v4.

That said, it is possible to integrate Relay with any routing framework including React
Router v4. Doing so is beyond the scope of this chapter.

In this chapter, we’ll provide all of the route configuration needed to run the app, but we’re
not going to be discussing the React Router API . If you need to look it up, you can find
the docs for Router here164.

react-router-relay provides a convenient way to execute Relay queries whenever the route
changes. react-router-relay also will read parameters from the URL and pass them as parameters
to our Relay queries. We’ll take a close look at this feature in a it.

To install react-router-relay into our app, we’ll do the following:

1. Configure Relay
2. Configure our Router
3. Use the react-router-relay middleware to connect Relay to our Router.

Let’s look at the code we use to do this:

162https://github.com/relayjs/relay-starter-kit
163https://github.com/relay-tools/react-router-relay/issues/193
164https://github.com/ReactTraining/react-router

WOW! eBook
www.wowebook.org

https://github.com/relayjs/relay-starter-kit
https://github.com/relay-tools/react-router-relay/issues/193
https://github.com/ReactTraining/react-router
https://github.com/relayjs/relay-starter-kit
https://github.com/relay-tools/react-router-relay/issues/193
https://github.com/ReactTraining/react-router

Relay 686

relay/bookstore/client/src/index.js

1 import React from 'react';

2 import ReactDOM from 'react-dom';

3 import createHashHistory from 'history/lib/createHashHistory';

4 import Relay from 'react-relay';

5 import applyRouterMiddleware from 'react-router/lib/applyRouterMiddleware';

6 import Router from 'react-router/lib/Router';

7 import useRouterHistory from 'react-router/lib/useRouterHistory';

8 import useRelay from 'react-router-relay';

9

10 import routes from './routes';

11

12 import '../semantic/dist/semantic.css';

13 import './styles/index.css';

14

15 // Customize this based on your server's URL

16 const graphQLUrl = 'http://localhost:3001/graphql';

17

18 // Configure Relay with a "NetworkLayer"

19 Relay.injectNetworkLayer(

20 new Relay.DefaultNetworkLayer(graphQLUrl)

21);

22

23 const history = useRouterHistory(createHashHistory)({ queryKey: false });

24

25 ReactDOM.render(

26 <Router

27 history={history}

28 routes={routes}

29 render={applyRouterMiddleware(useRelay)}

30 environment={Relay.Store}

31 />,

32 document.getElementById('root')

33);

The first section imports our dependencies.

Next we configure the URL to our server in the variable graphQLUrl. If your server is at a different
URL, configure it here. For instance, we’ll often use an environment-specific variable here.

Next we configure Relay with a “Network Layer”. In this case, we’re using DefaultNetworkLayer

which will make HTTP requests, but you could use this to, say, mock out a Relay server for testing
or use a different protocol entirely.

WOW! eBook
www.wowebook.org

Relay 687

We’re going to use hash-based routing for this app, so we configure history to use createHashHis-
tory.

We tie our Router root component to Relay by:

1. Using applyRouterMiddleware(useRelay) – which comes from react-router-relay and
2. Setting our Relay.Store onto the Router environment.

Setting up our Router this way makes Relay available to our app, but to actually perform Relay
queries we have one more step: we need to configure Relay queries on our routes.

Adding Relay to Our Routes

Let’s take a look at our routes.js:

relay/bookstore/client/src/steps/routes.author.js

1 import Relay from 'react-relay';

2 import React from 'react';

3 import IndexRoute from 'react-router/lib/IndexRoute';

4 import Route from 'react-router/lib/Route';

5

6 import App from './components/App';

7 import AuthorPage from './components/AuthorPage';

8

9 const AuthorQueries = {

10 author: () => Relay.QL`

11 query {

12 author(id: $authorId)

13 }`,

14 };

15

16 export default (

17 <Route

18 path='/'

19 component={App}

20 >

21 <Route

22 path='/authors/:authorId'

23 component={AuthorPage}

24 queries={AuthorQueries}

25 />

26 </Route>

27);

WOW! eBook
www.wowebook.org

Relay 688

For these initial routes we have a parent route that uses the App component and a child route that
uses the AuthorPage component. Eventually we will have a child component for each page in our
app, but for now let’s look at the following in order:

1. Our parent App Component
2. The AuthorQueries and how the relate to the AuthorPage then
3. Dig in to the AuthorPage component.

App Component

Our top-level App component establishes the wrapper for the rest of the app:

relay/bookstore/client/src/components/App.js

2 import React, { Component } from 'react';

3 import { withRouter } from 'react-router';

4

5 import TopBar from './TopBar';

6 import '../styles/App.css';

7

8 class App extends React.Component {

9 render() {

10 return (

11 <div className='ui grid'>

12 <TopBar />

13 <div className='ui grid container'>

14 { React.cloneElement(this.props.children) }

15 </div>

16 </div>

17);

18 }

19 }

20

21 export default withRouter(App);

Herewe render the TopBar and themarkup thatwill wrap any child components (this.props.children).

Before we export App, we wrap it using withRouter from react-router. withRouter is a helper
function165 that provides props.router on our component.

We could make the App component a Relay container if we needed to, but in this case we
don’t need any Relay data in the App component.

165https://github.com/ReactTraining/react-router/blob/master/docs/API.md#withroutercomponent-options

WOW! eBook
www.wowebook.org

https://github.com/ReactTraining/react-router/blob/master/docs/API.md#withroutercomponent-options
https://github.com/ReactTraining/react-router/blob/master/docs/API.md#withroutercomponent-options
https://github.com/ReactTraining/react-router/blob/master/docs/API.md#withroutercomponent-options

Relay 689

AuthorQueries Component

Now that we understand the App component, hop back into routes.js and look at the Author-

Queries:

relay/bookstore/client/src/steps/routes.author.js

9 const AuthorQueries = {

10 author: () => Relay.QL`

11 query {

12 author(id: $authorId)

13 }`,

14 };

Remember that in Relay in order to fetch the data that we need for our components we have to
execute queries. When using react-router-relaywe specify that when a particular route is visited,
the queries defined on that route will be executed.

Notice that the AuthorQueries has one query: author. This query also has a variable $authorId.
Where does the $authorId variable come from? It comes from the route path parameter:

relay/bookstore/client/src/steps/routes.author.js

21 <Route

22 path='/authors/:authorId'

23 component={AuthorPage}

24 queries={AuthorQueries}

25 />

Here in this route we’re saying that we’ll match the route /authors/ and whatever follows will be
interpreted as the authorId. This authorId is passed as a variable to the Relay query.

Notice something else odd about the author query: it doesn’t specify any “leaf nodes” of data to
fetch. The query stops at author(id: $authorId). This is because the query is leaving the decision
of what particular data to fetch to the component.

It is in our component (well, our Relay Container, to be precise), that we will specify the fields that
are needed to render that component.

With that in mind, let’s turn our attention to the AuthorPage component and look at the Relay query
there.

AuthorPage Component

Here’s the code that specifies what fields we need to render the minimal AuthorPage:

WOW! eBook
www.wowebook.org

Relay 690

relay/bookstore/client/src/steps/AuthorPage.minimal.js

27 export default Relay.createContainer(AuthorPage, {

28 fragments: {

29 author: () => Relay.QL`

30 fragment on Author {

31 name

32 avatarUrl

33 bio

34 books {

35 count

36 }

37 }`,

38 },

39 });

On the “inside” of the query it’s easy to see that we’re asking for the name, avatarUrl, and bio of
the author. We’re even able to dip into the books relationship and get the count of the number of
books this person has authored.

However, it may not be clear how this ties into the query above. There are two constraints we need
to follow.

The first is that the key names of these fragmentsmust match the keys names of the queries. In this
case, because this component is being rendered with a query key name of author (in AuthorQueries)
the fragment key name must also be author (in AuthorPage fragments).

Relay Fragment Naming

The second constraint is that this fragment will be a fragment on the type of the inner field of
query. That is, we wouldn’t put fragment on Book here, because the containing query “ends” on an
Author. We can see this by looking at the GraphQL schema in GraphiQL.

WOW! eBook
www.wowebook.org

Relay 691

Relay Fragment on Type

When a route matching /authors/:authorId is visited, the AuthorPage author fragment will be
pulled into the AuthorQueries and results will be fetched from the server and passed down into our
component.

Try It Out

We’ve only setup the AuthorPage so far, but it’s enough for us to try out.

To do this, ensure you have both the GraphQL server started, as well as the client, as described
above.

Then visit the GraphiQL server at http://localhost:3001/graphql and try the following query:

query {

authors {

id

name

}

}

Copy an author ID and then visit the client app with that ID. Something like:

http://localhost:3000/#/authors/QXV0aG9yOmIzOTY2NDVmZmZiZWIxMzc5NTEwYWIxZg==

In our browser, if we look at our network pane we can see the GraphQL query that was called:

WOW! eBook
www.wowebook.org

Relay 692

Relay GraphQL Call in Network Pane

In this case, the query sent over the wire looks something like:

query Routes($id_0:ID!) {

author(id:$id_0) {

id,

...F0

}

}

fragment F0 on Author {

name,

avatarUrl,

bio,

books {

count

},

id

}

WOW! eBook
www.wowebook.org

Relay 693

The first part of the query (query Routes...) comes from AuthorQueries and the fragment F0
comes from our author fragment on AuthorPage. Again, note that it wouldn’t make any sense for
this fragment F0 to be on any type other than Author because the child of query > author is of type
Author. Trying to put a Book- or any other-typed fragment here would be invalid.

AuthorPage with Styles

The minimal AuthorPage we’ve rendered so far doesn’t look so great. Let’s quickly add a bit of
markup so that the page looks better.

Like many of the examples in this book, we’re using Semantic UI166 for the CSS
framework. When you see CSS class names like sixteen wide column or ui grid

centered these are coming from Semantic UI.

Keeping the same Relay query, we’re going to change the AuthorPage markup to the following:

relay/bookstore/client/src/steps/AuthorPage.styled.js

8 class AuthorPage extends React.Component {

9 render() {

10 const { author } = this.props;

11

12 return (

13 <div className='authorPage bookPage sixteen wide column'>

14 <div className='spacer row' />

15

16 <div className='ui divided items'>

17 <div className='item'>

18 <div className='ui'>

19 <img src={author.avatarUrl}

20 alt={author.name}

21 className='ui medium rounded bordered image'

22 />

23 </div>

24 <div className='content'>

25 <div className='header authorName'>

26 <h1>{ author.name }</h1>

27 <div className='extra'>

28 <div className='ui label'>

29 { author.books.count }

30 { author.books.count > 1 ? ' Books' : ' Book' }

166http://semantic-ui.com/

WOW! eBook
www.wowebook.org

http://semantic-ui.com/
http://semantic-ui.com/

Relay 694

31 </div>

32 </div>

33 </div>

34 <div className='description'>

35 <p> { author.bio } </p>

36 </div>

37

38 </div>

39 </div>

40 </div>

41

42 </div>

43);

44 }

45 }

Author Page with Styling

We’ll add the list of this author’s books to this page later, but for now let’s build the “index” page of
the site, which will show the list of all of the books available.

WOW! eBook
www.wowebook.org

Relay 695

BooksPage

Here’s what the list of books page will look like when we’re finished:

Books Page

The first thing we need to do is create the route for the BooksPage and the queries for that route.

BooksPage Route

The BooksPage is going to be the default page for our app so we will use the IndexRoute helper to
define this route:

relay/bookstore/client/src/routes.js

34 <IndexRoute

35 component={BooksPage}

36 queries={ViewerQueries}

37 />

Let’s take a look at the ViewerQueries:

WOW! eBook
www.wowebook.org

Relay 696

relay/bookstore/client/src/routes.js

11 const ViewerQueries = {

12 viewer: () => Relay.QL`query { viewer }`,

13 };

On this page, we’re going to be looking up the list of books via the viewer node.

The viewer node is not strictly part of Relay but it’s a pattern that you see in many GraphQL apps.
The idea is that the “viewer” is the current user of the app. So, often in a real application you’d see
that the viewer field accepts a user-identity field as an argument, such as an authentication token.

Imagine creating an app with a social feed. We could use the viewer field to get the feed for a
particular user as opposed to the “firehose” feed for all users.

In this case, we’re going to use the Viewer to load a list of Books.

BooksPage Component

Books Page Components

Here we have two Relay containers:

1. the BooksPage which holds all the books

WOW! eBook
www.wowebook.org

Relay 697

2. a BookItem which renders a particular book

Because our BooksPage route specified queries on viewer we’re going to specify a fragment on the
key viewer (on the Viewer-type). Let’s take a look at the query:

relay/bookstore/client/src/components/BooksPage.js
37 export default Relay.createContainer(BooksPage, {

38 initialVariables: {

39 count: 100,

40 },

41 fragments: {

42 viewer: () => Relay.QL`

43 fragment on Viewer {

44 books(first: $count) {

45 count

46 edges {

47 node {

48 slug

49 ${BookItem.getFragment('book')}

50 }

51 }

52 }

53 }

54 `,

55 },

56 });

There’s a couple of new things here:

1. initialVariables

2. Composing a fragment, using getFragment()

Fragment Variables

We can set variables for our queries by using the initialVariables field. Here you can see that
we’re telling Relay we want to set $count to 100. In the query you can see that we’re asking for the
first 100 books.

By using this viewer we can’t say “I want all the books”. The reason for this is that this server is
designed for large apps and you generally don’t want to load every single item in your database.
Typically we would use pagination.

In this case though, we’re just going to set the count to 100 because that’s more than enough for
this simple app. But say that we wanted to change the variable count. How would we do it?

You use this.props.relay.setVariables like this:

WOW! eBook
www.wowebook.org

Relay 698

this.props.relay.setVariables({count: 2});

If we called the above function you would see that we load only 2 books instead of the whole set.

More generally, we can use Relay variables when we want our component to be able to change
parameters about the query that’s being executed.

If you forget to set the proper variables (e.g. no first field) when trying to get a
list of items through a connection, you might get an error like the following: {line-
numbers=off} Uncaught Error: Relay transform error You supplied the `edges`

field on a connection named `authors`, but you did not supply an argument

necessary to do so. Use either the `find`, `first`, or `last` argument. in
file code/relay/bookstore/client/src/components/BookPage.js. Try updating your
GraphQL schema if an argument/field/type was recently added.

Fragment Composition

This is important: if you use a child Relay component you need to embed the child’s fragment in
the parent’s query by using getFragment().

Remember that fragments are parts of queries and they aren’t realized until they’re part of an
executed query. If you want a child component like BookItem to be able to render each book, you
have to include the BookItem fragment in the BooksPage query.

This takes a little getting used to, and we haven’t even looked at the render function of BooksPage
yet, so let’s do that and come back to this idea of fragment composition when we have a bit more
context.

BooksPage render()

Here’s the rendering for BooksPage:

relay/bookstore/client/src/components/BooksPage.js

8 class BooksPage extends React.Component {

9 render() {

10 const books = this.props.viewer.books.edges.map(this.renderBook);

11

12 return (

13 <div className='sixteen wide column'>

14 <h1>JavaScript Books</h1>

15 <div className='ui grid centered'>

16 { books }

WOW! eBook
www.wowebook.org

Relay 699

17 </div>

18 </div>

19);

20 }

21

22 renderBook(bookEdge) {

23 return (

24 <Link

25 to={`/books/${bookEdge.node.slug}`}

26 key={bookEdge.node.slug}

27 className='five wide column book'

28 >

29 <BookItem

30 book={bookEdge.node}

31 />

32 </Link>

33);

34 }

35 }

Our render function has a basic wrapper. We’re taking this.props.viewer.books.edges and
calling renderBook on each edge.

Notice that we’re not calling renderBook on the book itself (node), but on the edge.

Within renderBook, we render a:

1. Link to /books/${bookEdge.node.slug} with a
2. BookItem component, populating it with a book, found in bookEdge.node

Let’s dig deeper into BookItem and then we’ll pop back up to BooksPage to take a closer look at how
Relay manages parent/child fragment values.

BookItem

Here’s our Relay Query for BookItem:

WOW! eBook
www.wowebook.org

Relay 700

relay/bookstore/client/src/components/BookItem.js

29 export default Relay.createContainer(BookItem, {

30 fragments: {

31 book: () => Relay.QL`

32 fragment on Book {

33 name

34 slug

35 tagline

36 coverUrl

37 pages

38 description

39 authors {

40 count

41 }

42 }

43 `,

44 },

45 });

We’re defining a fragment with the key of book on type Book. This query is asking for basic book
information like the name, the slug, the number of pages, and we also dip into authors to get the
count.

Here’s the component definition:

relay/bookstore/client/src/components/BookItem.js

9 class BookItem extends React.Component {

10 render() {

11 return (

12 <div className='bookItem'>

13 <FancyBook book={this.props.book} />

14

15 <div className='bookMeta'>

16 <div className='authors'>

17 { this.props.book.authors.count }

18 { this.props.book.authors.count > 1 ? ' Authors' : ' Author' }

19 </div>

20 <h2>{ this.props.book.name }</h2>

21 <div className='tagline'>{ this.props.book.tagline }</div>

22 <div className='description'>{ this.props.book.description }</div>

23 </div>

WOW! eBook
www.wowebook.org

Relay 701

24 </div>

25);

26 }

27 }

Inside the div bookMeta we show the basic information such as the number of authors, the book
name, tagline and description.

We also pass this.props.book to a pure component FancyBook, which simply provides the markup
for the fancy 3D CSS effect on the book.

BookItem Fragment

What’s interesting about the BookItem fragment book is that it isn’t tied to a particular query.
Remember that the query we’re using in BooksPage starts on a Viewer.

What we’re doing here is saying, to use this component, it’s concern is with something on a Book

type. As long as we compose this Book fragment into the parent’s fragment at a location where a
Book fragment is valid then we’ll be able to use this BootItem component.

The rule of thumb here is that if you are composing Relay components, make sure you compose
their fragments.

If you get a warning that reads like the following:

warning.js:36 Warning: RelayContainer: component BookItem was rendered with

variables that differ from the variables used to fetch fragment book.

This means that you forgot to include the child fragment in parent’s query.

Fragment Value Masking

There’s another important feature of Relay that we haven’t talked about yet: data masking.

The idea is components can only see data they asked for explicitly. If the component didn’t ask
for a specific field, Relay will actively hide that field from the component even if that data was
loaded.

For instance, look at the queries on BookItem and BooksPage side-by-side . Notice that:

• BookItem loads the slug field for the book and
• BooksPage uses the slug field for the Link URL

For review, here’s BookItem’s Relay.QL query:

WOW! eBook
www.wowebook.org

Relay 702

relay/bookstore/client/src/components/BookItem.js

29 export default Relay.createContainer(BookItem, {

30 fragments: {

31 book: () => Relay.QL`

32 fragment on Book {

33 name

34 slug

35 tagline

36 coverUrl

37 pages

38 description

39 authors {

40 count

41 }

42 }

43 `,

44 },

45 });

And BooksPage’s Relay.QL query:

relay/bookstore/client/src/components/BooksPage.js

37 export default Relay.createContainer(BooksPage, {

38 initialVariables: {

39 count: 100,

40 },

41 fragments: {

42 viewer: () => Relay.QL`

43 fragment on Viewer {

44 books(first: $count) {

45 count

46 edges {

47 node {

48 slug

49 ${BookItem.getFragment('book')}

50 }

51 }

52 }

53 }

54 `,

55 },

56 });

WOW! eBook
www.wowebook.org

Relay 703

You might think that because we’re calling ${BookItem.getFragment('book')} in the BooksPage

query that means that slug would be available to the BooksPage component, but this is not the
case.

Fragment composition does not make that child-fragment’s data available to our parent query. We
must explicitly list the slug field in the BooksPage query if we want to be able to use that field in
our render function of BooksPage.

Data masking is one of those features that can feel like an inconvenience at first, but it turns out
to be super helpful as your app (and team) grows because it prevents bugs that result from changes
outside of your component.

For instance, say that BooksPage was depending on the slug field from BookItem to be loaded. But,
somewhere down the line, someone is cleaning up BookItem and they remove the slug field. What
would happen? BooksPage would now break.

The idea is that it is bad to have this coupling between components. Each component should
define everything it needs to render properly. Data masking is a way to ensure that every component
explicitly defines the set of data it needs to operate.

Masking Works Both Ways

This masking also goes the other way: since we do define that BooksPage (the parent) needs the slug
field, even though we pass the book (via <BookItem book={bookEdge.node}/>) the child cannot
access slug if it does not ask for it explicitly.

Any Relay manged props will have masking applied to them according to the queries. So be mindful
of data masking when writing your applications – if you find that you unexpectedly have missing
data (that you know you loaded somewhere else), check your queries to make sure you’ve explicitly
request those specific fields in the component where they’re needed.

Improving the AuthorPage

Now that we can render a list of books, a nice touch to the author’s page would be to show a list of
the books that person has authored.

Given what we’ve just covered, we know that we can add this list of books by doing the following:

1. Request the author’s books in our Relay query
2. Include the BookItem fragment in this query
3. Take the list of the author’s books and render a BookItem for each one

Let’s do this now.

WOW! eBook
www.wowebook.org

Relay 704

Requesting an Author’s Books

Right now the AuthorPage only includes the count of the number of books an author appears on.
Let’s change the AuthorPage query to include more data on author’s books in order to show a
complete book thumbnail and link to them:

relay/bookstore/client/src/components/AuthorPage.js

71 export default Relay.createContainer(AuthorPage, {

72 fragments: {

73 author: () => Relay.QL`

74 fragment on Author {

75 _id

76 name

77 avatarUrl

78 bio

79 books(first: 100) {

80 count

81 edges {

82 node {

83 slug

84 ${BookItem.getFragment('book')}

85 }

86 }

87 }

88 }`,

89 },

90 });

This change shows one of the things that’s great about Relay and GraphQL. Consider what this
type of change might look like if we were working with a traditional REST-based API. We’d have to
write code that looks up the author’s id and makes a request to the server asking for that author’s
books. We’d have to add code to gracefully handle errors. Here, with Relay, all we have to do is add
a books() section to the query and populate it with the fields we want.

Notice that we just hard-code that we want the first 100 books. In a real app, we’d probably
set a variable like we did on the BooksPage.

The other thing we have to remember to do is include the BookItem fragment book. Again, note that
the “parent” query here is author. You might recall that this is on an Author type up in the router.
But, you don’t really need to remember that. All you need to know is that BookItem’s book fragment
is on type Book and so you can place it in your query wherever a Book type is allowed.

WOW! eBook
www.wowebook.org

Relay 705

How do I know what fragments my child components need?

If you’re building your first Relay app it might not be immediately clear how you even
know what fragments to request. Essentially, it should be part of the documentation of the
component. In the same way that in order to use a “regular” component, you’re probably
going to know what props it needs, in the same way, the author of the component you’re
using needs to document what fragments you’ll use to render that component.

AuthorPage renderBook

Now that we have the books we can render them like so:

relay/bookstore/client/src/components/AuthorPage.js

9 class AuthorPage extends React.Component {

10 renderBook(bookEdge) {

11 return (

12 <Link

13 to={`/books/${bookEdge.node.slug}`}

14 key={bookEdge.node.slug}

15 className='five wide column book'

16 >

17 <BookItem

18 book={bookEdge.node}

19 />

20 </Link>

21);

22 }

and in the render() function:

render() {

const author = this.props.author;

const books = this.props.author.books.edges.map(this.renderBook);

return (

{/* ... truncated */}

<div className='sixteen wide column'>

<h1>{ author.name }’s Books</h1>

<div className='ui grid centered'>

{ books }

WOW! eBook
www.wowebook.org

Relay 706

</div>

</div>

{/* ... truncated */}

);

}

Here’s a screenshot of what our author page looks like now that we have the books added in:

Author with Books Page

Changing Data With Mutations

Now we’ve seen how to:

1. read a single record of data from Relay
2. read a list of data from Relay
3. load data from child components

WOW! eBook
www.wowebook.org

Relay 707

There’s one critical issue we haven’t covered: changing data. In Relay, changing data is done
through mutations.

We’re going to add the ability to edit the metadata of a book.

First, let’s create a new page for an individual book. We’ll read the initial data from Relay, as have
been doing. Then we’ll talk about how to change the data with mutations.

Building a Book’s Page

The read-only version of the individual book page doesn’t have a lot of new ideas in it, so let’s talk
through it briefly.

First, here’s a screenshot:

Individual Book Page, Read Only

You can see that we show the basic book image, each author, and the book cover.

Here’s the Relay container:

WOW! eBook
www.wowebook.org

Relay 708

relay/bookstore/client/src/steps/BookPage.reads.js

78 export default Relay.createContainer(BookPage, {

79 fragments: {

80 book: () => Relay.QL`

81 fragment on Book {

82 id

83 name

84 tagline

85 coverUrl

86 description

87 pages

88 authors(first: 100) {

89 edges {

90 node {

91 _id

92 name

93 avatarUrl

94 bio

95 }

96 }

97 }

98 }`,

99 },

100 });

In this fragment we’re loading the Book metadata as well as the first 100 authors.

Let’s look at the render() function:

relay/bookstore/client/src/steps/BookPage.reads.js

33 render() {

34 const { book } = this.props;

35 const authors = book.authors.edges.map(this.renderAuthor);

36 return (

37 <div className='bookPage sixteen wide column'>

38 <div className='spacer row' />

39

40 <div className='ui grid row'>

41 <div className='six wide column'>

42 <FancyBook book={book} />

43 </div>

WOW! eBook
www.wowebook.org

Relay 709

44

45 <div className='ten wide column'>

46 <div className='content ui form'>

47

48 <h2>{book.name}</h2>

49

50 <div className='tagline hr'>

51 {book.tagline}

52 </div>

53

54 <div className='description'>

55 <p>

56 {book.description}

57 </p>

58 </div>

59

60 </div>

61

62 <div className='ten wide column authorsSection'>

63 <h2 className='hr'>Authors</h2>

64 <div className='ui three column grid link cards'>

65 {authors}

66 </div>

67 </div>

68

69 </div>

70 </div>

71

72 </div>

73);

74 }

Most of the markup here is divs with Semantic UI classes. Basically we’re just show the book
information with a reasonable layout.

For each author edge we call renderAuthor:

WOW! eBook
www.wowebook.org

Relay 710

relay/bookstore/client/src/steps/BookPage.reads.js

12 renderAuthor(authorEdge) {

13 return (

14 <Link

15 key={authorEdge.node._id}

16 to={`/authors/${authorEdge.node._id}`}

17 className='column'

18 >

19 <div className='ui fluid card'>

20 <div className='image'>

21 <img src={authorEdge.node.avatarUrl}

22 alt={authorEdge.node.name}

23 />

24 </div>

25 <div className='content'>

26 <div className='header'>{authorEdge.node.name}</div>

27 </div>

28 </div>

29 </Link>

30);

31 }

Book Page Editing

Now let’s add in some basic editing for this book’s data. What we’d like to be able to do is click on
any field like the title or description and edit it in-place. To make this simple, let’s use the existing
inline-edit component React Edit Inline Kit167.

React Edit Inline Kit (or RIEK for short) has a simple API. We specify:

1. The original value
2. The property name of this value
3. A callback to run when this value changes

You can view the docs for RIEK here168 and you can view the demos here169

167https://github.com/kaivi/riek
168https://github.com/kaivi/riek
169http://kaivi.github.io/riek/

WOW! eBook
www.wowebook.org

https://github.com/kaivi/riek
https://github.com/kaivi/riek
http://kaivi.github.io/riek/
https://github.com/kaivi/riek
https://github.com/kaivi/riek
http://kaivi.github.io/riek/

Relay 711

So that we can isolate what we’re doing, let’s integrate RIEK into our app without changing the
data in Relay. The first step is just to get the inline form editing working and then we’ll deal with
what to do with the changes once we have them.

Here’s our new render() function on BookPage with RIEK:

relay/bookstore/client/src/steps/BookPage.iek.js

43 render() {

44 const { book } = this.props;

45 const authors = book.authors.edges.map(this.renderAuthor);

46 return (

47 <div className='bookPage sixteen wide column'>

48 <div className='spacer row' />

49

50 <div className='ui grid row'>

51 <div className='six wide column'>

52 <FancyBook book={book} />

53 </div>

54

55 <div className='ten wide column'>

56 <div className='content ui form'>

57

58 <h2>

59 <RIEInput

60 value={book.name}

61 propName={'name'}

62 change={this.handleBookChange}

63 />

64 </h2>

65

66 <div className='tagline hr'>

67 <RIEInput

68 value={book.tagline}

69 propName={'tagline'}

70 change={this.handleBookChange}

71 />

72 </div>

73

74 <div className='description'>

75 <p>

76 <RIETextArea

77 value={book.description}

78 propName={'description'}

WOW! eBook
www.wowebook.org

Relay 712

79 change={this.handleBookChange}

80 />

81 </p>

82 </div>

83

84 </div>

85

86 <div className='ten wide column authorsSection'>

87 <h2 className='hr'>Authors</h2>

88 <div className='ui three column grid link cards'>

89 {authors}

90 </div>

91 </div>

92

93 </div>

94 </div>

95

96 </div>

97);

98 }

We’ve added three new components using RIEInput and RIETextArea. All three will call handle-
BookChange when the data changes. Here’s the current implementation:

relay/bookstore/client/src/steps/BookPage.iek.js

39 handleBookChange(newState) {

40 console.log('bookChanged', newState, this.props.book);

41 }

All we’re going to do at this point is log out the changes to console.

Here’s a screenshot of what happens when I change the tagline to "The Complete Book on ReactJS

and Dolpins":

WOW! eBook
www.wowebook.org

Relay 713

console.log the tagline

You can see here that newState has the new values we need to update the book. Our task at hand is
to tell Relay about this change via amutation.

Just to be clear, RIEK is a completely arbitrary choice for a forms library, selected here for
convenience. It has nothing to do with Relay. The steps that we’re about to take to create
mutations in Relay could be done with any form library. If you’d like to build your own
forms, that’s perfectly fine. Checkout our chapter on Forms.

Mutations

A mutation in Relay is an object that describes a change. Mutations are one of the most difficult
aspects to get used to in Relay. That said, the complexity of mutations comes trade-offs that are
inherent to building client-server applications. Let’s take a look at the steps necessary to create
mutations in Relay:

To mutate data in Relay:

1. We define a mutation object
2. We create an instance of that object, passing configuration variables and then
3. We send it to Relay using Relay.Store.commitUpdate

There are 5 major types of mutations in Relay:

• FIELDS_CHANGE

• NODE_DELETE

• RANGE_ADD

• RANGE_DELETE

• REQUIRED_CHILDREN

WOW! eBook
www.wowebook.org

Relay 714

We are going to update the fields for an existing object, and so we will write a FIELDS_CHANGE

mutation.

We’re not going to cover every type of mutation in depth in this chapter.

If you want to view the official documentation that describes each of these mutations,
checkout the Official Mutations Guide170.

It’s also worth noting that mutations can be a bit difficult to understand the first time.
Making mutations easier to use is one of the major goals of Relay 2.

Defining a Mutation Object

Mutations in Relay are objects. To define a new mutation we subclass Relay.Mutation. Then when
we want to execute a mutation, we create an instance of this class, configure it with the appropriate
properties, and give it to Relay (which handles communicating with the server and updating the
Relay store).

When we create a Relay.Mutation subclass, we have to define 6 things that describe the behavior
of the mutation:

1. What GraphQL method are we using for this mutation?
2. What variables will be used as the input to this mutation?
3. What fields does this mutation depend on in order to run properly?
4. What fields could change as a result of this mutation?
5. If everything goes smoothly, what’s the expected outcome of this mutation?
6. How should Relay handle the actual response that comes back from the server?

We specify each of these things by defining a function for each one.

This might bemore care thanwe usually take whenwe’re using a fire-and-forget API, but remember,
by specifically describing each of these steps in our mutation we get the benefits of Relay managing
the bookkeeping for our data.

This is much easier if we walk through a concrete example, so lets make an “update” with FIELDS_-

CHANGE.

Open up client/src/mutations/UpdateBookMutation.js. Starting at the top let’s look at .getMu-
tation:

170https://facebook.github.io/relay/docs/guides-mutations.html#content

WOW! eBook
www.wowebook.org

https://facebook.github.io/relay/docs/guides-mutations.html#content
https://facebook.github.io/relay/docs/guides-mutations.html#content

Relay 715

relay/bookstore/client/src/mutations/UpdateBookMutation.js

5 export default class UpdateBookMutation extends Relay.Mutation {

6 getMutation() {

7 return Relay.QL`mutation { updateBook }`;

8 }

The first thing we need to specify when we create a Relay.Mutation subclass is the node of the
GraphQL mutation. Here we’ve specified that we’re using the updateBook mutation.

You can find this mutation in the schema by using GraphiQL and picking the mutation field at the
root.

updateBook Mutation

We can see here that updateBook takes a single argu-
ment input, which is of type updateBookInput, and it
returns an item of type updateBookPayload.

For updateBook, the values that we use for updateBook-
Input will be used as the new values for the book we
specify.

That is, we’ll send an id, which will be used to look up
the specific Book we’re changing, and we’ll send new
values such as the name, tagline, or description.

When it comes time to send this mutation, the values
passed in to updateBookInputwill come from the func-
tion getVariables:

relay/bookstore/client/src/mutations/UpdateBookMutation.js

10 getVariables() {

11 return {

12 id: this.props.id,

13 name: this.props.name,

14 tagline: this.props.tagline,

15 description: this.props.description,

16 };

17 }

This function describes how to create the arguments for
updateBookInput – in this case we’re going to look at
this.props for values for the id, name, tagline, and
description.

WOW! eBook
www.wowebook.org

Relay 716

One of the things we have to be careful of is to ensure that this mutation has all of the fields it needs
to operate properly. For instance, this mutation especially needs a Book id because that’s how we’re
going to reference the object we’re changing.

To do this, we specify fragments, much like we do for Relay container components:

relay/bookstore/client/src/mutations/UpdateBookMutation.js

19 static fragments = {

20 book: () => Relay.QL`

21 fragment on Book {

22 id

23 name

24 tagline

25 description

26 }

27 `,

28 }

Notice that in getVariableswe’re also sending along the name, tagline, and description –without
checking if they have any value.

Relay will mask prop values from mutations just like components. So there’s a subtle bug that
could be introduced here. If we forget to specify the proper fragment, the mutation can accidentally
set values to null.

What’s the solution? In the same way that parent components need to include their child com-
ponents’ fragments, any component that uses a mutation also needs to include that mutation’s
fragments. We’ll show how to do this when we use the UpdateBookMutation in our app below.

After we send this mutation it will be evaluated on the server. In this case, what changes on the
server is pretty simple: we’re updating the field values for one object.

That said, for many mutations the effects are probably more nuanced – we can’t always know the
full set of side effects that will occur from a mutation operation.

Furthermore, we don’t actually have confirmation that this operation succeeded at all.

To deal with this, we’re going to ask the server to send back to us all the fields that we think might
have changed. To do this, we’ll specify what’s called a “fat query”. It’s “fat” because we’re trying to
capture everything that might have changed:

WOW! eBook
www.wowebook.org

Relay 717

relay/bookstore/client/src/mutations/UpdateBookMutation.js

30 getFatQuery() {

31 return Relay.QL`

32 fragment on updateBookPayload {

33 changedBook

34 }

35 `;

36 }

The fat query is a GraphQL query. In this case, we’re just asking for the changedBook. So once the
mutation is run on the server we’re asking the server to send us back the new, updated values for
the book that we (hopefully) changed.

Relay will take that changedBook (which is an object of type Book), look at its ID, and update the
Relay Store accordingly.

However, before the server returns our actual response, we have the option to make a performance
optimization and specify an “optimistic” response. The optimistic response answers the question:
assuming this mutation executed successfully, what would be the response?

Here’s our implementation of getOptimisticResponse:

relay/bookstore/client/src/mutations/UpdateBookMutation.js

49 getOptimisticResponse() {

50 const { book, id, name, tagline, description } = this.props;

51

52 const newBook = Object.assign({}, book, { id, name, tagline, description });

53

54 const optimisticResponse = {

55 changedBook: newBook,

56 };

57 console.log('optimisticResponse', optimisticResponse);

58 return optimisticResponse;

59 }

In this function we’re merging together the old book with the argument values. Our optimistic
response returns a newBook that looks like the response we’re about to get from getFatQuery.

This mutation is straightforward: we have the original book and we have the updated fields. In this
case, we know what the result of the mutation is going to be without even asking the server.

So what we can do is fake to the user that their operation was successful. This can give our
user the feeling of a super-responsive app, because they’re able to see the effects of their changes
immediately without waiting for a network call.

WOW! eBook
www.wowebook.org

Relay 718

If the mutation succeeds, the user is none the wiser.

If themutation fails, thenwe’ve given the user false confirmation. But we’ll still have the opportunity
to handle that case and inform the user, perhaps telling them that they need to try again.

If the consistency trade-offs are acceptable to your application, optimistic responses can greatly
improve the feel of the response time of your app.

When the real response is returned from the server, Relay needs to be told how to handle that data.

Because there are several different ways to mutate data, Relay mutations must implement a
getConfigs method which describes the way Relay is going to handle the actual data that changed.

relay/bookstore/client/src/mutations/UpdateBookMutation.js

38 getConfigs() {

39 return [{

40 type: 'FIELDS_CHANGE',

41 fieldIDs: {

42 changedBook: this.props.book.id,

43 },

44 }];

45 }

In this case, because we’re using a FIELDS_CHANGE mutation, we’re specifying that we’ll look at
changedBook to find an ID that matches the Book we’re talking about.

Inline Editing

Now that we have our mutation defined, we’re now prepared to implement click-to-edit on our
BookPage.

Remember that our mutation is going to be making a query to check with the server for the current
value of the Books data after the mutation finishes. Because of this, we need to compose our
mutation’s fragment into our BookPage query.

Just like a child Relay component needs its fragments composed, any mutations a component uses
also needs to have its fragments composed.

Here is our BookPage query now that we’re adding in the mutation’s fragments:

WOW! eBook
www.wowebook.org

Relay 719

relay/bookstore/client/src/components/BookPage.js

114 fragments: {

115 book: () => Relay.QL`

116 fragment on Book {

117 id

118 name

119 tagline

120 coverUrl

121 description

122 pages

123 authors(first: 100) {

124 edges {

125 node {

126 _id

127 name

128 avatarUrl

129 bio

130 }

131 }

132 }

133 ${UpdateBookMutation.getFragment('book')}

134 }`,

135 },

In the future, if you forget to add your mutation fragment to your query, you might get
this:

1 Warning: RelayMutation: Expected prop `book` supplied to `UpdateBookMutation` to\

2 be data fetched by Relay. This is likely an error unless you are purposely pass\

3 ing in mock data that conforms to the shape of this mutation's fragment.

The solution: add your mutation fragment to the calling component’s query.

Now we have everything in place to actually execute our mutation! Let’s update handleBookChange
to send out the mutation:

WOW! eBook
www.wowebook.org

Relay 720

relay/bookstore/client/src/components/BookPage.js

40 handleBookChange(newState) {

41 console.log('bookChanged', newState, this.props.book);

42 const book = Object.assign({}, this.props.book, newState);

43 Relay.Store.commitUpdate(

44 new UpdateBookMutation({

45 id: book.id,

46 name: book.name,

47 tagline: book.tagline,

48 description: book.description,

49 book: this.props.book,

50 })

51);

52 }

Here we create a new object that is the merger of this.props.book and newState by using
Object.assign. Next we execute our mutation by calling Relay.Store.commitUpdate and passing
a new UpdateBookMutation to it.

Behind the scenes, Relay will:

• immediately update our view (and the Relay store) using the optimistic response
• call out to the GraphQL server and try to execute our mutation
• receive the reply from the GraphQL server and update the Relay store

Hopefully, at this point our optimistic response matches the actual response. But if not, the actual
value will be represented on our page.

Conclusion

Once we have the foundation in place, using Relay is a fantastic developer experience compared to
hand-managing a traditional REST API.

Relay and GraphQL give a strong, typed structure to our data while giving us unmatched flexibility
in changing our component data requirements.

Relay 2 is on the horizon and it promises to have even better performance, and a better developer
experience (particularly aroundmutations). That said, Relay 1 is powerful enough to write apps with
today.

WOW! eBook
www.wowebook.org

Relay 721

Where to Go From Here

If you want to learn more about Relay, here’s a few resources:

• Learn Relay171 – This is an introductory tutorial to Relay.
• relay-starter-kit172 is a bare-bones implementation of Relay with a React app
• relay-todomvc173 is an implementation of the popular TodoMVC app using Relay. If you’re
looking for more examples of mutations, this is a good place to start.

• react-router-relay174 is the integration library we used in this chapter to use React Router
with Relay

• A guide to authentication in GraphQL175 - at some point you’ll probably want to add
authenticated pages to your server. Checkout this post for a good starting point

• Relay 2: simpler, faster, more predictable176 – if you want to see where Relay is going, checkout
these slides by Greg Hurrell

171https://www.learnrelay.org/
172https://github.com/relayjs/relay-starter-kit
173https://github.com/taion/relay-todomvc
174https://github.com/relay-tools/react-router-relay
175https://dev-blog.apollodata.com/a-guide-to-authentication-in-graphql-e002a4039d1#.z0vnf3846
176https://speakerdeck.com/wincent/relay-2-simpler-faster-more-predictable

WOW! eBook
www.wowebook.org

https://www.learnrelay.org/
https://github.com/relayjs/relay-starter-kit
https://github.com/taion/relay-todomvc
https://github.com/relay-tools/react-router-relay
https://dev-blog.apollodata.com/a-guide-to-authentication-in-graphql-e002a4039d1#.z0vnf3846
https://speakerdeck.com/wincent/relay-2-simpler-faster-more-predictable
https://www.learnrelay.org/
https://github.com/relayjs/relay-starter-kit
https://github.com/taion/relay-todomvc
https://github.com/relay-tools/react-router-relay
https://dev-blog.apollodata.com/a-guide-to-authentication-in-graphql-e002a4039d1#.z0vnf3846
https://speakerdeck.com/wincent/relay-2-simpler-faster-more-predictable

React Native
In this chapter, we’re going to walk through how to build your first React Native app. We won’t get
to cover React Native in-depth in this chapter. React Native is a huge topic that warrants its own
book.

We’re going to explain React Native for the React Developer. By the end of this chapter you’ll be
able to take your React web app and have the foundation to turn it into a React Native app.

As we’ve seen so far, React is both fun and powerful. In this chapter, the goal is to get an idea of
how everything we love about React can be used to build a native iOS or Android application using
React Native.

Without getting too deep into the technicalities of how React Native works under the hood, the
high-level summary looks like this:

When we build React components, we’re actually building representations of our React components,
not actual DOM elements using the Virtual DOM. In the browser, React takes this virtual DOM and
pre-computes what the elements should look like in a web browser and then hands it over to the
browser to handle the layout.

The idea behind React Native is that we can take the tree of object representations from our React
components and rather than mapping it to the web browser’s DOM, we map it to iOS’s UIView177 or
Android’s android.view178. Theoretically, we can use the same idea behind React in the web browser
to build native iOS and Android applications. This is the fundamental idea behind React-Native.

In this section, we’re going to work through building React components for the native renderers and
highlight the differences between React for Native vs. React for the web.

Before we dive into the details, let’s start off high level. It’s crucial to understand that we’re no longer
building for the web environment, which means we have different UX, UI, and no URL locations.
Despite the fact that the thought processes we’ve built around building UIs for the web help, they
aren’t enough to translate to building a great user experience in the mobile native environment.

Let’s take a second and look at some of the most popular native applications and play around with
them. Rather than use the application from a user perspective, try imagining building the application,
taking note of the details. For instance, look for the micro-animations, how the views are setup, the
page transitions, the caching, how data is passed around from screen to screen, what happens when
we’re waiting for information to load.

In general, we can get away with less deliberately designed UI on the web. On mobile however,
where our screen-size and data details are more constrained and focused, we are forced to focus on

177https://developer.apple.com/reference/uikit/uiview
178https://developer.android.com/reference/android/view/View.html

WOW! eBook
www.wowebook.org

https://developer.apple.com/reference/uikit/uiview
https://developer.android.com/reference/android/view/View.html
https://developer.apple.com/reference/uikit/uiview
https://developer.android.com/reference/android/view/View.html

React Native 723

the experience of our application. Building a great UX for a native app requires deliberate execution
and attention to detail.

In this chapter one of our goals is to highlight both the syntactic differences as well as the aesthetic
differences that exist between both platforms.

Init

As we’re focused on getting directly to the code as we work through this section, we’ll want to have
an application bootstrapped for us so we can experiment and test out building native applications.
We’ll need to bootstrap our application so we have a basic application we can work with as we are
learning the different components of React-Native.

In order to bootstrap a React-Native application, we can use the react-native-cli tool. We’ll need
to install the React-Native cli tool by using the Node Package Manager (npm). Let’s install the react-
native-cli tool globally so we can access it anywhere on our system:

npm i -g react-native-cli@2.0.1

Installation documentation
For formal instructions on getting set up with React Native for your specific develop-
ment environment, check out the official Getting started179 docs.

With the react-native-cli tool installed, we will have the react-native command available in
our terminal. If this returns a “not recognized” error, check the getting started docs from above for
your development platform.

$ react-native

To create a new React-Native project, we’ll run the react-native init command with the name of
the application we want to generate. For example, let’s generate a React-Native application called
Playground:

$ react-native init Playground

179http://facebook.github.io/react-native/releases/0.31/docs/getting-started.html

WOW! eBook
www.wowebook.org

http://facebook.github.io/react-native/releases/0.31/docs/getting-started.html
http://facebook.github.io/react-native/releases/0.31/docs/getting-started.html

React Native 724

Your output of the command might look a bit different from above, but as long as you
see the instructions on how to launch it. If you see an error, check the Troubleshooting180

documentation for more instructions on launching the application.

Nowwe can use our Playground app we just created to test and run the code we’ll create throughout
this section.

Routing

Let’s start off our application with routing as it’s foundational to nearly every application.

When we implement routing in the web, we’re typically mapping a URL to a particular UI. For
example, let’s take a game that might be written for the web with multiple screens written using the
React Router V2 API:

When we implement routing on the web, we’re typically mapping some URL to a specific UI. Here’s
how that looks with React Router V2 with the URLs mapped to the active components:

src/routes.js

export const Routes = (

<Router history={hashHistory}>

<Route path='/' component={Main}>

<IndexRoute component={Home} />

<Route

path='players/:playerOne?'

component={PromptContainer}

/>

180http://facebook.github.io/react-native/releases/0.31/docs/troubleshooting.html#content

WOW! eBook
www.wowebook.org

http://facebook.github.io/react-native/releases/0.31/docs/troubleshooting.html#content
http://facebook.github.io/react-native/releases/0.31/docs/troubleshooting.html#content

React Native 725

<Route

path='battle'

component={ConfirmBattleContainer}

/>

<Route

path='results'

component={ResultsContainer}

/>

</Route>

</Router>

);

URL Active Component

foo.com Main -> Home
foo.com/players Main -> PromptContainer
foo.com/players/ari Main -> PromptContainer
foo.com/battle Main -> ConfirmBattleContainer
foo.com/results Main -> ResultsContainer

React Router lays out this mapping between URL and UI beautifully (i.e. declaratively).

As our user navigates to different URLs in our applications, different components become active.
The URL is so foundational to React Router that it’s mentioned twice in the opening description:

React Router keeps your UI in sync with the URL. **…Make the **URL your first
thought, not an after-thought.

This is a clean, well-understood paradigm and one that has made React Router as popular as it is.
However, what if we’re developing for a native app? There is no URL we can refer. There’s not really
even a similar conceptual mapping of a URL in a native application.

Paradigm shift #1 — when building a React Native app, we need to think of our routes in
terms of layers rather than URL to UI mappings.

WOW! eBook
www.wowebook.org

React Native 726

The routing layers in a native application structure themselves in a stack format, which roughly
speaking is basically an array. When we transition between routes in React Native, we’re simply
pushing (navigating into a view) or popping (navigating out of a view) a route onto or from our
route stack.

What is a route stack?
A route stack refers to an array of views a user visits throughout the application. When the user
first opens the application, the route stack is going to have a length of 1 (the initial screen). Let’s
say that the user navigates to a my account screen next. The route stack will have two entries, the
initial screen and the account screen.

When the user navigates back to the home screen in our fictitious application, the route stack will
pop (or remove the latest) view leaving the route stack to contain one entry again: the initial screen.

Coming from the web browser, this is a different paradigm than mapping a discrete URL. Instead of
mapping to a unique URL, we will be managing an array mapping to a route stack.

In addition, we’re not just mapping view components to a view, we’ll also be working through how
to make transitions between routes. Unlike the web, where we typically have independent route
transitions, native apps generally need to know about each other as we navigate from one screen to
the next.

For example, we’ll usually have animations once our view renders, but not have a transition between
routes themselves. However, in a native application, we’ll still have these animations once our
view renders as well as needing to devise a method that one route transitions into the next in the
navigation stack.

WOW! eBook
www.wowebook.org

React Native 727

Most route transitions on native devices are naturally hierarchical and should generally appropri-
ately reflect our user’s journey through each phase of the app.

In React Native, we can configure these route transitions through scene configurations. We’ll take
a look at how we can customize our scene transitions a little bit later, but for now we’ll note that
different platforms require different route transitions.

On the iOS platform, we’re usually handling one of three different transitions between routes:

• Right to left
• Left to right
• Bottom to top

Typically when we push a route on iOS from the right when we’re drilling deeper into the same
hierarchy, we’ll present a view from the bottom when it’s a modal screen that is in a different
hierarchy. We’ll usually push a new view in the same hierarchy with the left to right transition and
pop from the right to left transition after leaving a previous route.

The Android paradigm is slightly different, however. We’ll still have the idea of drilling into more
content, but rather than a hard left to right transition, we’ll have a concept of creating an elevation
change.

Play around with it
Regardless of the device we’re building for, it’s a good idea to open popular apps for
the platform we’re working with and taking note of what the route transitions look like
between screens.

Enough theory. Let’s get back to implementation. React Native routing has several options. At the
time of writing, Facebook has indicated it’s working on a new router component for React Native. For
now, we’ll stick with the tried and tested Navigator component to handle routing in our application.

<Navigator />

Just like the web version of the router, where we have React components that render to handle
routing, the <Navigator /> component is just a React component. This means we’ll use it just like
any other component in the view.

<Navigator />

Knowing the <Navigator /> component is just a react component, we’ll want to know:

WOW! eBook
www.wowebook.org

React Native 728

1. What props does it accept?
2. Is it necessary to wrap it in a Higher Order Component?
3. How do we navigate with a single component?

Let’s start off with #1, what props does it accept?

The <Navigator /> only requires two props, both of them are functions:

• configureScene()

• renderScene()

Every time we change routes in our application, both the configureScene() and renderScene()

functions will be called.

The renderScene() function is responsible for determining which UI (or component) to render next,
while the configureScene() function is responsible for detailing out which transition type to make
(as we looked at earlier).

In order to do their job, we’ll need to receive some information about the specific route change that
is about to occur. Naturally, since these are functions, they will be called with this information as
an argument to the function.

Rather than talk about it, let’s look at what this looks like in code. Starting with the boilerplate, we
know now we’ll be rendering a component:

src/app/index.js

export default class App extends Component {

configureScene(route) {

// Handle configuring scene

}

renderScene(route, navigator) {

// handle rendering scene

}

render() {

return (

<Navigator

renderScene={this.renderScene}

configureScene={this.configureScene}

/>

);

}

}

WOW! eBook
www.wowebook.org

React Native 729

Beautiful. We’ll notice that this answers our second question from above. Typically when we’re
using the <Navigator /> component, we’ll wrap it in a Higher Order Function in order to handle
our renderScene() and configureScene() methods.

renderScene()

Now let’s take a look at how the renderScene() method needs to be implemented. We currently
know two things about the renderScene() function:

1. It’s purpose is to figure out which UI (or component) to render when transitioning into a new
scene.

2. It receives an object which represent the route change that is going to occur.

With these two things in mind, let’s look at an example of how a renderScene() might be
implemented:

src/app/index.js

renderScene(route) {

if (route.home === true) {

return <HomeContainer />

} else if (route.notifications === true) {

return <NotificationsContainer />

} else {

return <FooterTabsContainer />

}

}

Since the entire purpose of the renderScene() function is to determine which UI (or component)
to render next, it makes sense that the renderScene() function is just one big if statement which
renders different components based on a property of the route object.

The next natural question is “where is the route object coming from and how did it get the home

and notifications properties on it?

This is where the react native configuration things get a little bit weird. Remember from above,
we mentioned every time we change routes in our applications, both configureScene() and
renderScene() will be called? Well, we still haven’t answered just how we change routes in our
applications. To answer that question, we’ll need to look at the second argument the renderScene()
function receives: the navigator:

WOW! eBook
www.wowebook.org

React Native 730

renderScene(route, navigator) {

// render scene

}

The navigator object is an instance object we can use to manipulate our current routing from
within our application. The object itself contains some pretty handy methods, including the push()
and pop() methods. The push() and pop() methods are how we’re actually handling manipulating
our route changes from within our app by pushing to or popping from the route stack.

Notice that we’re receiving the navigator object inside our renderScene() method here, but the
renderScene()method is for picking the next scene, not invoking route changes. In order to actually
use the navigator object in our rendered scene, we’ll need to pass it along to our new route as a
prop:

src/app/index.js

renderScene(route, navigator) {

if (route.home === true) {

return <HomeContainer navigator={navigator} />

} else if (route.notifications === true) {

return <NotificationsContainer navigator={navigator} />

} else {

return <FooterTabsContainer navigator={navigator} />

}

}

With this update, the <HomeContainer />, <NotificationsContainer />, and the <FooterTabsCon-
tainer /> all have access to the navigator instance and can each call out to push() or pop() from
the route stack using this.props.navigator.

For instance, let’s say that we’re working on our home route and we want to navigate to the
notifications route. We can push to the navigation’s route in a method like so:

src/app/containers/home.js

handleToNotifications() {

this.props.navigator.push({

notifications: true,

});

}

Once we invoke the handleToNotifications() method inside the <HomeContainer /> component,
our renderScene() method will be called with the route argument, which is passed down through
the object pushed onto by the this.props.navigator.push() method. When the renderScene()

WOW! eBook
www.wowebook.org

React Native 731

sees the route object contains the notifications property as true, it returns the <Notification-

sContainer /> as the next component to render.

Don’t worry quite yet if this didn’t click right away. We’ll be working with the <Navigator />

component often. With some more experience under our belts, it will make more sense as we move
along.

configureScene()

Now that we know howwe’ll change our routes in our app, we’ll need to be able to tell our appwhich
transition type to make based on the specific route change that will occur (where the transition type
is left to right, right to left, modal, etc). From our discussion above, recall this takes place inside the
configureScene() method we defined earlier:

configureScene(route) {

// Configure the scene

}

The same route object passed to the renderScene() method is passed to the configureScene()

method as well. We can use the same logic from inside the configureScene() method as we used
in the renderScene() method:

src/app/index.js

configureScene(route) {

if (route.home === true) {

// Transitioning to HomeContainer

} else if (route.notifications === true) {

// Transitioning to NotificationsContainer

} else {

// Showing FooterTabsContainer

}

}

Instead of rendering components here, we’ll tell the <Navigator /> component which transition
type we want to use when transitioning to the new UI. The <Navigator /> object comes with 10
different types of scene configurations181, all of which are located on the Navigator.SceneConfigs
object.

• Navigator.SceneConfigs.PushFromRight (default)
• Navigator.SceneConfigs.FloatFromRight

181http://facebook.github.io/react-native/releases/0.31/docs/navigator.html#configurescene

WOW! eBook
www.wowebook.org

http://facebook.github.io/react-native/releases/0.31/docs/navigator.html#configurescene
http://facebook.github.io/react-native/releases/0.31/docs/navigator.html#configurescene

React Native 732

• Navigator.SceneConfigs.FloatFromLeft

• Navigator.SceneConfigs.FloatFromBottom

• Navigator.SceneConfigs.FloatFromBottomAndroid

• Navigator.SceneConfigs.FadeAndroid

• Navigator.SceneConfigs.HorizontalSwipeJump

• Navigator.SceneConfigs.HorizontalSwipeJumpFromRight

• Navigator.SceneConfigs.VerticalUpSwipeJump

• Navigator.SceneConfigs.VerticalDownSwipeJump

The configuration we return from the configureScene() method will be the transition type that
will be used for the specific route change.

For instance, say our user is on iOS and we want every route besides our notifications route to
have the standard left to right transition and we want the notifications route to come up from the
bottom as amodal transition.We can implement this behavior with an update the configureScene()
method like so:

src/app/index.js

configureScene(route) {

if (route.notifications === true) {

return Navigator.SceneConfigs.FloatFromBottom;

}

return Navigator.SceneConfigs.FloatFromRight;

}

renderScene(route, navigator) {

if (route.home === true) {

return <HomeContainer navigator={navigator} />

} else if (route.notifications === true) {

return <NotificationsContainer navigator={navigator} />

} else {

return <FooterTabsContainer navigator={navigator} />

}

}

render() {

return (

<Navigator

renderScene={this.renderScene}

configureScene={this.configureScene}

/>

WOW! eBook
www.wowebook.org

React Native 733

);

}

Now, when our user navigates to our notifications view, we’ll see a nice FloatFromBottom transition.
For any other route, we’ll get the default FloatFromRight transition as it’s what we specified inside
the configureScene() method.

Earlier, we talked about how Android has a fundamentally different route transition than iOS. Let’s
see how we can implement this as well.

In order to detect what platform our app is currently running on, we can use the Platform object
exported by the react-native package. First, we need to get a hold of the Platform export from
react-native:

src/app/index.js

import { Platform } from 'react-native';

The Platform object has a property called OS which has a string that shows which platform the app
is currently using. For iOS, the string is 'ios' and for android it is 'android'.

src/app/index.js

configureScene(route) {

if (route.notifications === true) {

if (Platform.OS === 'android') {

return Navigator.SceneConfigs.FloatFromBottomAndroid;

} else {

return Navigator.SceneConfigs.FloatFromBottom;

}

}

return Navigator.SceneConfigs.FloatFromRight;

}

renderScene(route, navigator) {

if (route.home === true) {

return <HomeContainer navigator={navigator} />

} else if (route.notifications === true) {

return <NotificationsContainer navigator={navigator} />

} else {

return <FooterTabsContainer navigator={navigator} />

}

}

WOW! eBook
www.wowebook.org

React Native 734

render() {

return (

<Navigator

renderScene={this.renderScene}

configureScene={this.configureScene}

/>

);

}

Now if we navigate to the notifications route while on an Android device (or the simulator), we’ll get
the FloatFromBottomAndroid transition and still get the FloatFromBottom while on an iOS device.

With the <Navigator /> component in place, we now have routing working in our React Native
app that works for both Android and iOS.

Web components vs. Native components

The first difference we’ll encounter between React and React-Native is the difference of built-in
components.

On the web, we can use the native browser components, such as <div />, <a />, , etc.
However, in a native application these elements don’t exist. As we’re relying on the underlying
native UI layer to render our layouts, we can’t use native web elements, instead we have to use
elements that the UI builder knows how to render. Luckily for us, React-Native exports a bunch
of these view elements for us out of the box that the underlying view managers understand (and
they’ve made it pretty easy to create our own as well).

These elements aren’t a huge conceptual difference for the most part, so we won’t dive deep into
the differences, but we’ll look at a few of the built-in components which are most commonly used
in creating a React Native application.

The following list of built-in components are the most commonly used components.
The React-Native ecosystem is active and engaged, so if your application needs a
specific component, it may have already been built for you to use, if it’s not already
implemented into the React Native core.

Before implementing your own component, check to see if it has been built either
through https://www.npmjs.com/search?q=react-native182 or js.coach/react-native183.

182www.npmjs.com/search?q=react-native
183https://js.coach/react-native

WOW! eBook
www.wowebook.org

https://js.coach/react-native
https://js.coach/react-native

React Native 735

<View />

The <View /> component is the most fundamental component for building UIs with React Native.
The <View /> component maps directly to the native equivalent for the current platform where our
app is running. It maps to the UIView on iOS, android.view on Android, and even (yes) <div /> in
the web. It’s fair to use the <View /> component the same way we would with a <div /> on the
web.

<Text />

The <Text /> component is used for displaying text in a React Native app. It’s important to note
that we can’t render any plain text that is not wrapped in a <Text>text component</Text>. The
view layers don’t know what to do with it, so we have to be explicit when adding plain text to the
view.

<Image />

The <Image /> component is used when we want to display any type of image, including network
images, static resources, temporary local images, and images from the local device (such as the
camera roll/library).

<TextInput />

Just like on the web, we can get user input from our users using an input field called <TextInput />.
The <TextInput /> component is the main way we can get input from a keyboard on the device.
One particular prop it accepts is the onChangeText() property which is a function that it will call
anytime the text in the input field changes.

<TouchableHighlight />, <TouchableOpacity />, and
<TouchableWithoutFeedback />

When we want to listen for any press events in React Native, we’ll need to use one of the touchable
components. These touchable components are often a point of confusion when we first start out
with React Native because in the web, we can just add an onClick() prop to any element and it
becomes “touchable”.”

However, in React Native not only is the component not onClick() (it’s onPress()), but most
components in React Native don’t know what to do with the onPress() property. Because of this,
we’ll need to wrap any module we’re interested in having a touchable property in one of these
touchable components.

Each of the different touchable components has a slightly different effect when it’s touched.

WOW! eBook
www.wowebook.org

React Native 736

• <TouchableHighlight /> component will decrease the opacity of the component, which will
allow the underlay color to shine through.

• <TouchableOpacity /> decreases the opacity of a component, but does not display an
underlay color.

• <TouchableWithoutFeedback /> invokes the component when it’s pressed, but does not give
any user feedback on the component itself.

We’ll want to use the <TouchableWithoutFeedback /> component sparingly as we’ll most often
want to give the user feedback when a touchable component is pressed.

Use <TouchableWithoutFeedback /> sparingly
More often than not, we’ll want to give the user feedback that a touchable component
has been pressed. This is one of the main reasons mobile web browsers don’t feel native.

<ActivityIndicator />

The default loading indicator for React Native is the <ActivityIndicator /> component. This
component works on multiple platforms as it’s implemented entirely in JavaScript. One side benefit
we get with a component entirely written in JavaScript is that the default styling is updated based
upon the platform the app is operating on without any customization required.

<WebView />

The <WebView /> component allows us to display some web content in our React Native application.

<ScrollView />

The <ScrollView /> component allows us to scroll along a view. In theweb, this is generally handled
automatically (and can be controlled/defined in CSS). In a native app, however if our content goes
off screen, we won’t be able to see it. In a native app, our users expect to be able to scroll content
when this happens. This is where we use the <ScrollView /> component.

If our content is larger than the screen (meaning we’ll have to scroll to see it), we’ll wrap our <View
/> in a <ScrollView /> component.

Keep in mind that the <ScrollView /> component works best for a relatively small list of items
since performant lists are critical for a good UX on mobile. The <ScrollView /> component renders
all the elements and views of a <ScrollView /> are rendered regardless if they are shown on screen
or not. Because of this, React Native providers another, more performant way to render larger lists
with the <ListView />.

WOW! eBook
www.wowebook.org

React Native 737

<ListView />

The <ListView /> component is a performance-focused option for rendering long lists of data.
Unlike the <ScrollView /> component, the <ListView /> only renders elements that are currently
showing on the screen. One interesting note is that the <ListView /> uses the <ScrollView />

under the hood, but it adds a lot of nice performance abstractions for us to leverage.

As performant lists are fundamental in building native apps, and the ListView is a bit different than
what we’re used to in the web, let’s dive into how to use the <ListView /> in more detail.

Let’s say that we’re building an app similar to Twitter and we want to create a Feed component
which will receive an array of tweets and render those tweets to the view. Let’s look at how we’d do
this on the Web, with ScrollView, then with ListView. (We’ll purposefully neglect styling, as that’s
not the focus of this exercise).

We might implement this on the web like so:

Web version

src/feed.js

import PropTypes from 'prop-types';

import React from 'react';

Feed.propTypes = {

tweets: PropTypes.arrayOf(PropTypes.shape({

name: PropTypes.string.isRequired,

user_id: PropTypes.string.isRequired,

avatar: PropTypes.string.isRequired,

text: PropTypes.string.isRequired,

numberOfFavorites: PropTypes.number.isRequired,

numberOfRetweets: PropTypes.number.isRequired,

})).isRequired,

};

function Feed ({ tweets }) {

return (

<div>

{tweets.map((tweet) => (

<div>

<div>

{tweet.name}

</div>

<p>{tweet.text}</p>

WOW! eBook
www.wowebook.org

React Native 738

<div>

<div>Favs: {tweet.numberOfFavorites}</div>

<div>RTs: {tweet.numberOfRetweets}</div>

</div>

</div>

)

)}

</div>

);

}

We have a stateless functional component named Feed which takes in an array of tweets, maps
over each of those, and displays some UI for each tweet (in this case, a <div /> element with some
children).

<ScrollView /> version

We can implement the same functionality using the <ScrollView /> component like so:

src/app/twitter-scrollview.js

import React, { PropTypes } from 'react';

import { View, Text, ScrollView, Image } from 'react-native';

Feed.propTypes = {

tweets: PropTypes.arrayOf(PropTypes.shape({

name: PropTypes.string.isRequired,

user_id: PropTypes.string.isRequired,

avatar: PropTypes.string.isRequired,

text: PropTypes.string.isRequired,

numberOfFavorites: PropTypes.number.isRequired,

numberOfRetweets: PropTypes.number.isRequired,

})).isRequired,

};

function Feed ({ tweets }) {

return (

<ScrollView>

{tweets.map((tweet) => (

<View>

<View>

<Image src={tweet.avatar} />

<Text>{tweet.name}</Text>

WOW! eBook
www.wowebook.org

React Native 739

</View>

<Text>{tweet.text}</Text>

<View>

<Text>Favs: {tweet.numberOfFavorites}</Text>

<Text>RTs: {tweet.numberOfRetweets}</Text>

</View>

</View>

)

)}

</ScrollView>

);

}

Notice this implementation is pretty similar to what we’re used to on the web. We’ve just swapped
out the specific web components for their React Native counterpart, but the actual logic of mapping
over each tweet is the same.

Now, let’s look at how we can implement the same functionality using the more performant
<ListView /> element:

Don’t sweat the details here as we’ll go over everything we need to know about how to
use the <ListView /> component shortly. We’re using this as an example to highlight
the differences between how we can think about implementing the same functionality.

src/app/twitter-listview.js

import React, { PropTypes, Component } from 'react';

import { View, Text, ScrollView, Image, ListView } from 'react-native';

class Feed extends Component {

static props = {

tweets: PropTypes.arrayOf(PropTypes.shape({

name: PropTypes.string.isRequired,

user_id: PropTypes.string.isRequired,

avatar: PropTypes.string.isRequired,

text: PropTypes.string.isRequired,

numberOfFavorites: PropTypes.number.isRequired,

numberOfRetweets: PropTypes.number.isRequired,

})).isRequired,

}

constructor(props) {

WOW! eBook
www.wowebook.org

React Native 740

super(props);

this.ds = new ListView.DataSource({

rowHasChanged: (r1, r2) => r1 !== r2,

});

this.state = {

dataSource: this.ds.cloneWithRows(this.props.tweets),

};

}

componentWillReceiveProps(nextProps) {

if (nextProps.tweets !== this.props.tweets) {

this.setState({

dataSource: this.ds.cloneWithRows(nextProps.tweets),

});

}

}

renderRow = ({ tweet }) => {

return (

<View>

<View>

<Image src={tweet.avatar} />

<Text>{tweet.name}</Text>

</View>

<Text>{tweet.text}</Text>

<View>

<Text>Favs: {tweet.numberOfFavorites}</Text>

<Text>RTs: {tweet.numberOfRetweets}</Text>

</View>

</View>

);

}

render() {

return (

<ListView

renderRow={this.renderRow}

dataSource={this.state.dataSource}

/>

);

}

}

WOW! eBook
www.wowebook.org

React Native 741

The <ListView /> implementation a lot different. Let’s walk through the differences.

The first thing we’ll see is that we’ve switched from a stateless functional component to a Class
component which allows us to keep state. Since our component needs to keep track of the data
that’s currently rendered on screen as well as listen for anytime we get a request to update the data
through the shouldComponentUpdate() lifecycle hook.

When using a <ListView /> component, we’ll need two things to properly implement a <ListView
/> component:

• ListView.DataSource instance
• renderRow() function defined in our component

The ListView.DataSource instance is a bit out of left-field, so let’s look at that first. We’ll see that
we start off by creating a new instance of the type ListView.DataSource. We’ll pass it and object
that allows us to customize how it works under the hood. Here, we’ve passed it a rowHasChanged()
method, which is a function that the <ListView /> uses to determine if the list needs to be re-
rendered.

src/app/twitter-listview.js

this.ds = new ListView.DataSource({

rowHasChanged: (r1, r2) => r1 !== r2,

});

Taking a step back for a moment, if we think about the fundamental aspect of creating a high-
performance list view, making it easy to detect when a row in the list has changed in order to avoid
re-rendering rows that haven’t changed is pretty important. This is the first optimization that the
<ListView /> handles for us automatically.

The next step is to actually give our ListView.DataSource instance data to keep track of and show
to the user. This is where the ds.cloneWithRows()method works. The ds.cloneWithRows()method
will set (or update) the data kept internally by the ListView.DataSource instance.

src/app/twitter-listview.js

this.state = {

dataSource: this.ds.cloneWithRows(this.props.tweets),

};

Notice that we’re using the ds.cloneWithRows() method in both the constructor() function as
well as the componentWillReceiveProps() methods.

WOW! eBook
www.wowebook.org

React Native 742

src/app/twitter-listview.js

componentWillReceiveProps(nextProps) {

if (nextProps.tweets !== this.props.tweets) {

this.setState({

dataSource: this.ds.cloneWithRows(nextProps.tweets),

});

}

}

In both cases, we are receiving tweets we want to show on the screen, so we’ll need to make sure
we add them to our dataSource instance variable, which means in both cases we’ll need to call the
cloneWithRows() method. Without calling the cloneWithRows() (or other relatives of the method
– more on that later), the data won’t be updates on the ListView.DataSource instance.

Immutable data
The data keeps by the dataSource instance object is immutable. Immutable objects
cannot be updated or changed. Once it’s created, it cannot be modified or updated.

When we do want to change the data, we’ll have to create a separate copy of the data
elsewhere so we can update a local copy and call cloneWithRows() with that data.
Although this might seem like a limitation, it is a huge performance optimization and
it’s how we have to interact with the ListView.DataSource object.

In the previous example, we’re not keeping a copy of the previous tweets because we’re
receiving a brand new array of tweets on every change. If these changes are incremental,
however (adding/removing tweets) wewould need to keep a copy of the unDataSourced
data elsewhere.

Now that we have data kept inside the dataSource instance object, we’ll need to implement a
renderRow() function. This is a bit more straight-forward. The renderRow() method is called for
every single row inside the dataSource instance’s copy of the data and is responsible for providing
a UI component to be rendered for every row.

WOW! eBook
www.wowebook.org

React Native 743

src/app/twitter-listview.js

renderRow = (tweet) => {

return (

<View>

<View>

<Image source={{ uri: tweet.avatar }} />

<Text>{tweet.name}</Text>

</View>

<View>

<Text>{tweet.text}</Text>

<Text>Favs: {tweet.numberOfFavorites}</Text>

<Text>RTs: {tweet.numberOfRetweets}</Text>

</View>

</View>

);

}

Notice that in converting from the <ScrollView /> to the <ListView /> implementation, we’ve take
the .map() call from the data out of the render() function and into the renderRow() function. We
can treat the JSX inside the renderRow() function just like it’s the JSX from the .map() function as
it is called for each item in the dataSource instance.

The <ListView /> component accepts a few other props that we won’t go “too” much into detail
about here, but it’s useful to know they exist. We’ll look at the renderSeparator(), renderHeader(),
and renderFooter().

These extra props are pretty self-explanatory, but let’s look at each one:

renderSeparator()

When a renderSeparator() prop is passed as a prop to the <ListView /> component, it is expected
to be a function that will be responsible for returning a component that will be rendered as a
separator between each item in the <ListView />.

Rather than adding a border to the component’s styles, using the renderSeparator() prop is
intelligent and won’t add a border to the last rendered row.

WOW! eBook
www.wowebook.org

React Native 744

src/app/twitter-listview.js

renderSeparator = (sectionId, rowId) => {

return (

<View key={rowId} style={styles.separator} />

);

}

render() {

return (

<ListView

renderRow={this.renderRow}

dataSource={this.state.dataSource}

renderSeparator={this.renderSeparator}

/>

);

}

renderHeader()

The renderHeader() prop accepts a function that is expected to return a component which will be
used as the header for the <ListView /> component. For instance, let’s say we wanted to add a
search bar at the top of our feed for filtering content. We can use the renderHeader() method as a
way to achieve this.

src/app/twitter-listview.js

renderHeader = () => <SearchBar />

render() {

return (

<ListView

renderRow={this.renderRow}

dataSource={this.state.dataSource}

renderHeader={this.renderHeader}

/>

);

}

renderFooter()

The renderFooter() prop allows us to add a footer to our ListView. For instance, we might want to
show a button to allow the user to fetch more tweets from our tweet list, for example.

WOW! eBook
www.wowebook.org

React Native 745

src/app/twitter-listview.js

renderFooter = () => <ShowMoreTweets />

render() {

return (

<ListView

renderRow={this.renderRow}

dataSource={this.state.dataSource}

renderFooter={this.renderFooter}

/>

);

}

Styles

Styling in React Native is not as straight-forward as it is in the web. React Native takes the idea
of styling with Cascading StyleSheets (or CSS, for short) to the native app world where we apply
styling declarations to a component. As we’ve seen through our work with React throughout this
course, we can apply CSS rules within a React component using the style prop on most elements.
React Native follows this same approach with React Native elements.

Before we jump too much into how we style React Native components, it’s important to note that
React Native takes the 100% of styling is done in JavaScript approach. That is, every core component
accepts a style prop that accepts an object (or an array of objects) that contain a component’s styles.
As we’re in JavaScript, properties that contain a -, however must be handled slightly differently.
Rather than background-color or margin-left, we need to camel-case184 the style name property.

For instance, if we want to add a style of a background color to a component we can add it

src/app/styledViews.js

<View style={{ backgroundColor: 'green', padding: 10 }}>

<Text style={{ color: 'blue', fontSize: 25 }}>

Hello world

</Text>

</View>

One nice feature that React Native introduces that we don’t have with the web version of React is
the ability to pass an array to the style prop (without a separate library), which React Native will
merge into a single style.

184https://en.wikipedia.org/wiki/Camel_case

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

React Native 746

src/app/styledViews.js

const ContainerComponent = () => {

const getBackgroundColor = () => {

return { backgroundColor: 'red' };

};

return (

<View style={[getBackgroundColor(), { padding: 10 }]}>

<Text style={{ color: 'blue', fontSize: 25 }}>

Hello world

</Text>

</View>

);

};

As it is right now, this is pretty simple. What if we have more than 2-3 style properties for a
component? React Native exports a helper for just this case called StyleSheet. The StyleSheet

export allows us to create an abstraction just like we can do with web-based CSS stylesheets.

StyleSheet

The StyleSheet object has a create() method on it which accepts an object that contains a list of
our styles. We can then use the styles object the create()method returns rather than a raw styles
object.

For example, let’s decorate a few components:

src/app/styledViews.js

const styles = StyleSheet.create({

container: {

padding: 10,

},

containerText: {

color: 'blue',

fontSize: 20,

},

});

class ExampleComponent extends Component {

getBackgroundColor() {

return {

WOW! eBook
www.wowebook.org

React Native 747

backgroundColor: 'yellow'

};

}

render() {

return (

<View style={[

this.getBackgroundColor(),

styles.container

]}>

<Text style={styles.containerText}>

Hello world

</Text>

</View>

);

}

}

We get a few benefits to using the StyleSheet approach. One is that our components are more
readable. Even more important is that StyleSheet gives us some performance gains that we don’t
get when applying an object directly to the styles prop.

Now that we’ve seen how to apply styles, let’s jump into the architecture of our styles and using
Flexbox.

Flexbox

Flexbox as a technology exists gives us the ability to define a layout in an efficient way. We can lay
out, align, and distribute space among items in a container, even when the size of the components
are unknown or are dynamic. Where creating a dynamic, all-purpose layout with CSS can be
cumbersome, flexbox makes this much easier.

In other words, flexbox is all about creating dynamic layouts.

The main concept behind flexbox is that we give a parent element the ability to control the layout
of all their child elements rather than having each child element control their own layout. When we
give the parent this control, the parent element becomes a flex container where the child elements
are referred to as flex items.

An example of this is instead of having to float all of the element’s children left and add a margin to
each, we can instead just have the parent element specify having all of its children to be laid out in
a row with even space between them. In this way, the layout responsibilities move from the child to
the parent component, which overall gives us more fine-tuned control over the layout of our apps.

WOW! eBook
www.wowebook.org

React Native 748

The most important concept to understand about flexbox is that it’s based on different axes. We
have a main axis and a cross axis.

By default, in React Native the main axis is vertical while the cross axis is horizontal. Everything
from here on out is built upon the concept of the axes. When we say “which will align all the child
elements along the main axis,” we mean that, by default the children of the parent element will be
laid out vertically from top to bottom. When we say that this will align all the child elements on the
cross axis, we mean, by default the children elements will be laid out horizontally from left to right.

The rest of the flexbox concepts is deciding how we want to align, position, stretch, spread, shrink,
center, and wrap child elements along the main and cross axis.

Let’s look at the flexbox properties.

flex-direction

We have been very deliberate in saying the default behavior when talking about the main and cross
axis. This is because we can actually change which axis is the main axis and which is the cross.
We can use the flex-direction (in React Native, this is flexDirection) property to specify this
property.

It can accept one of two values:

• column

• row

By default, React Native sets all elements to have the flexDirection: column property. This is to
say that the element’s main axis is vertical and it’s cross axis is horizontal; just as we saw in the

WOW! eBook
www.wowebook.org

React Native 749

image above. However, if we define the flexDirection: row to be row, the axes switch. The main
axis becomes horizontal, while the cross axis is vertical.

It’s crucial to understand the concepts of themain and cross axes as our entire layout depends upon
these different settings.

Let’s dive into a few different properties we can use to align child elements along these axes.

Focusing on the main axis first, in order to specify how children align themselves along the main
axis, we can use the justifyContent property.

The justifyContent property can accept one of five different values we can use in order to change
how the children align themselves along the main axis:

• flex-start

• center

• flex-end

• space-around

• space-between

Let’s walk through what each of these mean.

WOW! eBook
www.wowebook.org

React Native 750

Follow along
In this section, we highly recommend following along by building an application with us
as we walk through this flexbox introduction.

We’ve included the sample applications with this book, or you can create your own simply
and replace the index.ios.js and index.android.js code from the sample project with
the following code sample.

To create a sample app for yourself, use the react-native-cli package:

react-native init FlexboxExamples

For the following examples, we’ll use the following code to demonstrate how flexbox works with
laying out child elements.

src/app/styledViews.js

import React, { Component } from 'react';

import { StyleSheet, Text, View } from 'react-native';

export class FlexboxExamples extends Component {

render() {

return (

<View style={ styles.container }>

<View style={ styles.box } />

<View style={ styles.box } />

<View style={ styles.box } />

</View>

);

}

}

const styles = StyleSheet.create({

container: {

flex: 1,

},

box: {

height: 50,

width: 50,

backgroundColor: '#e76e63',

margin: 10,

},

});

WOW! eBook
www.wowebook.org

React Native 751

export default FlexboxExamples;

If you’re creating your own example and replacing the index.[platform].js files, add
the following code to make sure the app is registered with React native as the app:

import { AppRegistry } from 'react-native'; // at the top of the file

// ...

// at the end of the file

AppRegistry.registerComponent('FlexboxExamples', () => FlexboxExamples);

In this code, the only thing we’ll be changing for every example is the container key of the styles
object. We can ignore the flex: 1; for now (we’ll come back to it later).

With the code above, we have an app that aligns the content along the main, vertical axis, adding the
key justifyContent: 'flex-start' results in an app with every child element towards the start of
the main axis:

justifyContent: ‘flex-start’

container: {

flex: 1;

justifyContent: 'flex-start';

}

The default value for flexDirection is column, so when we don’t have a value for our flex direction,
it is set to column. Since justifyContent targets the main axis, our child elements align themselves
towards the start of the main axis, which is the top left and work their way down.

WOW! eBook
www.wowebook.org

React Native 752

When we set the value to justifyContent: 'center', our child elements will align themselves
towards the center of the main axis:

justifyContent: ‘flex-center’

container: {

flex: 1;

justifyContent: 'center';

}

When we set justifyContent value to flex-end, our child elements align themselves toward the
end of the main axis:

justifyContent: ‘flex-end’

WOW! eBook
www.wowebook.org

React Native 753

container: {

flex: 1;

justifyContent: 'flex-end';

}

We can also set our justifyContent to be space-between, which will align every child so that the
space between each child item is even along the main axis:

justifyContent: ‘space-between’

container: {

flex: 1;

justifyContent: 'space-between';

}

Finally, we can set our justifyContent value to space-around, which aligns every child elements
so there is even space around each element on the main axis:

WOW! eBook
www.wowebook.org

React Native 754

justifyContent: ‘space-around’

container: {

flex: 1;

justifyContent: 'space-around';

}

What happens if we change the value of flexDirection of our container to row instead of to column?

Themain axis switches to the horizontal axis and all of our child elements will still align themselves
to the main axis, which is now vertical, rather than the vertical axis.

flexDirection: ‘row’

WOW! eBook
www.wowebook.org

React Native 755

container: {

flex: 1;

flexDirection: 'row',

justifyContent: 'space-around';

}

Notice that all we did was change the flexDirection value and our layout is a completely new,
updated layout. The ability to dynamically update our layout makes flexbox incredibly powerful.

Let’s take a look at the cross axis. In order to specify how children align themselves along the cross
axis, we’ll use the align-items (or alignItems in React Native) property.

Unlike the justifyContent values, we only have four available values to set our alignItems

property to:

• flex-start

• center

• flex-end

• stretch

Let’s walk through these as well.

When our container’s alignItems value is set to flex-start, all of our child elements will align
themselves towards the start of the cross axis:

alignItems: ‘flex-start’

WOW! eBook
www.wowebook.org

React Native 756

container: {

flex: 1;

alignItems: 'flex-start';

}

When our container’s alignItems value is set to center, all of our child elements will align
themselves towards the middle of the cross axis:

alignItems: ‘center’

container: {

flex: 1;

alignItems: 'center';

}

When our container’s alignItems value is set to flex-end, all of our child elements will align
themselves towards the end of the cross axis:

WOW! eBook
www.wowebook.org

React Native 757

alignItems: ‘flex-end’

container: {

flex: 1;

alignItems: 'flex-end';

}

When we set our container’s alignItems value to stretch, every child element along the cross axis
will be stretched to the entire width of the cross-axis (provided there is not a specified width when
our flexDirection: row or a height when our flexDirection: column).

Whenever we set alignItems to stretch, each child will stretch across the full width or height of the
parent container, but only if the child element does not set a width. This makes sense as flexbox will
try to set the width for our child elements automatically if the child doesn’t try to override it.

To see this in action, check out the following screen-shots. Notice that we’re including the box styles
here as well to see that we’ve updated the box styles as well.

With the container set to: flexDirection: column, our layout will look like the following diagram.
Notice we’ve removed the static width when we’re using flexDirection: column:

WOW! eBook
www.wowebook.org

React Native 758

alignItems: ‘stretch’

container: {

flex: 1;

flexDirection: 'column',

alignItems: 'stretch';

},

box: {

height: 50,

backgroundColor: '#e76e63',

margin: 10

}

With the container set to: flexDirection: row, our layout will look like the following diagram.
Notice we’ve removed the static height when we’re using flexDirection: row:

WOW! eBook
www.wowebook.org

React Native 759

alignItems: ‘stretch’

container: {

flex: 1;

flexDirection: 'row',

alignItems: 'stretch';

},

box: {

width: 50,

backgroundColor: '#e76e63',

margin: 10

}

Breaking this down a bit, the main axis now runs horizontally since our flexDirection: row is set
to row. This means the alignItems aligns the child elements along the vertical axis (the new cross
axis). Since we’ve removed the height of the child elements and set the alignItems to stretch,
the elements are now going to stretch along the vertical axis for the entire length of the parent
component’s entire cross axis view. For this example here, this is the entire view.

Through this point, we’ve been working with a single flex container or parent element. If we create
nested flex containers, the same logic applies for the nested container child elements (flex items).
Instead of being relative to the entire view (like in our previous examples), they’ll position themselves
according to the nested parent component. Our entire UI will be built upon nesting flex containers.

Other dynamic layouts

In flexbox, there is no such thing as a percentage-based styling. Although this canmake things a bit
more difficult, using flexbox to layout our UI is powerful as our layouts will look the way we want
regardless of screen-size.

WOW! eBook
www.wowebook.org

React Native 760

Recall in our earlier example, we set the flex: 1 value to 1? The flex property allows us to specify
relative widths for our flex containers.

As we’ve seen over and over, Flexbox is concerned with giving control over to the parent element
to handle the layout of its children elements. The flex property is a bit different as it allows child
elements to specify their height or width in comparison to their sibling elements. The best way to
explain flex is to look at some examples,

Let’s start with a view that looks like this:

This is implemented using the following styles:

src/app/styledViews.js

const styles = StyleSheet.create({

container: {

flex: 1,

flexDirection: 'row',

justifyContent: 'center',

alignItems: 'center',

},

box: {

backgroundColor: '#e76e63',

margin: 10,

width: 50,

height: 50,

},

});

What if we want the UI to have two smaller boxes surrounding one larger box, like so:

WOW! eBook
www.wowebook.org

React Native 761

We can use the exact same layout, but now themiddle section is twice aswide as the two surrounding
it. The flex property allows us to set this dynamically.

src/app/styledViews.js

import React, { Component } from 'react';

import { StyleSheet, View } from 'react-native';

const styles = StyleSheet.create({

container: {

flex: 1,

flexDirection: 'row',

justifyContent: 'center',

alignItems: 'center',

},

box: {

backgroundColor: '#e76e63',

margin: 10,

width: 50,

height: 50,

},

});

export class FlexboxLayouts extends Component {

render() {

return (

<View style={[styles.container]}>

<View style={[styles.box, { flex: 1 }]} />

<View style={[styles.box, { flex: 2 }]} />

WOW! eBook
www.wowebook.org

React Native 762

<View style={[styles.box, { flex: 1 }]} />

</View>

);

}

}

export default FlexboxLayouts;

Notice that we didn’t add to our styles, we just set the middle sibling’s flex property to have a flex:
2, while the other siblings have a flex: 1.

We can read this like the flexbox layout is saying: “make sure the middle sibling is twice as large
along the main axis as the first and third children.” This is the reason why flex can replace
percentage-based layouts. In a percentage-based layout, generally is one where the specific elements
are relative in size to other elements, which is exactly what we’re doing above.

It’s important to note that if we place flex: 1 on an element, the element is going to try to take up
as much space as its parent takes up. In most our examples above, we want the “layout area” to be
the size of the parent, which in our initial examples was the entire viewport.

Let’s go deeeeeeper.

What if we wanted a layout like this:

It’s as if the first and third elements are centered both vertically and horizontally, but the second
element is aligned all the way at the bottom.

Breaking the layout down in flexbox terms, we basically have the first and third elements are aligned
on the main axis, both center, while the second element uses flex-end along the cross axis, which
is vertical. To implement this design, we’ll need a way to have the child element override a specific
positioning received from it’s parent.

WOW! eBook
www.wowebook.org

React Native 763

Good news! We have the align-self (alignSelf in React Native) property that allows us to have
the child specify it’s alignment directly. The alignSelf property positions itself among the cross
axis and has the same options as alignItems (which makes sense, as it’s the child telling the parent
what to set it’s alignItems property is for a single element).

src/app/styledViews.js

import React, { Component } from 'react';

import { StyleSheet, View } from 'react-native';

const styles = StyleSheet.create({

container: {

flex: 1,

flexDirection: 'row',

justifyContent: 'center',

alignItems: 'center',

},

box: {

backgroundColor: '#e76e63',

margin: 10,

width: 50,

height: 50,

},

});

export class FlexboxLayouts extends Component {

render() {

return (

<View style={[styles.container]}>

<View style={styles.box} />

<View style={[styles.box, { alignSelf: 'flex-end' }]} />

<View style={styles.box} />

</View>

);

}

}

export default FlexboxLayouts;

Note that all we did to implement this layout was add a single alignSelf: flex-end property to
the second child element which overrides the instruction set by the parent element (which is set to
center in styles.container).

Let’s look at the differences between flexbox for the web and for React Native.

WOW! eBook
www.wowebook.org

React Native 764

When we hear the phrase “React Native uses Flexbox for styling,” what this really means is that
“React Native has it’s own Flexbox (and CSS) implementation185 which is similar to Flexbox, but it
isn’t an exact clone.”

These differences can be summed up in two parts, defaults and excluded properties, where defaults
which are automatically applied to every element and excluded properties are properties that exist
in CSS/Flexbox that don’t exist in React Native’s implementation.

Let’s look at the default values that are applied to every element for React Native;

box-sizing: border-box;

position: relative;

display: flex;

flex-direction: column;

align-items: stretch;

flex-shrink: 0;

align-content: flex-start;

border: 0 solid black;

margin: 0;

padding: 0;

min-width: 0;

Let’s walk through some of the non-obvious ones.

box-sizing: border-box

The box-sizing property makes it so an element’s specified width and height are not affected by
padding or borders – which is what we expect to happen naturally, but browser implementations
are weird and this isn’t the case by default.

flex-direction: column

The flex-direction on the web is set to row, but the default for flexDirection in React Native is
column.

align-items: stretch

The default alignItems property is set to stretch, whereas in the web it’s set to flex-start.

185https://github.com/facebook/yoga

WOW! eBook
www.wowebook.org

https://github.com/facebook/yoga
https://github.com/facebook/yoga

React Native 765

position: relative

By having every element set to relative positioning by default, it makes absolute positioned child
elements target the direct parent rather than the typical “closest parent with position relative or
absolute”. This makes using absolute positioning more consistent while also allowing for left, right,
top, and bottom values by default.

display: flex

Unlike the web implementation, there is no need to set display: flex ever as every element in a
React Native app is already set to display: flex by default.

Now let’s look at the properties that exist on the web, but don’t exist for React Native’s implemen-
tation.

flex-grow, flex-shrink, flex-basis

The three properties available in the web flexbox, which allow an element to grow or shrink a flex
item. React Native has a similar property called flex, but don’t have the same three elements that
do exist in CSS. It’s also important to note that the flex property in React Native works differently
than in the web.

flex on React Native is a number rather than a string and is used to make a specific component
larger or smaller than its sibling components. A component with flex set to 2 will take twice the
space (either vertically or horizontally depending on its primary axis) as a component with flex set
to 1. If flex is set to 0, that component will be sized according to its width and height. This brings us
to our next “exclude” which is any size unit besides px.

In order to accomplish percentage-based layouts, we’ll have to use flex as we just talked about in
the previous section.

Althoughwe did not talk about them directly, React Native allows us to use CSS properties that we’re
already used to in CSS, like position, zIndex, minWidth, etc. A full list of all the available properties
that React Native knows about are available at https://facebook.github.io/react-native/docs/layout-
props.html186.

HTTP requests

We’re only going to get so far in building a React Native app without needing to make an HTTP
request and fetch some data from an external API. React Native includes an abstraction to make
HTTP requests using the fetch API. The fetch187 API provides an interface for fetching resources,
which will seem pretty familiar for anyone who has used _XMLHttpRequest‘ or other clients such
as axios188 and superagent189.

186https://facebook.github.io/react-native/docs/layout-props.html
187https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
188https://www.npmjs.com/package/axios
189https://github.com/visionmedia/superagent

WOW! eBook
www.wowebook.org

https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.npmjs.com/package/axios
https://github.com/visionmedia/superagent
https://facebook.github.io/react-native/docs/layout-props.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.npmjs.com/package/axios
https://github.com/visionmedia/superagent

React Native 766

The fetch API uses promises, so before we get to jumping into using the fetch API with React
Native, let’s take a detour and talk about Promises.

What is a promise

As defined by the Mozilla, a Promise object is used for handling asynchronous computations which
has some important guarantees that are difficult to handle with the callback method (the more old-
school method of handling asynchronous code).

A Promise object is simply a wrapper around a value that may or may not be known when the
object is instantiated and provides a method for handling the value after it is known (also known
as resolved) or is unavailable for a failure reason (we’ll refer to this as rejected).

Using a Promise object gives us the opportunity to associate functionality for an asynchronous
operation’s eventual success or failure (for whatever reason). It also allows us to treat these complex
scenarios by using synchronous-like code.

For instance, consider the following synchronous code where we print out the current time in the
JavaScript console:

var currentTime = new Date();

console.log('The current time is: ' + currentTime);

This is pretty straight-forward and works as the new Date() object represents the time the browser
knows about. Now consider that we’re using a different clock on some other remote machine. For
instance, if we’re making a Happy New Years clock, it would be great to be able to synchronize the
user’s browser with everyone Else’s using a single time value for everyone so no-one misses the ball
dropping ceremony.

Suppose we have a method that handles getting the current time for the clock called getCur-

rentTime() that fetches the current time from a remote server. We’ll represent this now with a
setTimeout() that returns the time (like it’s making a request to a slow API):

function getCurrentTime() {

// Get the current 'global' time from an API

return setTimeout(function() {

return new Date();

}, 2000);

}

var currentTime = getCurrentTime()

console.log('The current time is: ' + currentTime);

Our console.log() log value will return the timeout handler id, which is definitely not the current
time. Traditionally, we can update the code using a callback to get called when the time is available:

WOW! eBook
www.wowebook.org

React Native 767

function getCurrentTime(callback) {

// Get the current 'global' time from an API

return setTimeout(function() {

var currentTime = new Date();

callback(currentTime);

}, 2000);

}

getCurrentTime(function(currentTime) {

console.log('The current time is: ' + currentTime);

});

What if there is an error with the rest? How do we catch the error and define a retry or error state?

function getCurrentTime(onSuccess, onFail) {

// Get the current 'global' time from an API

return setTimeout(function() {

// randomly decide if the date is retrieved or not

var didSucceed = Math.random() >= 0.5;

if (didSucceed) {

var currentTime = new Date();

onSuccess(currentTime);

} else {

onFail('Unknown error');

}

}, 2000);

}

getCurrentTime(function(currentTime) {

console.log('The current time is: ' + currentTime);

}, function(error) {

console.log('There was an error fetching the time');

});

Now, what if we want to make a request based upon the first requests value? As a short example,
let’s reuse the getCurrentTime() function inside again (as though it were a second method, but
allows us to avoid adding another complex-looking function):

WOW! eBook
www.wowebook.org

React Native 768

function getCurrentTime(onSuccess, onFail) {

// Get the current 'global' time from an API

return setTimeout(function() {

// randomly decide if the date is retrieved or not

var didSucceed = Math.random() >= 0.5;

console.log(didSucceed);

if (didSucceed) {

var currentTime = new Date();

onSuccess(currentTime);

} else {

onFail('Unknown error');

}

}, 2000);

}

getCurrentTime(function(currentTime) {

getCurrentTime(function(newCurrentTime) {

console.log('The real current time is: ' + currentTime);

}, function(nestedError) {

console.log('There was an error fetching the second time');

})

}, function(error) {

console.log('There was an error fetching the time');

});

Dealing with asynchronousity in this way can get complex quickly. In addition, we could be fetching
values from a previous function call, what if we only want to get one… there are a lot of tricky cases
to deal with when dealing with values that are not yet available when our app starts.

Enter Promises

Using promises, on the other hand helps us avoid a lot of this complexity (although is not a silver
bullet solution). The previous code, which could be called spaghetti code can be turned into a neater,
more synchronous-looking version:

WOW! eBook
www.wowebook.org

React Native 769

function getCurrentTime(onSuccess, onFail) {

// Get the current 'global' time from an API using Promise

return new Promise((resolve, reject) => {

setTimeout(function() {

var didSucceed = Math.random() >= 0.5;

didSucceed ? resolve(new Date()) : reject('Error');

}, 2000);

})

}

getCurrentTime()

.then(currentTime => getCurrentTime())

.then(currentTime => {

console.log('The current time is: ' + currentTime);

return true;

})

.catch(err => console.log('There was an error:' + err))

This previous source example is a bit cleaner and clear as to what’s going on and avoids a lot of
tricky error handling/catching.

To catch the value on success, we’ll use the then() function available on the Promise instance object.
The then() function is called with whatever the return value is of the promise itself. For instance,
in the example above, the getCurrentTime() function resolves with the currentTime() value (on
successful completion) and calls the then() function on the return value (which is another promise)
and so on and so forth.

To catch an error that occurs anywhere in the promise chain, we can use the catch() method.

We’re using a promise chain in the above example to create a chain of actions to
be called one after another. A promise chain sounds complex, but it’s fundamentally
simple. Essentially, we can “synchronize” a call to multiple asynchronous operations
in succession. Each call to then() is called with the previous then() function’s return
value.

For instance, if we wanted to manipulate the value of the getCurrentTime() call, we
can add a link in the chain, like so:

getCurrentTime()

.then(currentTime => getCurrentTime())

.then(currentTime => {

return 'It is now: ' + currentTime;

})

// this logs: "It is now: [current time]"

.then(currentTimeMessage => console.log(currentTimeMessage))

.catch(err => console.log('There was an error:' + err))

WOW! eBook
www.wowebook.org

React Native 770

Single-use guarantee

A promise only ever has one of three states at any given time:

• pending
• fulfilled (resolved)
• rejected (error)

A pending promise can only every lead to either a fulfilled state or a rejected state once and only
once, which can avoid some pretty complex error scenarios. This means that we can only ever return
a promise once. If we want to rerun a function that uses promises, we need to create a new one.

Creating a promise

We can create new promises (as the example shows above) using the Promise constructor. It accepts
a function that will get run with two parameters:

• The onSuccess (or resolve) function to be called on success resolution
• The onFail (or reject) function to be called on failure rejection

Recalling our function from above, we can see that we call the resolve() function if the request
succeeded and call the reject() function if the method returns an error condition.

var promise = new Promise(function(resolve, reject) {

// call resolve if the method succeeds

resolve(true);

})

promise.then(bool => console.log('Bool is true'))

Now that we have a familiarity with promises, let’s use this in a React Native app. The simplest
possible GET implementation to make an HTTP request, the fetch method accepts a URL as it’s
first argument and returns a promise which, when resolved, contains the response object.

For instance, let’s say we have a getGithubUsers() function where we want to make an API call to
fetch some users from github. This fetch call could be implemented like so:

WOW! eBook
www.wowebook.org

React Native 771

src/app/styledViews.js

const baseUrl = 'https://api.github.com';

export const getGithubUsers = ({ offset }) => {

return fetch(`${baseUrl}/users?since=${offset}`)

.then(response => response.json())

.catch(console.warn);

};

It’s possible to use fetch for more than just GET requests, of course. We can specify more details
for our requests by passing a second argument which contains more details along with the request.

For example, let’s say we wanted to create a gist on github using the github API. We can easily
handle this by using the fetch API with a second parameter. We might implement this like so:

src/app/styledViews.js

export const makeGist = (

activity,

{ description = '', isPublic = true } = {}

) => fetch(`${baseUrl}/gists`, {

method: 'POST',

body: JSON.stringify({

files: {

'activity.json': {

content: JSON.stringify(activity),

},

},

description,

public: isPublic,

}),

})

.then(response => response.json());

The fetch API has a lot of possibilities and can be used across platforms with React Native’s imple-
mentation. Formore details about theAPI, check out the docs onMDNat https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API/Using_Fetch190.

190https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

React Native 772

Debugging with React Native

One of the very nicest features that comes along with writing a React Native app is the debugging
experience. One of the main goals of the React Native team is to take the development work-flow
we’re used to working with on the web and bring it to native development.

When we’re running our app on the simulator, we can open the debugging menu by platform by
pressing:

• iOS: Cmd + D (or CTRL + D on a PC)
• Android: Cmd + M (or CTRL + M on a PC)

If this works, this will bring up the in-app developer menu:

WOW! eBook
www.wowebook.org

React Native 773

From this menu, we have a bunch of different options for debugging. The one we’ll work with
directly is the menu item with the label: Debug JS Remotely. Clicking on this menu item will bring
up a window in Chrome191.

If we open the developer console on the page it opens, we’ll see that we can actually debug out
native application using the Chrome dev tools!

Where to go from here

The React Native community is active and growing all the time.

The number of React Native meetups is growing all the time and we highly recommend check-
ing one out. The list of world-wide React Native meetups can be found on meetup.com at:

191https://google.com/chrome

WOW! eBook
www.wowebook.org

https://google.com/chrome
https://google.com/chrome

React Native 774

https://www.meetup.com/topics/react-native/192.

We are available in the chat room associated with the book, so feel free to stop in and say hello.

The React Native team has an open React Native chat channel available through Discord, which can
be found at: https://discordapp.com/invite/0ZcbPKXt5bZjGY5n193.

Community resources can be found on npmjs.org at https://www.npmjs.com/search?q=react-
native194.

192https://www.meetup.com/topics/react-native/
193https://discordapp.com/invite/0ZcbPKXt5bZjGY5n
194https://www.npmjs.com/search?q=react-native

WOW! eBook
www.wowebook.org

https://www.meetup.com/topics/react-native/
https://discordapp.com/invite/0ZcbPKXt5bZjGY5n
https://www.npmjs.com/search?q=react-native
https://www.npmjs.com/search?q=react-native
https://www.meetup.com/topics/react-native/
https://discordapp.com/invite/0ZcbPKXt5bZjGY5n
https://www.npmjs.com/search?q=react-native

Appendix A: PropTypes
PropTypes are a way to validate the values that are passed in through a component’s props. Well-
defined interfaces provide us with a layer of safety at the run time of our apps. They also provide a
layer of documentation to the consumer of our components.

To use PropTypes, install the package with npm:

$ npm i --save prop-types

And then import the library in whichever files you need it:

import PropTypes from 'prop-types';

In versions of React earlier than 15.5.0, you’d access PropTypes via the main React library.
This behavior is staged for deprecation.

We define PropTypes by passing defining them as a static property of the component class. We can
either do this by setting the propTypes as a static property on the class or by setting them after the
class is defined.

code/appendix/proptypes/Component.js

class Component extends React.Component {

static propTypes = {

name: PropTypes.string

}

// ...

render() {

return (<div>{this.props.name}</div>)

}

}

We can also set the propTypes as a static property on the component after the class is defined.

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 776

code/appendix/proptypes/Component.js

class Component extends React.Component {

// ...

render() {

return (<div>{this.props.name}</div>)

}

// ...

Component.propTypes = {

name: PropTypes.string

}

createClass() proptypes
When using the createClass() method to define a component, we pass the propTypes as
a key with the value as the propTypes:

const Component = React.createClass({

propTypes: {

// propType definitions go here

},

render: function() {}

});

The key of the propTypes object defines the name of the prop we are validating, while the value
is the types defined by the PropTypes object (which we discuss below) or a custom one through a
custom function.

The PropTypes object exports a lot of validators that cover the most of the cases we’ll encounter.
For the not-so common cases, React allows us to define our own PropType validators as well.

Validators

The PropTypes object contains a list of common validators (but we can also define our own. More
on that later).

When a prop is passed in with an invalid type or fails the prop type, a warning is passed into the
JavaScript console. These warnings will only be shown in development mode, so if we accidentally
deploy our app into production with an improper use of a component, our users won’t see the
warning.

The built in validators are:

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 777

• string

• number

• boolean

• function

• object

• shape

• oneOf

• instanceOf

• array

• arrayOf

• node

• element

• any

• required

string

To define a prop as a string, we can use PropTypes.string.

code/appendix/proptypes/string.js

class Component extends React.Component {

static propTypes = {

name: PropTypes.string

}

// ...

render() {

return (<div>{this.props.name}</div>)

}

}

To pass a string as a prop we can either just pass the string itself as an attribute or use the {} braces
to define a string variable. These are all functionally equivalent:

<Component name={"Ari"} />

<Component name="Ari" />

number

To specify a prop should be a number, we can use PropTypes.number.

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 778

code/appendix/proptypes/number.js

class Component extends React.Component {

static propTypes = {

totalCount: PropTypes.number

}

// ...

render() {

return (<div>{this.props.totalCount}</div>)

}

}

Passing in a number, we must pass it as a JavaScript value or the value of a variable using braces:

var x = 20;

<Component totalCount={20} />

<Component totalCount={x} />

boolean

To specify a prop should be a boolean (true or false), we can use PropTypes.bool.

code/appendix/proptypes/bool.js

class Component extends React.Component {

static propTypes = {

on: PropTypes.bool

}

// ...

render() {

return (

<div>

{this.props.on ? 'On' : 'Off'}

</div>

)

}

}

To use a boolean in a JSX expression, we can pass it as a JavaScript value.

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 779

var isOn = true;

<Component on={true} />

<Component on={false} />

<Component on={isOn} />

A trick for using booleans to show or hide content is to use the && expression.

For instance, inside our Component.render() function, if we want to show content only
when the on proptype is true, we can do so like: {lang=js,line-numbers=off} render() { return
(<div> {this.props.on && <p>This component is on</p>} </div>) }

function

We can pass a function as a prop as well. To define a prop to be a function, we can use
PropTypes.func. Often times when we write a Form component, we’ll pass a function as a prop
to be called when the form is submitted (i.e. onSubmit()). It’s common to define a prop as a required
function on a component.

code/appendix/proptypes/func.js

class Component extends React.Component {

static propTypes = {

onPress: PropTypes.func

}

// ...

render() {

return (

<div onClick={this.props.onPress}>

Press me

</div>

)

}

}

We can pass a function as a prop by using the JavaScript expression syntax, like so:

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 780

const x = function(name) {};

const fn = value => alert("Value: " + value);

<Component onComplete={x} />

<Component onComplete={fn} />

object

We can require a prop should be a JavaScript object through the PropTypes.object:

code/appendix/proptypes/object.js

class Component extends React.Component {

static propTypes = {

user: PropTypes.object

}

// ...

render() {

const { user } = this.props

return (

<div>

<h1>{user.name}</h1>

<h5>{user.profile}</h5>

</div>

)

}

}

Sending an object through as a prop, we’ll need to use the JavaScript expression {} syntax:

const user = {

name: 'Ari'

}

<Component user={user} />

<Component user={{name: 'Anthony'}} />

object shape

React allows us to define the shape of an object we expect to receive by using PropTypes.shape().
The PropTypes.shape() function accepts an object with a list of key-value pairs that dictate the
keys an object is expected to have as well as the value type:

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 781

code/appendix/proptypes/objectOfShape.js

class Component extends React.Component {

static propTypes = {

user: PropTypes.shape({

name: PropTypes.string,

profile: PropTypes.string

})

}

// ...

render() {

const { user } = this.props

return (

<div>

<h1>{user.name}</h1>

<h5>{user.profile}</h5>

</div>

)

}

}

multiple types

Sometimes we don’t know in advance what kind a particular prop will be, but we can accept one or
other type. React gives us the propTypes of oneOf() and oneOfType() for these situations.

Using oneOf() requires that the propType be a discrete value of values, for instance to require a
component to specify a log level value:

code/appendix/proptypes/oneOf.js

class Component extends React.Component {

static propTypes = {

level: PropTypes.oneOf([

'debug', 'info', 'warning', 'error'

])

}

// ...

render() {

return (

<div>

<p>{this.props.level}</p>

</div>

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 782

)

}

}

Using oneOfType() says that a prop can be one of any number of types. For instance, a phone number
may either be passed to a component as a string or an integer:

code/appendix/proptypes/oneOfType.js

class Component extends React.Component {

static propTypes = {

phoneNumber: PropTypes.oneOfType([

PropTypes.number,

PropTypes.string

])

}

// ...

render() {

return (

<div>

<p>{this.props.phoneNumber}</p>

</div>

)

}

}

instanceOf

We can dictate that a componentmust be an instance of a JavaScript class using PropTypes.instanceOf()
as the value of the propType:

code/appendix/proptypes/instanceOf.js

class Component extends React.Component {

static propTypes = {

user: PropTypes.instanceOf(User)

}

// ...

render() {

const { user } = this.props

return (

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 783

<div>

<h3>{user.name}</h3>

</div>

)

}

}

We’ll use the JavaScript expression syntax to pass in a particular prop.

code/appendix/proptypes/instanceOf.js

class User {

constructor(name) {

this.name = name

}

}

const ari = new User('Ari');

<Component user={ari} />

array

On occasion we’ll want to send in an array as a prop. To set an array, we’ll use the PropTypes.array
as the value.

code/appendix/proptypes/array.js

class Component extends React.Component {

static propTypes = {

authors: PropTypes.array

}

// ...

render() {

const { authors } = this.props

return (

<div>

{authors && authors.map(author => {

<AuthorCard author={author} />

})}

</div>

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 784

)

}

}

Sending an object through as a prop, we’ll need to use the JavaScript expression {} syntax:

const users = [

{name: 'Ari'}

{name: 'Anthony'}

];

<Component authors={[{name: 'Anthony'}]} />

<Component authors={users} />

array of type

React allows us to dictate the type of values each member of an array should be using Prop-

Types.arrayOf().

code/appendix/proptypes/arrayOfType.js

class Component extends React.Component {

static propTypes = {

authors: PropTypes.arrayOf(PropTypes.object)

}

// ...

render() {

const { authors } = this.props

return (

<div>

{authors && authors.map(author => {

<AuthorCard author={author} />

})}

</div>

)

}

}

We’ll use the JavaScript expression syntax {} to pass in an array:

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 785

const users = [

{name: 'Ari'}

{name: 'Anthony'}

];

<Component authors={[{name: 'Anthony'}]} />

<Component authors={users} />

node

We can also pass anything that can be rendered, such as numbers, string, DOM elements, arrays, or
fragments that contain them using the PropTypes.node.

code/appendix/proptypes/node.js

class Component extends React.Component {

static propTypes = {

icon: PropTypes.node

}

// ...

render() {

const { icon } = this.props

return (

<div>

{icon}

</div>

)

}

}

Passing a node as a prop is straightforward as well. Passing a node as a value is often useful when
requiring a component to have children or setting a custom element. For instance, if we want to
allow our user to pass in either the name of an icon or a custom component, we can use the node
propType.

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 786

const icon = <FontAwesomeIcon name="user" />

<Component icon={icon} />

<Component icon={"fa fa-cog"} />

element

React’s flexibility allows us to pass another React element in as a prop as well by using the
PropTypes.element.

We can build our components so that the interface they allow our users to specify a custom
component. For instance, we might have a <List /> component who’s responsibility is to output
a list of elements. Without custom components, we would have to build a separate <List /> React
component for each type of list we want to render (which might be appropriate, depending on the
behavior of the element). By passing a component type, we can reuse the <List /> component.

For instance, a list component might look like:

code/appendix/proptypes/element.js

class Component extends React.Component {

static propTypes = {

listComponent: PropTypes.element,

list: PropTypes.array

}

// ...

render() {

const { list } = this.props

return (

{list.map(this.renderListItem)}

)

}

}

We can use this list component with or without specifying a custom component:

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 787

code/appendix/proptypes/element.js

const Item = function(props) {

return (

<div>{props.children}</div>

)

}

<List list={[1, 2, 3]} />

<List list={[1, 2, 3]} listComponent={Item} />

any type

React also allows us to specify that a prop must be present, regardless of it’s type. We can do this by
using the PropTypes.any validator.

code/appendix/proptypes/any.js

class Component extends React.Component {

static propTypes = {

mustBePresent: PropTypes.any

}

// ...

render() {

return (

<div>

Is here: {this.props.mustBePresent}

</div>

)

}

}

Optional & required props

All props are considered optional unless otherwise specified. To require a prop be passed to a
component and validated, we can append every propType validation with .isRequired.

For instance, if we must have a function to get called after some action when a Loading component
has completed, we can specify it like this:

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 788

code/appendix/proptypes/optional.js

class Component extends React.Component {

static propTypes = {

// Optional props:

onStart: PropTypes.func,

// Required props:

onComplete: PropTypes.func.isRequired,

name: PropTypes.string.isRequired

}

// ...

startTimer = (seconds=5) => {

const { onStart, onComplete } = this.props

onStart()

setTimeout(() => onComplete(), seconds)

}

// ...

render() {

const { name } = this.props

return (

<div onClick={this.startTimer}>

{name}

</div>

)

}

}

custom validator

React allows us to specify a custom validation function for all of the other situations where the
default validation functions don’t cover it. In order to run a write a custom validation we’ll specify
a function that accepts 3 arguments:

1. The props passed to the component
2. The propName being validated
3. The componentName we’re validating against

If our validation passes, we can run through the function and return anything. The validation
function will only fail if an Error object is raised (i.e. new Error()).

For instance, if we have a loader that accepts validated users, we can run a custom function against
the prop.

WOW! eBook
www.wowebook.org

Appendix A: PropTypes 789

code/appendix/proptypes/custom.js

class Component extends React.Component {

static propTypes = {

user: function(props, propName, componentName) {

const user = props[propName];

if (!user.isValid()) {

return new Error('Invalid user');

}

}

}

// ...

render() {

const { user } = this.props

return (

<div>

{user.name}

</div>

)

}

}

Where the User class might look something like this:

code/appendix/proptypes/custom.js

class User {

constructor(name) {

this.name = name

}

isValid() {

// must have a name

return !!this.name && new Error('Name must be present')

}

}

WOW! eBook
www.wowebook.org

Appendix B: ES6
This appendix is a non-exhaustive list of new syntactic features and methods that were added to
JavaScript in ES6. These features are the most commonly used and most helpful.

While this appendix doesn’t cover ES6 classes, we go over the basics while learning about
components in the book. In addition, this appendix doesn’t include descriptions of some larger new
features like promises and generators. If you’d like more info on those or on any topic below, we
encourage you to reference the Mozilla Developer Network’s website195 (MDN).

Prefer const and let over var

If you’ve worked with ES5 JavaScript before, you’re likely used to seeing variables declared with
var:

appendix/es6/const_let.js

var myVariable = 5;

Both the const and let statements also declare variables. They were introduced in ES6.

Use const in cases where a variable is never re-assigned. Using constmakes this clear to whoever is
reading your code. It refers to the “constant” state of the variable in the context it is defined within.

If the variable will be re-assigned, use let.

We encourage the use of const and let instead of var. In addition to the restriction introduced by
const, both const and let are block scoped as opposed to function scoped. This scoping can help
avoid unexpected bugs.

Arrow functions

There are three ways to write arrow function bodies. For the examples below, let’s say we have an
array of city objects:

195https://developer.mozilla.org

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/
https://developer.mozilla.org/

Appendix B: ES6 791

appendix/es6/arrow_funcs.js

const cities = [

{ name: 'Cairo', pop: 7764700 },

{ name: 'Lagos', pop: 8029200 },

];

If we write an arrow function that spans multiple lines, we must use braces to delimit the function
body like this:

appendix/es6/arrow_funcs.js

const formattedPopulations = cities.map((city) => {

const popMM = (city.pop / 1000000).toFixed(2);

return popMM + ' million';

});

console.log(formattedPopulations);

// -> ["7.76 million", "8.03 million"]

Note that we must also explicitly specify a return for the function.

However, if we write a function body that is only a single line (or single expression) we can use
parentheses to delimit it:

appendix/es6/arrow_funcs.js

const formattedPopulations2 = cities.map((city) => (

(city.pop / 1000000).toFixed(2) + ' million'

));

Notably, we don’t use return as it’s implied.

Furthermore, if your function body is terse you can write it like so:

appendix/es6/arrow_funcs.js

const pops = cities.map(city => city.pop);

console.log(pops);

// [7764700, 8029200]

The terseness of arrow functions is one of two reasons that we use them. Compare the one-liner
above to this:

WOW! eBook
www.wowebook.org

Appendix B: ES6 792

appendix/es6/arrow_funcs.js

const popsNoArrow = cities.map(function(city) { return city.pop });

Of greater benefit, though, is how arrow functions bind the this object.

The traditional JavaScript function declaration syntax (function () {}) will bind this in anony-
mous functions to the global object. To illustrate the confusion this causes, consider the following
example:

appendix/es6/arrow_funcs_jukebox_1.js

function printSong() {

console.log("Oops - The Global Object");

}

const jukebox = {

songs: [

{

title: "Wanna Be Startin' Somethin'",

artist: "Michael Jackson",

},

{

title: "Superstar",

artist: "Madonna",

},

],

printSong: function (song) {

console.log(song.title + " - " + song.artist);

},

printSongs: function () {

// `this` bound to the object (OK)

this.songs.forEach(function(song) {

// `this` bound to global object (bad)

this.printSong(song);

});

},

}

jukebox.printSongs();

// > "Oops - The Global Object"

// > "Oops - The Global Object"

WOW! eBook
www.wowebook.org

Appendix B: ES6 793

The method printSongs() iterates over this.songs with forEach(). In this context, this is bound
to the object (jukebox) as expected. However, the anonymous function passed to forEach() binds
its internal this to the global object. As such, this.printSong(song) calls the function declared at
the top of the example, not the method on jukebox.

JavaScript developers have traditionally used workarounds for this behavior, but arrow functions
solve the problem by capturing the this value of the enclosing context. Using an arrow function
for printSongs() has the expected result:

appendix/es6/arrow_funcs_jukebox_2.js

printSongs: function () {

this.songs.forEach((song) => {

// `this` bound to same `this` as `printSongs()` (`jukebox`)

this.printSong(song);

});

},

}

jukebox.printSongs();

// > "Wanna Be Startin' Somethin' - Michael Jackson"

// > "Superstar - Madonna"

For this reason, throughout the book we use arrow functions for all anonymous functions.

Modules

ES6 formally supports modules using the import/export syntax.

Named exports

Inside any file, you can use export to specify a variable themodule should expose. Here’s an example
of a file that exports two functions:

// greetings.js

export const sayHi = () => (console.log('Hi!'));

export const sayBye = () => (console.log('Bye!'));

const saySomething = () => (console.log('Something!'));

Now, anywhere we wanted to use these functions we could use import. We need to specify which
functions we want to import. A common way of doing this is using ES6’s destructuring assignment
syntax to list them out like this:

WOW! eBook
www.wowebook.org

Appendix B: ES6 794

// app.js

import { sayHi, sayBye } from './greetings';

sayHi(); // -> Hi!

sayBye(); // => Bye!

Importantly, the function that was not exported (saySomething) is unavailable outside of themodule.

Also note that we supply a relative path to from, indicating that the ES6 module is a local file as
opposed to an npm package.

Instead of inserting an export before each variable you’d like to export, you can use this syntax to
list off all the exposed variables in one area:

// greetings.js

const sayHi = () => (console.log('Hi!'));

const sayBye = () => (console.log('Bye!'));

const saySomething = () => (console.log('Something!'));

export { sayHi, sayBye };

We can also specify that we’d like to import all of a module’s functionality underneath a given
namespace with the import * as <Namespace> syntax:

// app.js

import * as Greetings from './greetings';

Greetings.sayHi();

// -> Hi!

Greetings.sayBye();

// => Bye!

Greetings.saySomething();

// => TypeError: Greetings.saySomething is not a function

Default export

The other type of export is a default export. A module can only contain one default export:

WOW! eBook
www.wowebook.org

Appendix B: ES6 795

// greetings.js

const sayHi = () => (console.log('Hi!'));

const sayBye = () => (console.log('Bye!'));

const saySomething = () => (console.log('Something!'));

const Greetings = { sayHi, sayBye };

export default Greetings;

This is a common pattern for libraries. It means you can easily import the library wholesale without
specifying what individual functions you want:

// app.js

import Greetings from './greetings';

Greetings.sayHi(); // -> Hi!

Greetings.sayBye(); // => Bye!

It’s not uncommon for amodule to use amix of both named exports and default exports. For instance,
with react-dom, you can import ReactDOM (a default export) like this:

import ReactDOM from 'react-dom';

ReactDOM.render(

// ...

);

Or, if you’re only going to use the render() function, you can import the named render() function
like this:

import { render } from 'react-dom';

render(

// ...

);

To achieve this flexibility, the export implementation for react-dom looks something like this:

WOW! eBook
www.wowebook.org

Appendix B: ES6 796

// a fake react-dom.js

export const render = (component, target) => {

// ...

};

const ReactDOM = {

render,

// ... other functions

};

export default ReactDOM;

If you want to play around with the module syntax, check out the folder code/webpack/es6-

modules.

For more reading on ES6 modules, see this article from Mozilla: “ES6 in Depth: Modules196”.

Object.assign()

We use Object.assign() often throughout the book. We use it in areas where we want to create a
modified version of an existing object.

Object.assign() accepts any number of objects as arguments. When the function receives two
arguments, it copies the properties of the second object onto the first, like so:

appendix/es6/object_assign.js

const coffee = { };

const noCream = { cream: false };

const noMilk = { milk: false };

Object.assign(coffee, noCream);

// coffee is now: `{ cream: false }`

It is idiomatic to pass in three arguments to Object.assign(). The first argument is a new JavaScript
object, the one that Object.assign() will ultimately return. The second is the object whose
properties we’d like to build off of. The last is the changes we’d like to apply:

196https://hacks.mozilla.org/2015/08/es6-in-depth-modules/

WOW! eBook
www.wowebook.org

https://hacks.mozilla.org/2015/08/es6-in-depth-modules/
https://hacks.mozilla.org/2015/08/es6-in-depth-modules/

Appendix B: ES6 797

appendix/es6/object_assign.js

const coffeeWithMilk = Object.assign({}, coffee, { milk: true });

// coffeeWithMilk is: `{ cream: false, milk: true }`

// coffee was not modified: `{ cream: false, milk: false }`

Object.assign() is a handy method for working with “immutable” JavaScript objects.

Template literals

In ES5 JavaScript, you’d interpolate variables into strings like this:

appendix/es6/template_literals_1.js

var greeting = 'Hello, ' + user + '! It is ' + degF + ' degrees outside.';

With ES6 template literals, we can create the same string like this:

appendix/es6/template_literals_2.js

const greeting = `Hello, ${user}! It is ${degF} degrees outside.`;

The spread operator (...)

In arrays, the ellipsis ... operator will expand the array that follows into the parent array. The
spread operator enables us to succinctly construct new arrays as a composite of existing arrays.

Here is an example:

appendix/es6/spread_operator_arrays.js

const a = [1, 2, 3];

const b = [4, 5, 6];

const c = [...a, ...b, 7, 8, 9];

console.log(c); // -> [1, 2, 3, 4, 5, 6, 7, 8, 9]

Notice how this is different than if we wrote:

WOW! eBook
www.wowebook.org

Appendix B: ES6 798

appendix/es6/spread_operator_arrays.js

const d = [a, b, 7, 8, 9];

console.log(d); // -> [[1, 2, 3], [4, 5, 6], 7, 8, 9]

Enhanced object literals

In ES5, all objects were required to have explicit key and value declarations:

appendix/es6/enhanced_object_literals.js

const explicit = {

getState: getState,

dispatch: dispatch,

};

In ES6, you can use this terser syntax whenever the property name and variable name are the same:

appendix/es6/enhanced_object_literals.js

const implicit = {

getState,

dispatch,

};

Lots of open source libraries use this syntax, so it’s good to be familiar with it. But whether you use
it in your own code is a matter of stylistic preference.

Default arguments

With ES6, you can specify a default value for an argument in the case that it is undefined when the
function is called.

This:

WOW! eBook
www.wowebook.org

Appendix B: ES6 799

appendix/es6/default_args.js

function divide(a, b) {

// Default divisor to `1`

const divisor = typeof b === 'undefined' ? 1 : b;

return a / divisor;

}

Can be written as this:

appendix/es6/default_args.js

function divide(a, b = 1) {

return a / b;

}

In both cases, using the function looks like this:

appendix/es6/default_args.js

divide(14, 2);

// => 7

divide(14, undefined);

// => 14

divide(14);

// => 14

Whenever the argument b in the example above is undefined, the default argument is used. Note
that null will not use the default argument:

appendix/es6/default_args.js

divide(14, null); // `null` is used as divisor

// => Infinity // 14 / null

Destructuring assignments

For arrays

In ES5, extracting and assigning multiple elements from an array looked like this:

WOW! eBook
www.wowebook.org

Appendix B: ES6 800

appendix/es6/destructuring_assignments.js

var fruits = ['apples', 'bananas', 'oranges'];

var fruit1 = fruits[0];

var fruit2 = fruits[1];

In ES6, we can use the destructuring syntax to accomplish the same task like this:

appendix/es6/destructuring_assignments.js

const [veg1, veg2] = ['asparagus', 'broccoli', 'onion'];

console.log(veg1); // -> 'asparagus'

console.log(veg2); // -> 'broccoli'

The variables in the array on the left are “matched” and assigned to the corresponding elements in
the array on the right. Note that 'onion' is ignored and has no variable bound to it.

For objects

We can do something similar for extracting object properties into variables:

appendix/es6/destructuring_assignments.js

const smoothie = {

fats: ['avocado', 'peanut butter', 'greek yogurt'],

liquids: ['almond milk'],

greens: ['spinach'],

fruits: ['blueberry', 'banana'],

};

const { liquids, fruits } = smoothie;

console.log(liquids); // -> ['almond milk']

console.log(fruits); // -> ['blueberry', 'banana']

Parameter context matching

We can use these same principles to bind arguments inside a function to properties of an object
supplied as an argument:

WOW! eBook
www.wowebook.org

Appendix B: ES6 801

appendix/es6/destructuring_assignments.js

const containsSpinach = ({ greens }) => {

if (greens.find(g => g === 'spinach')) {

return true;

} else {

return false;

}

};

containsSpinach(smoothie); // -> true

We do this often with functional React components:

appendix/es6/destructuring_assignments.js

const IngredientList = ({ ingredients, onClick }) => (

<ul className='IngredientList'>

{

ingredients.map(i => (

<li

key={i.id}

onClick={() => onClick(i.id)}

className='item'

>

{i.name}

))

}

)

Here, we use destructuring to extract the props into variables (ingredients and onClick) that we
then use inside the component’s function body.

WOW! eBook
www.wowebook.org

Changelog
Revision 32 - 2017-06-14

• Fix bug introduced in “Routing” by Spotify API change
• Update all terminal commands so they are compatible with Windows PowerShell
• Language and formatting fixes

Revision 31 - 2017-05-18

• Update book to React 15.5.4
• Use PropTypes from prop-types package
• Moves ES6-specific material to an appendix
• Language and bug fixes

Revision 30 - 2017-04-20

• Add “How to Get the Most Out of This Book”
• Update Redux apps to use Create React App
• Typos

Revision 29 - 2017-04-13

• “Forms” - fixes mutating this.state and other typos
• Updates “Advanced Components” to ES6 Classes
• Updates “JSX” to ES6 Classes

Revision 28 - 2017-04-10

• Update “Routing” chapter to react-router v4.0.0
• Minor bug fixes and typos

Revision 27 - 2017-03-16

• Fixes dependencies issues in “Advanced Components”
• Fixes linting errors in “Relay” Chapter

WOW! eBook
www.wowebook.org

Changelog 803

Revision 26 - 2017-02-22

• Added Foreword by Christopher Chedeau @vjeux197

• Typos
• Update to discussion about property initializers in “Components”

Revision 25 - 2017-02-17

• Added Relay Chapter

Revision 24 - 2017-02-08

• Update Redux chapters to use ES6 class components

Revision 23 - 2017-02-06

• Update “Webpack” and “Unit Testing”
– Use ES6 class components
– Discuss .babelrc

• Bug fix for “Routing” chapter

Revision 22 - 2017-02-01

• Update Chapter 1
– Use property initializers
– Deeper discussion on Babel, Babel plugins

• Update Chapters 2, 3
– Use ES6 class components

• Update Redux chapters
– Image sizes

Revision 21 - 2017-01-27

• Update Chapter 1
– Use ES6 class components
– Improved discussion on immutability

197https://twitter.com/Vjeux

WOW! eBook
www.wowebook.org

https://twitter.com/Vjeux
https://twitter.com/Vjeux

Changelog 804

Revision 20 - 2017-01-10

• Added “React Native” Chapter!

Revision 19 - 2016-12-20

• Added “Routing” Chapter!

Revision 18 - 2016-11-22

• Improved Windows support
• Updated code to react-15.4.1

• Bug fixes

Revision 17 - 2016-11-04

• Updated code to work in Windows without Cygwin (PowerShell)
• Added Windows setup instructions to the book
• Bumped Babel versions

Revision 16 - 2016-10-12

• Added “Unit Testing” Chapter!

Revision 15 - 2016-10-05

• Added “Using Webpack with create-react-app” Chapter!

Revision 14 - 2016-08-26

• Added “Forms” Chapter!

Revision 13 - 2016-08-02

• Updated code to react-15.3.0

Revision 12 - 2016-07-26

• Updated code to react-15.2.1

WOW! eBook
www.wowebook.org

Changelog 805

Revision 11 - 2016-07-08

• Updated code to react-15.2.0

Revision 10 - 2016-06-24

• Updated code to react-15.1.0

Revision 9 - 2016-06-21

• Added “Writing a GraphQL Server” Chapter

Revision 8 - 2016-06-02

• Added “Intermediate Redux” Chapter
• Added “Using Presentational and Container Components with Redux” Chapter

Revision 7 - 2016-05-13

• Added “Using GraphQL” chapter
• Updated all code to react-15.0.2

Revision 6 - 2016-05-13

• Added “Configuring Components” chapter
• Added “PropTypes” appendix

Revision 5 - 2016-04-25

• Added “Intro to Flux and Redux” chapter

Revision 4 - 2016-04-22

• Added “JSX and the Virtual DOM” chapter

Revision 3 - 2016-04-08

• Upgraded all code to react-15.0.1

WOW! eBook
www.wowebook.org

Changelog 806

Revision 2 - 2016-03-16

• Significant rewrites to Ch 1. “First React Application” tomake it clearer / better flow of thought
• Various bugfixes
• Improvements to code style
• Updated diagrams

Revision 1 - 2016-02-14

Initial version of the book. Contains:

• Ch 1. Your first React Web Application
• Ch 2. Components
• Ch 3. Components & Servers

WOW! eBook
www.wowebook.org

	Table of Contents
	Book Revision
	Bug Reports
	Chat With The Community!
	Be notified of updates via Twitter
	We'd love to hear from you!
	Foreword
	How to Get the Most Out of This Book
	Overview
	Running Code Examples
	Project setups

	Code Blocks and Context
	Code Block Numbering

	Getting Help
	Emailing Us
	Technical Support Response Time

	Get excited

	Part I
	Your first React Web Application
	Building Product Hunt
	Setting up your development environment
	Code editor
	Node.js and npm
	Install Git
	Browser

	Special instruction for Windows users
	Ensure IIS is installed

	JavaScript ES6/ES7
	Getting started
	Sample Code
	Previewing the application
	Prepare the app

	What's a component?
	Our first component
	JSX
	The developer console
	Babel
	ReactDOM.render()

	Building Product
	Making Product data-driven
	The data model
	Using props
	Rendering multiple products

	React the vote (your app's first interaction)
	Propagating the event
	Binding custom component methods
	Using state
	Setting state with this.setState()

	Updating state and immutability
	Refactoring with the Babel plugin transform-class-properties
	Babel plugins and presets
	Property initializers
	Refactoring Product
	Refactoring ProductList

	Congratulations!

	Components
	A time-logging app
	Getting started
	Previewing the app
	Prepare the app

	Breaking the app into components
	The steps for building React apps from scratch
	Step 2: Build a static version of the app
	TimersDashboard
	EditableTimer
	TimerForm
	ToggleableTimerForm
	Timer
	Render the app
	Try it out

	Step 3: Determine what should be stateful
	State criteria
	Applying the criteria

	Step 4: Determine in which component each piece of state should live
	The list of timers and properties of each timer
	Whether or not the edit form of a timer is open
	Visibility of the create form

	Step 5: Hard-code initial states
	Adding state to TimersDashboard
	Receiving props in EditableTimerList
	Props vs. state
	Adding state to EditableTimer
	Timer remains stateless
	Adding state to ToggleableTimerForm
	Adding state to TimerForm

	Step 6: Add inverse data flow
	TimerForm
	ToggleableTimerForm
	TimersDashboard

	Updating timers
	Adding editability to Timer
	Updating EditableTimer
	Updating EditableTimerList
	Defining onEditFormSubmit() in TimersDashboard

	Deleting timers
	Adding the event handler to Timer
	Routing through EditableTimer
	Routing through EditableTimerList
	Implementing the delete function in TimersDashboard

	Adding timing functionality
	Adding a forceUpdate() interval to Timer
	Try it out

	Add start and stop functionality
	Add timer action events to Timer
	Create TimerActionButton
	Run the events through EditableTimer and EditableTimerList
	Try it out

	Methodology review

	Components & Servers
	Introduction
	Preparation

	server.js
	The Server API
	text/html endpoint
	JSON endpoints

	Playing with the API
	Loading state from the server
	Try it out

	client
	Fetch

	Sending starts and stops to the server
	Sending creates, updates, and deletes to the server
	Give it a spin

	Next up

	JSX and the Virtual DOM
	React Uses a Virtual DOM
	Why Not Modify the Actual DOM?
	What is a Virtual DOM?
	Virtual DOM Pieces
	ReactElement
	Experimenting with ReactElement
	Rendering Our ReactElement
	Adding Text (with children)
	ReactDOM.render()

	JSX
	JSX Creates Elements
	JSX Attribute Expressions
	JSX Conditional Child Expressions
	JSX Boolean Attributes
	JSX Comments
	JSX Spread Syntax
	JSX Gotchas
	JSX Summary

	References

	Advanced Component Configuration with props, state, and children
	Intro
	How to use this chapter
	ReactComponent
	Creating ReactComponents - createClass or ES6 Classes
	render() Returns a ReactElement Tree
	Getting Data into render()

	props are the parameters
	PropTypes
	Default props with getDefaultProps()
	context
	state
	Using state: Building a Custom Radio Button
	Stateful components
	State updates that depend on the current state
	Thinking About State

	Stateless Components
	Switching to Stateless
	Stateless Encourages Reuse

	Talking to Children Components with props.children
	React.Children.map() & React.Children.forEach()
	React.Children.toArray()

	Summary
	References

	Forms
	Forms 101
	Preparation
	The Basic Button
	Events and Event Handlers
	Back to the Button

	Text Input
	Accessing User Input With refs
	Using User Input
	Uncontrolled vs. Controlled Components
	Accessing User Input With state
	Multiple Fields
	On Validation
	Adding Validation to Our App
	Creating the Field Component
	Using our new Field Component

	Remote Data
	Building the Custom Component
	Adding CourseSelect
	Separation of View and State

	Async Persistence
	Redux
	Form Component
	Connect the Store

	Form Modules
	formsy-react
	react-input-enhancements
	tcomb-form
	winterfell
	react-redux-form

	Using Webpack with Create React App
	JavaScript modules
	Create React App
	Exploring Create React App
	public/index.html
	package.json
	src/
	index.js
	Booting the app

	Webpack basics
	Making modifications to the sample app
	Hot reloading
	Auto-reloading

	Creating a production build
	Ejecting
	Buckle up

	Using Create React App with an API server
	The completed app
	How the app is organized
	The server
	Client
	Concurrently
	Using the Webpack development proxy

	Webpack at large
	When to use Webpack/Create React App

	Unit Testing
	Writing tests without a framework
	Preparing Modash
	Writing the first spec
	The assertEqual() function

	What is Jest?
	Using Jest
	expect()
	The first Jest test for Modash
	The other truncate() spec
	The rest of the specs

	Testing strategies for React applications
	Integration vs Unit Testing
	Shallow rendering
	Enzyme

	Testing a basic React component with Enzyme
	Setup
	The App component
	The first spec for App
	More assertions for App
	Using beforeEach
	Simulating a change
	Clearing the input field
	Simulating a form submission

	Writing tests for the food lookup app
	FoodSearch
	Exploring FoodSearch

	Writing FoodSearch.test.js
	In initial state
	A user has typed a value into the search field
	Mocking with Jest
	Mocking Client
	The API returns results
	The user clicks on a food item
	The API returns empty result set

	Further reading

	Routing
	What's in a URL?
	React Router's core components

	Building the components of react-router
	The completed app
	Building Route
	Building Link
	Building Router
	Building Redirect
	Using react-router
	More Route
	Using Switch

	Dynamic routing with React Router
	The completed app
	The server's API
	Starting point of the app
	Using URL params
	Propagating pathnames as props
	Dynamic menu items with NavLink

	Supporting authenticated routes
	The Client library
	Implementing login
	PrivateRoute, a higher-order component
	Redirect state

	Recap
	Further Reading

	Part II
	Intro to Flux and Redux
	Why Flux?
	Flux is a Design Pattern
	Flux overview

	Flux implementations
	Redux
	Redux's key ideas

	Building a counter
	Preparation
	Overview
	The counter's actions
	Incrementing the counter
	Decrementing the counter
	Supporting additional parameters on actions

	Building the store
	Try it out

	The core of Redux
	Next up

	The beginnings of a chat app
	Previewing
	State
	Actions

	Building the reducer()
	Initializing state
	Handling the ADD_MESSAGE action
	Handling the DELETE_MESSAGE action

	Subscribing to the store
	createStore() in full

	Connecting Redux to React
	Using store.getState()
	Using store.subscribe()
	Using store.dispatch()
	The app's components
	Preparing App.js
	The App component
	The MessageInput component
	The MessageView component

	Next up

	Intermediate Redux
	Preparation
	Using createStore() from the redux library
	Try it out

	Representing messages as objects in state
	Updating ADD_MESSAGE
	Updating DELETE_MESSAGE
	Updating the React components

	Introducing threads
	Supporting threads in initialState
	Supporting threads in the React components
	Modifying App
	Turning MessageView into Thread
	Try it out

	Adding the ThreadTabs component
	Updating App
	Creating ThreadTabs
	Try it out

	Supporting threads in the reducer
	Updating ADD_MESSAGE in the reducer
	Updating the MessageInput component
	Try it out
	Updating DELETE_MESSAGE in the reducer
	Try it out

	Adding the action OPEN_THREAD
	The action object
	Modifying the reducer
	Dispatching from ThreadTabs
	Try it out

	Breaking up the reducer function
	A new reducer()
	Updating threadsReducer()
	Try it out

	Adding messagesReducer()
	Modifying the ADD_MESSAGE action handler
	Creating messagesReducer()
	Modifying the DELETE_MESSAGE action handler
	Adding DELETE_MESSAGE to messagesReducer()

	Defining the initial state in the reducers
	Initial state in reducer()
	Adding initial state to activeThreadIdReducer()
	Adding initial state to threadsReducer()
	Try it out

	Using combineReducers() from redux
	Next up

	Using Presentational and Container Components with Redux
	Presentational and container components
	Splitting up ThreadTabs
	Splitting up Thread
	Removing store from App
	Try it out

	Generating containers with react-redux
	The Provider component
	Wrapping App in Provider
	Using connect() to generate ThreadTabs
	Using connect() to generate ThreadDisplay

	Action creators
	Conclusion
	Asynchronicity and server communication

	Using GraphQL
	Your First GraphQL Query
	GraphQL Benefits
	GraphQL vs. REST
	GraphQL vs. SQL
	Relay and GraphQL Frameworks
	Chapter Preview
	Consuming GraphQL
	Exploring With GraphiQL
	GraphQL Syntax 101
	Complex Types
	Unions
	Fragments
	Interfaces

	Exploring a Graph
	Graph Nodes
	Viewer
	Graph Connections and Edges
	Mutations
	Subscriptions
	GraphQL With JavaScript
	GraphQL With React
	Wrapping Up

	GraphQL Server
	Writing a GraphQL Server
	Special setup for Windows users
	Game Plan
	Express HTTP Server
	Adding First GraphQL Types
	Adding GraphiQL
	Introspection
	Mutation
	Rich Schemas and SQL
	Setting Up The Database
	Schema Design
	Object and Scalar Types
	Lists
	Performance: Look-Ahead Optimizations
	Lists Continued

	Connections
	Authentication
	Authorization
	Rich Mutations
	Relay and GraphQL
	Performance: N+1 Queries

	Summary

	Relay
	Introduction
	What We're Going to Cover
	What We're Building
	Guide to the Code Structure

	Relay is a Data Architecture
	Relay GraphQL Conventions
	Exploring Relay Conventions in GraphQL
	Fetching Objects By ID
	Walking Connections
	Changing Data with Mutations
	Relay GraphQL Queries Summary

	Adding Relay to Our App
	Quick Look at the Goal
	A Preview of the Author Page
	Containers, Queries, and Fragments
	Validating Our Relay Queries at Compile Time
	Setting Up Routing
	Adding Relay to Our Routes
	App Component
	AuthorQueries Component
	AuthorPage Component
	Try It Out
	AuthorPage with Styles

	BooksPage
	BooksPage Route
	BooksPage Component
	BooksPage render()
	BookItem
	BookItem Fragment
	Fragment Value Masking
	Improving the AuthorPage

	Changing Data With Mutations
	Building a Book's Page
	Book Page Editing

	Mutations
	Defining a Mutation Object
	Inline Editing

	Conclusion
	Where to Go From Here

	React Native
	Init
	Routing
	<Navigator />
	renderScene()
	configureScene()

	Web components vs. Native components
	<View />
	<Text />
	<Image />
	<TextInput />
	<TouchableHighlight />, <TouchableOpacity />, and <TouchableWithoutFeedback />
	<ActivityIndicator />
	<WebView />
	<ScrollView />
	<ListView />

	Styles
	StyleSheet
	Flexbox

	HTTP requests
	What is a promise
	Enter Promises

	Single-use guarantee
	Creating a promise
	Debugging with React Native
	Where to go from here

	Appendix A: PropTypes
	Validators
	string
	number
	boolean
	function
	object
	object shape
	multiple types
	instanceOf
	array
	array of type
	node
	element
	any type
	Optional & required props
	custom validator

	Appendix B: ES6
	Prefer const and let over var
	Arrow functions
	Modules
	Object.assign()
	Template literals
	The spread operator (...)
	Enhanced object literals
	Default arguments
	Destructuring assignments

	Changelog
	Revision 32 - 2017-06-14
	Revision 31 - 2017-05-18
	Revision 30 - 2017-04-20
	Revision 29 - 2017-04-13
	Revision 28 - 2017-04-10
	Revision 27 - 2017-03-16
	Revision 26 - 2017-02-22
	Revision 25 - 2017-02-17
	Revision 24 - 2017-02-08
	Revision 23 - 2017-02-06
	Revision 22 - 2017-02-01
	Revision 21 - 2017-01-27
	Revision 20 - 2017-01-10
	Revision 19 - 2016-12-20
	Revision 18 - 2016-11-22
	Revision 17 - 2016-11-04
	Revision 16 - 2016-10-12
	Revision 15 - 2016-10-05
	Revision 14 - 2016-08-26
	Revision 13 - 2016-08-02
	Revision 12 - 2016-07-26
	Revision 11 - 2016-07-08
	Revision 10 - 2016-06-24
	Revision 9 - 2016-06-21
	Revision 8 - 2016-06-02
	Revision 7 - 2016-05-13
	Revision 6 - 2016-05-13
	Revision 5 - 2016-04-25
	Revision 4 - 2016-04-22
	Revision 3 - 2016-04-08
	Revision 2 - 2016-03-16
	Revision 1 - 2016-02-14

