RO ccumﬂz&mﬂanm’
} AYA\SUEP: DVDGUFTIAN—

FULLSTACK
D N N ICINNIS A EMU\RA

Fullstack React

The Complete Guide to React/S and Friends

Written by Anthony Accomazzo, Ari Lerner, Nate Murray, Clay Allsopp, David
Guttman, and Tyler McGinnis

Technical Advisor: Sophia Shoemaker
© 2017 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out
of the use of the information or programs container herein.

Typeset using Leanpub.

Published in San Francisco, California by Fullstack.io.

WOW! eBook @ FULLSTACKIO

www.wowebook.org

Contents

Book Revision
Bug Reports e
Chat With The Community!

How to Get the Most Out of ThisBook
OVerview e e e
Running Code Examples

Projectsetups L
Code Blocksand Context
Code Block Numbering
Getting Help o o e
Emailing Us o e
Technical Support Response Time
Getexcited

Your first React Web Application
Building Product Hunt
Setting up your development environment L.

Codeeditor
Nodejsandnpm
Install Git
Browser
Special instruction for Windows users L L oL
EnsureIlSisinstalled
JavaScript ES6/ES7
Getting started
Sample Code

WOW! eBook
www.wowebook.org

o N S Sy

CONTENTS

Previewing the application 9
Preparetheapp L 11
What’s a component? 15
Our first component 16
ISX 18
The developer console 19
Babel 21
ReactDOM.render() o i i e e e e e e e e e e e e e e e 23
Building Product L 25
Making Product data-driven Lo L 27
Thedatamodel 28
USINg Props o o o ot i e e e e e 28
Rendering multiple products 32
React the vote (your app’s first interaction) L. 37
Propagating theevent 37
Binding custom component methods 0oL 39
Using state e 42
Setting state with this.setState() L L 44
Updating state and immutability 46
Refactoring with the Babel plugin transform-class-properties 51
Babel plugins and presets Lo 51
Property initializers. 52
Refactoring Product L 53
Refactoring Productlist 54
Congratulations! 56
Components e 57
Atime-logging app 57
Getting started 58
Previewing theapp L 58
Preparetheapp L 58
Breaking the app into components Lo L 62
The steps for building React apps from scratch 69
Step 2: Build a static version of theapp oL 71
TimersDashboard e 71
EditableTimer e 73
TimerForm L e 74
ToggleableTimerForm 0 i e e e e e e e e e e e e e e e e e e 75
Timer e 76
Rendertheapp 77
Tryitouto 78
Step 3: Determine what should be stateful 79
State criteria 79

WOW! eBook
www.wowebook.org

CONTENTS

Applying the criteria L 80
Step 4: Determine in which component each piece of state should live 81
The list of timers and properties of each timer 82
Whether or not the edit form of a timerisopen 82
Visibility of the create form 82
Step 5: Hard-code initial states Lo 83
Adding state to TimersDashboardo v vttt 83
Receiving props in EditableTimerList 84
Propsvs.state L 85
Adding state to EditableTimer 85
Timer remains stateless L L L 86
Adding state to ToggleableTimerForm v v v v .. 86
Adding state to TimerForm 88
Step 6: Add inverse dataflow Lo 91
TimerForm L L e e e 92
ToggleableTimerForm i i v i e e e e e e e e e e 93
TimersDashboard L e 95
Updating timers e e 97
Adding editability to Timer 97
Updating EditableTimer o ittt 98
Updating EditableTimerList 100
Defining onEditFormSubmit() in TimersDashboard 100
Deleting timers L 103
Adding the event handler to Timer 103
Routing through EditableTimer 104
Routing through EditableTimerList 104
Implementing the delete function in TimersDashboard 105
Adding timing functionality Lo 106
Adding a forceUpdate() interval to Timer 107
Tryitout o o 108
Add start and stop functionality Lo oo 108
Add timer action events to Timer 108
Create TimerActionButton 109
Run the events through EditableTimer and EditableTimerlList 110
Tryitout o o 113
Methodology review 114
Components & Servers e 116
Introduction 116
Preparation 116
SEIVET . JS v v v v v i e 116
The Server APL e 117
text/html endpoint 118

WOW! eBook
www.wowebook.org

CONTENTS

JSONendpointso 118
Playing with the APT 119
Loading state from theserver 122

Tryitout o 125
client . . o L e e e e e e e e e e e 125

Fetch 126
Sending starts and stops totheserver. o oo o oL 129
Sending creates, updates, and deletes to theserver. L. 131

Giveitaspin e 133
Nextup e 133

JSXand the Virtual DOM e 134
React Usesa Virtual DOM it 134
Why Not Modify the Actual DOM? 134
What isa Virtual DOM? e 134
Virtual DOM Pieces e e e 135
ReactElement L L e e e e e e e e 136

Experimenting with ReactElement L. 136

Rendering OurReactElement o ittt 138

Adding Text (with children) 140

ReactDOM.render() o i i i e e e e e e e e e e e e e e e e e 141
JSX e e 142

JSX Creates Elements 142

JSX Attribute Expressions 144

JSX Conditional Child Expressions 144

JSX Boolean Attributes 145

JSX Comments e e 145

JSX Spread Syntax 145

JSX Gotchas e 146

JSX'Summary 149
References e 150

Advanced Component Configuration with props, state, and children 151
Intro e e 151
How touse this chapter 152
ReactComponent e 152

Creating ReactComponents - createClass or ES6 Classes 152

render() Returns aReactElement Tree 153

Getting Dataintorender() oo 154
props are the parameters 155
PTOpTYPES .« v v i i e 156
Default props with getDefaultProps() o v v v i it i e 158
context L L e e e 158

WOW! eBook
www.wowebook.org

CONTENTS

state e e e e
Using state: Building a Custom Radio Button
Stateful components
State updates that depend on the currentstate
Thinking About State

Stateless Components
Switching to Stateless
Stateless Encourages Reuse

Talking to Children Components with props.children
React.Children.map() & React.Children.forEach()
React.Children.toArray() v v v i i i e e e e e e e e e e e e e

Summary

References L

Forms e
Forms 101 e e
Preparation
The Basic Button
Eventsand Event Handlers.
BacktotheButton
Text Input L
Accessing User Input Withrefs o o oo
UsingUserInput
Uncontrolled vs. Controlled Components
Accessing User Input Withstate 000
Multiple Fields
On Validation
Adding Validation to Our App L
Creating the Field Component
Using our new Field Component
Remote Data e
Building the Custom Component
Adding CourseSelect
Separation of View and State Lo Lo
Async Persistence
Redux
Form Component e
Connectthe Store
Form Modules e
formsy-react
react-input-enhancements o o o L L L
tcomb-form
winterfell

WOW! eBook
www.wowebook.org

CONTENTS

react-redux-form L 243
Using Webpack with Create React App 244
JavaScript modules 244
Create React App o o o e 246
Exploring Create React App« 247
public/index.html L L e e e e e e e e e e e e e 248
package. JSON e 249
STC/ v v o e e e e e e e e e e e e e e e e 251
index. js . . . L e e e e e e e e e e e e e e e e e 253
Bootingtheapp L 255
Webpack basics 256
Making modifications to the sampleapp L. 262
Hotreloading 262
Auto-reloading 263
Creating a production build oo oo 264
Ejecting L 267
Buckleup e 268
Using Create React App withan APIserver 270
The completedapp 270
How the app isorganized 274
Theserver 275
Client L L o e e 276
Concurrently 277
Using the Webpack development proxy 280
Webpack atlarge 282
When to use Webpack/Create React App 283
Unit Testing 284
Writing tests without a framework Lo Lo oL 284
Preparing Modash 285
Writing the first spec L 288
The assertEqual() function e 290
What is Jest? e e 294
Using Jest o e 294
expect() . .. e e e e e e 295
The first Jest test forModash 297
The other truncate() spec. L 299
Therestofthespecs 300
Testing strategies for React applications 302
Integration vs Unit Testing oo 302
Shallow rendering 303
Enzyme 303

WOW! eBook
www.wowebook.org

CONTENTS

Testing a basic React component with Enzyme 304
Setup . . . e 304
The App component 305
The first specforApp L 309
More assertions for App o e e e 313
Using beforeEach e 316
Simulatingachange 319
Clearing the inputfield 323
Simulating a form submission Lo L 325

Writing tests for the food lookupapp Lo oL 332
FoodSearch e e 334
Exploring FoodSearch 336

Writing FoodSearch.test.js L e 340
Ininitial state 342
A user has typed a value into the search field 344
Mocking with Jest L 348
Mocking Client i i 351
The APIreturnsresults L 357
The user clicksonafooditem 362
The APl returns empty resultset 366

Furtherreading 370

Routing 373

What’sina URL? 373
React Router’s core components oo 375

Building the components of react-router oo Lo 376
The completedapp 376
BuildingRoute 378
BuildingLink 385
BuildingRouter L 390
Building Redirect 395
Usingreact-router e 399
MoreRoute L e 400
Using Switch o oL 0 e 405

Dynamic routing with React Router L. 407
The completedapp 408
The server’'s APT 411
Starting pointof theapp 413
Using URL params o e 419
Propagating pathnamesasprops. 426
Dynamic menu items with NavLink oL 431

Supporting authenticated routeso oo oo oL L 434
TheClient library 435

WOW! eBook
www.wowebook.org

CONTENTS

Implementing login 436
PrivateRoute, a higher-order component 442
Redirectstate 446
Recap e 448
Further Reading 448

Part II 449

IntrotoFluxand Redux 450
Why Flux? . . . 450
FluxisaDesign Pattern 450
Flux overview o 451
Flux implementations 452
Redux 452
Redux’skeyideas 452
Buildingacounter 453
Preparation 453
Overview L e 454
The counter’sactions L 455
Incrementing the countero 456
Decrementing thecounter 457
Supporting additional parameters on actions oL 459
Building the store 460
Tryitout o o 464
Thecoreof Redux 465
Nextup o e e 466
The beginningsof achatapp L 466
Previewing 466
State 468
Actions 469
Building thereducer() 469
Initializing state L 469
Handling the ADD_MESSAGE action 470
Handling the DELETE_MESSAGE action 473
Subscribing tothestore 475
createStore() infull 477
Connecting ReduxtoReact 480
Using store.getState() L L 480
Using store.subscribe() L 480
Using store.dispatch() oL e 481
The app’s components 481

WOW! eBook
www.wowebook.org

CONTENTS

Preparing App.Jjs L e 482
The App component 483
The Messagelnput component 484
The MessageView component 486
Nextup e 488
Intermediate Redux 489
Preparation L 489
Using createStore() from the redux library 490
Tryitout 491
Representing messages as objectsinstate oL 491
Updating ADD_MESSAGE o ittt 492
Updating DELETE_MESSAGE v o v v v e e i e e e et e e e e e 494
Updating the React components 495
Introducing threads 497
Supporting threads in initialState 498
Supporting threads in the React components 500
Modifying App L 501
Turning MessageView intoThread 502
Tryitout o 503
Adding the ThreadTabs component, 503
Updating App o 504
Creating ThreadTabs oo ittt ittt ittt 505
Tryitout e 505
Supporting threads in thereducer.o o oo oo oL 506
Updating ADD_MESSAGE inthereducer 506
Updating the MessageInput component, . 512
Tryitout 513
Updating DELETE_MESSAGE inthereducer 514
Tryitout o e 516
Adding the action OPEN_THREAD o v v vttt e e et e e e e e e e e 517
The action object 517
Modifying thereducer oL 517
Dispatching from ThreadTabs i 518
Tryitout o e 519
Breaking up the reducer function oo oo o oL 520
Anewreducer() . . . v v v i e e e e e 521
Updating threadsReducer() o v vt i it i 523
Tryitout o o e 526
Adding messagesReducer() 527
Modifying the ADD_MESSAGE action handler 527
Creating messagesReducer() o v vttt 528
Modifying the DELETE_MESSAGE action handler 529

WOW! eBook
www.wowebook.org

CONTENTS

Adding DELETE_MESSAGE to messagesReducer() oo v v v v v, 532
Defining the initial state in thereducers 533
Initial state inreducer() e 534
Adding initial state to activeThreadIdReducer() 534
Adding initial state to threadsReducer() 535
Tryitout o o 536
Using combineReducers() fromredux 536
Nextup e e 537
Using Presentational and Container Components withRedux 539
Presentational and container components L. 539
Splitting up ThreadTabs o i i i 541
Splittingup Thread e 546
Removing store from App 552
Tryitout o 553
Generating containers withreact-redux o oL 553
The Provider component 554
Wrapping App inProvider 554
Using connect () to generate ThreadTabs 555
Using connect () to generate ThreadDisplay 559
Action creatorso e 564
Conclusion 568
Asynchronicity and server communication Lo 568
Using GraphQL 570
Your First GraphQL Query e 570
GraphQL Benefits 572
GraphQL vs. REST o 573
GraphQL vs. SQL o 574
Relay and GraphQL Frameworks o ... 574
Chapter Preview 576
Consuming GraphQL 576
Exploring With GraphiQL 576
GraphQL Syntax 101 oo o 580
Complex Types o o o i 584
Unions. e 584
Fragments e 585
Interfaces L 586
Exploringa Graph 587
Graph Nodes e 590
Viewer e 591
Graph Connectionsand Edges o 592
Mutations 596

WOW! eBook
www.wowebook.org

CONTENTS

Subscriptions 597
GraphQL With JavaScript 598
GraphQL With React 599
Wrapping Up o o e 601
GraphQL Server 602
Writing a GraphQL Server 602
Special setup for Windows users 602
Game Plan 603
Express HTTP Server et 603
Adding First GraphQL Types o 606
Adding GraphiQL 608
Introspection L e 610
Mutation 611
Rich Schemasand SQL 614
Setting Up The Database 615
Schema Design 619
Object and Scalar Typeso i 621
Lists o e 626
Performance: Look-Ahead Optimizations 628
Lists Continued L e 631
Connections e e 634
Authentication 641
Authorization L 643
Rich Mutations 647
Relay and GraphQL 650
Performance: N+1 Queries 0 i 651
Summary 655
Relay 657
Introduction 657
What We're Going to Cover 658
What We're Building 658
Guide to the Code Structure L 662
Relay is a Data Architecture 663
Relay GraphQL Conventions i 664
Exploring Relay Conventions in GraphQL 665
Fetching Objects By ID 665
Walking Connections L 669
Changing Data with Mutations 674
Relay GraphQL Queries Summary 675
Adding Relay to Our App o 675
Quick LookattheGoal 675

WOW! eBook
www.wowebook.org

CONTENTS

A Preview of the Author Page 678
Containers, Queries, and Fragments L. 679
Validating Our Relay Queries at Compile Time 679
SettingUpRouting 685
Adding Relay toOurRoutes 687
App Component e 688
AuthorQueries Component e 689
AuthorPage Component L e 689
Try ItOut o 691
AuthorPage with Styles. 693
BooksPage e e e e e e e e e e e e e e e e e 695
BooksPage Route e 695
BooksPage Componento e 696
BooksPage render() i e e e e e e e e e e e e 698
BookItem e e e e e e e e e e e e e e e e e 699
BookItem Fragment e e e e e e e e 701
Fragment Value Masking 701
Improving the AuthorPage 703
Changing Data With Mutations 706
Buildinga Book’sPage 707
Book Page Editing 710
Mutations e e e e e e e e 713
Defining a Mutation Object 714
Inline Editing 718
Conclusion e e e 720
Whereto GoFrom Here 721
React Native e 722
Init e e 723
Routing o e 724
<Navigator /> . . . o . e e e e e e e e e e e e e e 727
renderScene() o e e e e e e e e e e e e e e e 729
configureScene() i e e e e e e e e e e e e 731
Web components vs. Native components, . 734
VIew /> o o o o e 735
KText /> o o e 735
<Image /> . o e 735
KTextInput /> . . o . o e e e e e e e e e e e e e e e e e e e 735
<TouchableHighlight />, <TouchableOpacity />, and <TouchableWithoutFeedback
2O 735
<ActivityIndicator /> e e e e e e e e e e e e e 736
KWebView /> . o o o e 736
KSerollVIew /> . . o o e 736

WOW! eBook
www.wowebook.org

CONTENTS

ListView /> . o o o o o e 737
Styles . . . o L 745
StyleSheet 746
Flexbox 747
HTTPrequests 765
Whatisapromise 766
Enter Promises 768
Single-use guarantee oo 770
Creatingapromise e 770
Debugging with React Native 772
Wheretogofromhere. L 773
AppendixX A:PropTypes o v it e e e e e e e 775
Validators L 776
SIHING . . . o L e e 777
NUMDbET L e e e e 777
boolean L L 778
function 779
object e 780
object shape 780
multiple types L 781
instanceOf 782
0 783
array of type L 784
node e 785
element L 786
any type e e 787
Optional & required props 787
custom validator 788
Appendix B: ES6 790
Preferconst and let overvar 790
Arrow functions L 790
Modules e 793
Object.assign() o 0 e e e e e e e e e e 796
Template literals L 797
The spread operator (...) 797
Enhanced object literals 798
Default arguments 798
Destructuring assignments oL Lo 799
Changelog 802
Revision 32 -2017-06-14 802

WOW! eBook
www.wowebook.org

CONTENTS

Revision 31-2017-05-18 0 o e e e e e e e 802
Revision 30 - 2017-04-20 e e e e 802
Revision 29 - 2017-04-13 e e e 802
Revision 28 - 2017-04-10 e e 802
Revision 27 - 2017-03-16 e e e e 802
Revision 26 - 2017-02-22 e e e e 803
Revision 25 -2017-02-17 e e e e e e e e 803
Revision 24 - 2017-02-08 e e e e 803
Revision 23 -2017-02-06 e e 803
Revision 22 - 2017-02-01 e e e e 803
Revision 21 -2017-01-27« v o v o e e e e e e 803
Revision 20 - 2017-01-10 o e e e e e e 804
Revision 19 -2016-12-20 e e e 804
Revision 18 - 2016-11-22 e e e e 804
Revision 17 - 2016-11-04 0 o e e e e e 804
Revision 16 - 2016-10-12 o o e e e e 804
Revision 15-2016-10-05 o i e e e e e 804
Revision 14 - 2016-08-26 e e e e e e 804
Revision 13-2016-08-02 e e e e 804
Revision 12 - 2016-07-26 o v i e e e e e 804
Revision 11-2016-07-08 v i i e e e e e e 805
Revision 10 - 2016-06-24 e e e e e e 805
Revision 9 - 2016-06-21 e e e e e 805
Revision 8 - 2016-06-02 e e e e 805
Revision 7 - 2016-05-13 e e e 805
Revision 6 - 2016-05-13 e e e e 805
Revision 5-2016-04-25 e e e e e 805
Revision 4 - 2016-04-22 e e e e e e 805
Revision 3 -2016-04-08 e e e 805
Revision 2 - 2016-03-16 e e e 806
Revision 1 -2016-02-14 e e e 806

WOW! eBook
www.wowebook.org

CONTENTS 1

Book Revision

Revision 32 - Supports React 15.5.4 (2017-06-14)

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: react@fullstack.io’.

Chat With The Community!

There’s an unofficial community chat room for this book using Gitter. If you’d like to hang out with
other people learning React, come join us on Gitter?!

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow @fullstackio®

We'd love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list of testimonials
on the website! Email us at: react@fullstack.io?.

! mailto:react@fullstack.io?Subject=Fullstack%20React%20book%20feedback
Zhttps://gitter.im/fullstackreact/fullstackreact

3https:/ /twitter.com/fullstackio
4mailto:react@fullstaek.io?Subject=react%202%20testimonial

WOW! eBook
www.wowebook.org

mailto:react@fullstack.io?Subject=Fullstack%20React%20book%20feedback
https://gitter.im/fullstackreact/fullstackreact
https://twitter.com/fullstackio
mailto:react@fullstack.io?Subject=react%202%20testimonial
mailto:react@fullstack.io?Subject=Fullstack%20React%20book%20feedback
https://gitter.im/fullstackreact/fullstackreact
https://twitter.com/fullstackio
mailto:react@fullstack.io?Subject=react%202%20testimonial

Foreword

Web development is often seen as a crazy world where the way you develop software is by throwing
hacks on top of hacks. I believe that React breaks from this pattern and instead has been designed
from first principle which gives you a solid foundation to build on.

A major source of bugs for front-end applications was
around synchronizing the data model with the DOM. It
is very hard to make sure that whenever data changes,
everything in the Ul is updated with it.

React’s first innovation was to introduce a pure-
JavaScript representation of the DOM and implement
diffing in userland and then use events which send
simple commands: create, update, delete.

With React, by conceptually re-rendering everything
whenever anything changes, not only do you have
code that is safe by default, it is also less work as you
only need to write the creation path: updates are taken
care of for you.

Christopher Chedeau - Front-end Engineer
at Facebook

Browsers have, for a long time, been incompatible in
various ways due to the large API surface area of what
they have to support to make the DOM work. Not only
does React provide a great way to solve browser differences, but it enables use cases that were never
before possible for a front-end library, such as server-side rendering and the ability to implement
rendering targets like native iOS, Android, and even hardware components.

But the most important thing about React and the main reason why you should read this book: not
only will you use it to make great applications for your users, it will also make you a better
developer. Libraries come and go all the time and React is likely going to be no exception. What
makes it special is that it teaches you concepts that can be reused throughout your entire career.

You will become better at JavaScript because React doesn’t come with a templating system.
Instead, React pushes you to use the full power of JavaScript to build your user interface.

You are going to practice using parts of functional programming with map and filter and also
encouraged to use the latest features of JavaScript (including ES6). By not abstracting away data
management, React will force you to think about how to architect your app and encourage you to
consider concepts like immutability.

I'm very proud that the community built around React is not afraid of “rethinking best practices.”
The community challenges the status quo in many areas. My advice to you is to read this excellent

WOW! eBook
www.wowebook.org

Foreword 3

book to learn and understand the fundamentals of React. Learning new concepts may feel strange
but “give it 5 minutes” and practice them until you feel comfortable.

Then, try to break the rules. There is no one best way to build software and React is no exception.

React actually embraces this fact by providing you with escape hatches when you want to do things
outside of the React-way.

Come up with crazy ideas and who knows, maybe you are going to invent the successor to React!

— Christopher Chedeau @vjeux’ Front-end Engineer at Facebook

5https:// twitter.com/Vjeux

WOW! eBook
www.wowebook.org

https://twitter.com/Vjeux
https://twitter.com/Vjeux

How to Get the Most Out of This Book

Overview

This book aims to be the single most useful resource on learning React. By the time you’re done
reading this book, you (and your team) will have everything you need to build reliable, powerful
React apps.

React core is lean and powerful. After the first few chapters, you’ll have a solid understanding of
React’s fundamentals and will be able to build a wide array of rich, interactive web apps with the
framework.

But beyond React’s core, there are many tools in its ecosystem that you might find helpful for
building production apps. Things like client-side routing between pages, managing complex state,
and heavy API interaction at scale.

This book consists of two parts.

In Part I, we cover all the fundamentals with a progressive, example-driven approach. You’ll create
your first apps, learn how to write components, start handling user interaction, manage rich
forms, and even interact with servers.

We bookend the first part by exploring the inner workings of Create React App (Facebook’s tool
for running React apps), writing automated unit tests, and building a multi-page app that uses
client-side routing.

Part II of this book moves into more advanced concepts that you’ll see used in large, production
applications. These concepts explore strategies for data architecture, transport, and management:

Redux is a state management paradigm based on Facebook’s Flux architecture. Redux provides a
structure for large state trees and allows you to decouple user interaction in your app from state
changes.

GraphQL is a powerful, typed, REST API alternative where the client describes the data it needs.
We also cover how to write your own GraphQL servers for your own data.

Relay is the glue between GraphQL and React. Relay is a data-fetching library that makes it easy to
write flexible, performant apps without a lot of data-fetching code.

Finally, in the last chapter, we’ll talk about how to write native, cross-platform mobile apps using
React Native.

There are a few guidelines we want to give you in order to get the most out of this book.

First, know that you do not need to read this book linearly from cover-to-cover. However, we’ve
ordered the contents of the book in a way we feel fits the order you should learn the concepts. We

WOW! eBook
www.wowebook.org

How to Get the Most Out of This Book 2

encourage you to learn all the concepts in Part I of the book first before diving into concepts in Part
IL.

Second, keep in mind this package is more than just a book - it’s a course complete with example

code for every chapter. Below, we’ll tell you:

+ how to approach the code examples and
« how to get help if something goes wrong

Running Code Examples

This book comes with a library of runnable code examples. The code is available to download from
the same place where you purchased this book. If you purchased this book on Amazon, you should
have received an email with instructions.

If you have any trouble finding or downloading the code examples, email us at react@fullstack.io.
We use the program npm® to run every example in this book. You can boot most apps with the

following two commands:

npm install
npm start

Q If you’re unfamiliar with npm, we cover how to get it installed in the Setting Up section in
the first chapter.

After running npm start, you will see some output on your screen that will tell you what URL to
open to view your app.

Some apps require a few more commands to setup. If you’re ever unclear on how to run a
particular sample app, checkout the README .md in that project’s directory. Every sample project
contains a README .md that will give you the instructions you need to run each app.

Project setups

The first two projects begin with a simple React setup that allows us to quickly write React
applications.

From there, with a couple exceptions, every project in this book was built using Create React App’.

Create React App is based on Webpack, a tool which helps process and bundle our various JavaScript,
CSS, HTML, and image files. We explore Create React App in-depth in the chapter “Using Webpack
with Create React App.” But, Create React App is not a requirement for using React. It’s simply a
wrapper around Webpack (and some other tooling) that makes it easy to get started.

6https://wvvv»r‘npmjs.com/
7https:/ /github.com/facebookincubator/create-react-app

WOW! eBook
www.wowebook.org

https://www.npmjs.com/
https://github.com/facebookincubator/create-react-app
https://www.npmjs.com/
https://github.com/facebookincubator/create-react-app

How to Get the Most Out of This Book 3

Code Blocks and Context

Nearly every code block in this book is pulled from a runnable code example which you can find
in the sample code. For example, here is a code block pulled from the first chapter:

voting_app/public/js/app-2.js

class ProductlList extends React.Component {
render() {
return (
<div className='ui unstackable items'>
<Product />
</div>

);

Notice that the header of this code block states the path to the file which contains this code: voting_-
app/public/js/app-2.js.

If you ever feel like you're missing the context for a code example, open up the full code file using
your favorite text editor. This book is written with the expectation that you’ll also be looking
at the example code alongside the manuscript.

For example, we often need to import libraries to get our code to run. In the early chapters of the
book we show these import statements, because it’s not clear where the libraries are coming from
otherwise. However, the later chapters of the book are more advanced and they focus on key concepts
instead of repeating boilerplate code that was covered earlier in the book. If at any point you’re
not clear on the context, open up the code example on disk.

Code Block Numbering

In this book, we sometimes build up a larger example in steps. If you see a file being loaded that has
a numeric suffix, that generally means we’re building up to something bigger.

For instance, above the code block has the filename: app-2. js. When you see the -N. js syntax that
means we're building up to a final version of the file. You can jump into that file and see the state
of all the code at that particular stage.

Getting Help

While we’ve made every effort to be clear, precise, and accurate you may find that when you’re
writing your code you run into a problem.

Generally, there are three types of problems:

WOW! eBook
www.wowebook.org

How to Get the Most Out of This Book 4

« A “bug” in the book (e.g. how we describe something is wrong)
« A “bug” in our code
« A “bug” in your code

If you find an inaccuracy in how we describe something, or you feel a concept isn’t clear, email us!
We want to make sure that the book is both accurate and clear.

Similarly, if you’ve found a bug in our code we definitely want to hear about it.

If you’re having trouble getting your own app working (and it isn’t our example code), this case is
a bit harder for us to handle.

Your first line of defense, when getting help with your custom app, should be our unofficial
community chat room®. We (the authors) are there from time-to-time, but there are hundreds of
other readers there who may be able to help you faster than we can.

If you're still stuck, we’d still love to hear from you, and here some tips for getting a clear, timely
response.

Emailing Us
If you’re emailing us asking for technical help, here’s what we’d like to know:

« What revision of the book are you referring to?

« What operating system are you on? (e.g. Mac OS X 10.8, Windows 95)
« Which chapter and which example project are you on?

« What were you trying to accomplish?

What have you tried’ already?

What output did you expect?

What actually happened? (Including relevant log output.)

The absolute best way to get technical support is to send us a short, self-contained example of the
problem. Our preferred way to receive this would be for you to send us a Plunkr link by using this
URL™.

That URL contains a runnable, boilerplate React app. If you can copy and paste your code into that
project, reproduce your error, and send it to us you’ll greatly increase the likelihood of a prompt,
helpful response.

When you’ve written down these things, email us at react@fullstack.io. We look forward to hearing
from you.

8https://gitter.im/fullstackreact/fullstackreact
9http://mattgemmell‘com/what—have-you—tried/
10https://plnklr.co/edit/tpl:aSvkhunC1Ne\5BG6GY2Gf

WOW! eBook
www.wowebook.org

https://gitter.im/fullstackreact/fullstackreact
https://gitter.im/fullstackreact/fullstackreact
http://mattgemmell.com/what-have-you-tried/
https://plnkr.co/edit/tpl:a3vkhunC1Na5BG6GY2Gf
https://plnkr.co/edit/tpl:a3vkhunC1Na5BG6GY2Gf
https://gitter.im/fullstackreact/fullstackreact
http://mattgemmell.com/what-have-you-tried/
https://plnkr.co/edit/tpl:a3vkhunC1Na5BG6GY2Gf

How to Get the Most Out of This Book 5

Technical Support Response Time

We perform our free, technical support once per week.

If you need a faster response time, and help getting any of your team’s questions answered, then
you may consider our premium support option''.

Get excited

Writing web apps with React is fun. And by using this book, you’re going to learn how to build
real React apps fast. (And much faster than spending hours parsing out-dated blog posts.)

If you’ve written client-side JavaScript before, you’ll find React refreshingly intuitive. If this is your
first serious foray into the front-end, you’ll be blown away at how quickly you can create something
worth sharing.

So hold on tight - you’re about to become a React expert and have a lot of fun along the way. Let’s
dig in!

« Nate (@eigenjoy'?) & Anthony

11mailtozreact@fullstack.io?Subject=React%20Premium%ZOSupport&Body=Hello%2 1%201%27m%20interested%20in%20premium%20React%
20support%20for%20our%20team

12https://tv\fitter.com/ eigenjoy

WOW! eBook
www.wowebook.org

mailto:react@fullstack.io?Subject=React%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20React%20support%20for%20our%20team
https://twitter.com/eigenjoy
mailto:react@fullstack.io?Subject=React%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20React%20support%20for%20our%20team
mailto:react@fullstack.io?Subject=React%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20React%20support%20for%20our%20team
https://twitter.com/eigenjoy

Part |

WOW! eBook
www.wowebook.org

Your first React Web Application

Building Product Hunt

In this chapter, you’re going to get a crash course on React by building a simple voting application
inspired by Product Hunt". You’ll become familiar with how React approaches front-end devel-
opment and all the fundamentals necessary to build an interactive React app from start to finish.
Thanks to React’s core simplicity, by the end of the chapter you’ll already be well on your way to
writing a variety of fast, dynamic interfaces.

We’ll focus on getting our React app up and running fast. We take a deeper look at concepts covered
in this section throughout the book.

Setting up your development environment

Code editor

As you’ll be writing code throughout this book, you’ll need to make sure you have a code editor
you’re comfortable working with. If you don’t already have a preferred editor, we recommend
installing Atom' or Sublime Text".

Node.js and npm

For all the projects in this book, we’ll need to make sure we have a working Node.js'® development
environment along with npm.

There are a couple different ways you can install Node.js so please refer to the Node.js website for
detailed information: https://nodejs.org/download/"

9 If you're on a Mac, your best bet is to install Node.js directly from the Node.js website
instead of through another package manager (like Homebrew). Installing Node.js via
Homebrew is known to cause some issues.

The Node Package Manager (npm for short) is installed as a part of Node.js. To check if npm is
available as a part of our development environment, we can open a terminal window and type:

Bhttp://producthunt.com
14http://atom.io
15https://www‘sublimetext‘com/
16http://nodejs.org
https://nodejs.org/download/

WOW! eBook
www.wowebook.org

http://producthunt.com/
http://atom.io/
https://www.sublimetext.com/
http://nodejs.org/
https://nodejs.org/download/
http://producthunt.com/
http://atom.io/
https://www.sublimetext.com/
http://nodejs.org/
https://nodejs.org/download/

Your first React Web Application 8
$ npm -v

If a version number is not printed out and you receive an error, make sure to download a Node.js
installer that includes npm.

Install Git

The app in this chapter requires Git to install some third-party libraries.
If you don’t have Git installed, see these instructions™ for installing Git for your platform.

After installing Git, we recommend restarting your computer.

Browser

Last, we highly recommend using the Google Chrome Web Browser"™ to develop React apps. We’ll
use the Chrome developer toolkit throughout this book. To follow along with our development and
debugging we recommend downloading it now.

Special instruction for Windows users

All the code in this book has been tested on Windows 10 with PowerShell.

Ensure lIS is installed

If you’re on a Windows machine and have yet to do any web development on it, you may need to
install IIS (Internet Information Services) in order to run web servers locally.

See this tutorial® for installing IIS.

JavaScript ES6/ES7

JavaScript is the language of the web. It runs on many different browsers, like Google Chrome,
Firefox, Safari, Microsoft Edge, and Internet Explorer. Different browsers have different JavaScript
interpreters which execute JavaScript code.

Its widespread adoption as the internet’s client-side scripting language led to the formation of a
standards body which manages its specification. The specification is called ECMAScript or ES.

18https:/ /git-scm.com/book/en/v2/Getting- Started-Installing-Git
19https:/ /www.google.com/chrome/
20http:/ /www.howtogeek.com/112455/how-to-install-iis-8-on-windows-8/

WOW! eBook
www.wowebook.org

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.google.com/chrome/
http://www.howtogeek.com/112455/how-to-install-iis-8-on-windows-8/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.google.com/chrome/
http://www.howtogeek.com/112455/how-to-install-iis-8-on-windows-8/

Your first React Web Application 9

The 5th edition of the specification is called ES5. You can think of ES5 as a “version” of the JavaScript
programming language. Finalized in 2009, ES5 was adopted by all major browsers within a few years.

The 6th edition of JavaScript is referred to as ES6. Finalized in 2015, the latest versions of major
browsers are still finishing adding support for ES6 as of 2017. ES6 is a significant update. It contains
a whole host of new features for JavaScript, almost two dozen in total. JavaScript written in ES6 is
tangibly different than JavaScript written in ES5.

ES7, a much smaller update that builds on ES6, was ratified in June 2016. ES7 contains only two new
features.

As the future of JavaScript, we want to write our code in ES6/ES7 today. But we also want our
JavaScript to run on older browsers until they fade out of widespread use. We see later in this
chapter how we can enjoy the benefits of ES6/ES7 today while still supporting the vast majority of
the world’s browsers.

This book is written with JavaScript ES7. Because ES6 ratified a majority of these new features, we’ll
commonly refer to these new features as ES6 features.

We've included an appendix on the ES6 syntax that we use, “Appendix B: ES6.” We’ll often refer to
the appendix when encountering ES6 syntax for the first time, but if ever syntax seems unfamiliar
to you it’s worth checking Appendix B to see if it’s new ES6 JavaScript syntax.

0 ESé6 is sometimes referred to as ES2015, the year of its finalization. ES7, in turn, is often
referred to as ES2016.

Getting started

Sample Code

All the code examples you find in each chapter are available in the code package that came with the
book. In that code package you’ll find completed versions of each app as well as boilerplates that we
will use to build those apps together. Each chapter provides detailed instruction on how to follow
along on your own.

While coding along with the book is not necessary, we highly recommend doing so. Playing around
with examples and sample code will help solidify and strengthen concepts.

Previewing the application

We’ll be building a basic React app that will allow us to touch on React’s most important concepts at
a high-level before diving into them in subsequent sections. Let’s begin by taking a look at a working
implementation of the app.

Open up the sample code folder that came with the book. Change to the voting_app/ directory in
the terminal:

WOW! eBook
www.wowebook.org

Your first React Web Application 10

$ cd voting_app/

0 If you’re not familiar with cd, it stands for “change directory.” If you’re on a Mac, do the
following to open terminal and change to the proper directory:

Open up /Applications/Utilities/Terminal.app.

Type cd, without hitting enter.

Tap the spacebar.

In the Finder, drag the voting_app/ folder on to your terminal window.
Hit Enter.

[2 B O S R

Your terminal is now in the proper directory.

Throughout the book, a code block starting with a $ signifies a command to be run in your
terminal.

First, we’ll need to use npm to install all our dependencies:

$ npm install

With our dependencies installed, we can boot the server using the npm start command
$ npm start

The boot process will print some text to the console:

L

in
$ npm start

> voting_appel.1.@ start ~/fullstack-react-code/voting_app
ckage/ fullstack-react-code/vot ing_app
> npm run server

> voting_app@l.1.0 server ~/fullstack-react-code/voting_app
ackage/ful Lstack-react-code/voting_app

> live-server —host=localhost —port=3080 —middleware=. /disable-brow
ser—cache.]s

Serving "~/fullstack-react-co g_app"
at http://localhost:3008 (http://127.0.0.1:3000)
Ready for changes

Boot process output

In addition, your browser might automatically launch and open the app. If it doesn’t, you can view
the running application at the URL http://localhost : 3000:

WOW! eBook
www.wowebook.org

Your first React Web Application 11

® © ® /B rroject one x React

C | @ localhost:3000 b+

Popular Products

a 55

Haught or Naught
High-minded or absent-minded? You decide.

Submitted by: 9

a 44

E Yellow Pail

On-demand sand castle construction expertise.
Submitted by: !
a 42

Tinfoild: Tailored tinfoil hats
We already have your measurements and shipping address.

Submitted by: 9
a 23

Supermajority: The Fantasy Congress League
Earn points when your favorite politicians pass legislation.

Submitted by: e

Completed version of the app

This demo app is a site like Product Hunt?! or Reddit?. These sites have lists of links that users can
vote on. Like those sites, in our app we can up-vote products. All products are sorted instantaneously
by number of votes.

O The keyboard command to quit a running Node server is CTRL+C.

Prepare the app

In the terminal, run 1s to see the project’s layout:

2 http://producthunt.com
Zhttp://reddit.com

WOW! eBook
www.wowebook.org

http://producthunt.com/
http://reddit.com/
http://producthunt.com/
http://reddit.com/

Your first React Web Application 12

$ 1s

README . md
disable-browser-cache. js
nightwatch. json
node_modules/

package. json

public/

semantic. json

tests/

0 If you’re running on macOS or Linux, you can run 1s -1p to format your output as we do
above.

Node apps contain a package . json which specifies the dependencies of the project. When we ran npm
install, npm used our package. json to determine which dependencies to download and install. It
installed them to the folder node_modules/.

o We explore the format of package. json in later chapters.

The code we’ll be working with is inside the folder public/. Look inside that folder:

$ 1s public
favicon.ico
images/
index.html
Js/
semantic/
style.css
vendor/

The general layout here is a common one for web apps. Inside public/ is index.html, the file that
we serve to browsers that request our website. As we’ll see shortly, index.html is the centerpiece of
our app. It loads in the rest of our app’s assets.

Let’s look inside public/js next:

WOW! eBook
www.wowebook.org

Your first React Web Application 13

$ 1s public/js
app-1.]js
app-2.]Js
app-3.js
app-4.Jjs
app-5.Js
app-6.Js
app-T.js
app-8.Js
app-9.js
app-complete. js
app.js

seed. js

Inside public/js is where we’ll put our app’s JavaScript. We’ll be writing our React app inside
app. js. app-complete. js is the completed version of the app that we’re working towards, which
we viewed a moment ago.

In addition, we’ve included each version of app. js as we build it up throughout this chapter (app-
1.js,app-2. js, etc). Each code block in this chapter will reference which app version you can find
it in. You can copy and paste longer code insertions from these app versions into your app. js.

0 All projects include a handy README .md that have instructions on how to run them.

To get started, we’ll ensure app-complete. js is no longer loaded in index.html. We'll then have a
blank canvas to begin work inside app. js.

Open up public/index.html in your text editor. It should look like this:

voting_app/public/index.html

<IDOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Project One</title>
<link rel="stylesheet" href="./semantic/dist/semantic.css" />
<link rel="stylesheet" href="./style.css" />
<script src="vendor/babel-standalone. js"></script>
<script src="vendor/react. js"></script>
<script src="vendor/react-dom. js"></script>
</head>

WOW! eBook
www.wowebook.org

Your first React Web Application 14

<body>
<div class="main ui text container">
<h1 class="ui dividing centered header">Popular Products</hi>
<div id="content"></div>
</div>
<script src="./js/seed. js"></script>
<script src="./js/app.js"></script>
<I-- Delete the script tag below to get started. -->
<script
type="text/babel"
data-plugins="transform-class-properties"
src="./js/app-complete. js"
></seript>
</body>

</html>

We'll go over all the dependencies being loaded under the <head> tag later. The heart of the HTML
document is these few lines here:

voting_app/public/index.html

<div class="main ui text container">
<h1 class="ui dividing centered header">Popular Products</h1>
<div id="content"></div>

</div>

O For this project, we're using Semantic UI?* for styling.

Semantic Ul is a CSS framework, much like Twitter’s Bootstrap®. It provides us with a
grid system and some simple styling. You don’t need to know Semantic UI in order to use
this book. We’ll provide all the styling code that you need. At some point, you might want
to check out the docs Semantic UI docs® to get familiar with the framework and explore
how you can use it in your own projects.

The class attributes here are just concerned with style and are safe to ignore. Stripping those away,
our core markup is succinct:

23http:// semantic-ui.com/
24http:/ /getbootstrap.com/
25http:/ /semantic-ui.com/introduction/getting-started.html

WOW! eBook
www.wowebook.org

http://semantic-ui.com/
http://getbootstrap.com/
http://semantic-ui.com/introduction/getting-started.html
http://semantic-ui.com/
http://getbootstrap.com/
http://semantic-ui.com/introduction/getting-started.html

Your first React Web Application 15

<div>
<h1>Popular Products</hi1>
<div id="content"></div>
</div>

We have a title for the page (h1) and a div with an id of content. This div is where we will
ultimately mount our React app. We'll see shortly what that means.

The next few lines tell the browser what JavaScript to load. To start building our own application,
let’s remove the . /app-complete. js script tag completely:

<script src="./js/seed. js"></script>

<script src="./js/app.js"></script>

<!-- Delete the script tag below to get started. -->
<seript

></seript>

After we save our updated index.html and reload the web browser, we’ll see that our app has
disappeared.

What's a component?

Building a React app is all about components. An individual React component can be thought of as a
UI component in an app. We can break apart the interface of our app into two classes of components:

WOW! eBook
www.wowebook.org

Your first React Web Application 16

Popular Products

a 55
Haught or Naught
High-minded or absent-minded? You decide.
- 44
0.\
E Yellow Pai
On-demand sand castle construction expertise.
L]
-
- 42
Tinfoild: Tailored tinfeil hats
We already have your measurements and shipping address.
a 23
Supermajority: The Fantasy Congress League
Earn points when your favorite politicians pass legislation.

The app’s components

We have a hierarchy of one parent component and many child components. We’ll call these
ProductList and Product, respectively:

1. ProductList: Contains a list of product components
2. Product: Displays a given product

Not only do React components map cleanly to Ul components, but they are self-contained. The
markup, view logic, and often component-specific style is all housed in one place. This feature makes
React components reusable.

Furthermore, as we’ll see in this chapter and throughout this book, React’s paradigm for component
data flow and interactivity is rigidly defined. In React, when the inputs for a component change, the
framework simply re-renders that component. This gives us a robust UI consistency guarantee:

With a given set of inputs, the output (how the component looks on the page) will always be
the same.

Our first component

Let’s start off by building the ProductList component. We’ll write all our React code for the rest of
this chapter inside the file public/js/app. js. Let’s open app. js and insert the component:

WOW! eBook
www.wowebook.org

Your first React Web Application 17

voting_app/public/js/app-1.js

class ProductList extends React.Component {
render() {
return (
<div className='ui unstackable items'>
Hello, friend! I am a basic React component.
</div>

);

React components are ES6 classes that extend the class React .Component. We're referencing the
React variable. index.html loads the React library for us so we’re able to reference it here:

voting_app/public/index.html

<script src="vendor/react. js"></script>

Our ProductList class has a single method, render (). render() is the only required method for
a React component. React uses the return value from this method to determine what to render to
the page.

O While JavaScript is not a classical language, ES6 introduced a class declaration syntax. ES6

classes are syntactical sugar over JavaScript’s prototype-based inheritance model.

We cover the important details you need to know about classes with respect to building
React components. If you’d like to learn more about ES6 classes, refer to the docs on MDN?°,

There are two ways to declare React components:
(1) As ES6 classes (as above)
(2) Using the React . createClass() method

An example of using an ES6 class:

class HelloWorld extends React.Component {
render() { return(<p>Hello, world!</p>) }

The same component written using the createClass function from the React library:

26https:// developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Your first React Web Application 18

const HelloWorld = React.createClass({
render() { return(<p>Hello, world!</p>) }
i)

At the time of writing, both types of declarations are in widespread use. The differences between
them are minimal. We expose you to both declarations in this book.

If you have some familiarity with JavaScript, the return value may be surprising:

voting_app/public/js/app-1.js

return (
<div className='"ui unstackable items'>
Hello, friend! I am a basic React component.
</div>

);

The syntax of the return value doesn’t look like traditional JavaScript. We’re using JSX (JavaScript
eXtension syntax), a syntax extension for JavaScript written by Facebook. Using JSX enables us to
write the markup for our component views in a familiar, HTML-like syntax. In the end, this JSX
code compiles to vanilla JavaScript. Although using JSX is not a necessity, we’ll use it in this book
as it pairs really well with React.

0 If you don’t have much familiarity with JavaScript, we recommend you follow along and
use JSX in your React code too. You’ll learn the boundaries between JSX and JavaScript
with experience.

JSX

React components ultimately render HTML which is displayed in the browser. As such, the render ()
method of a component needs to describe how the view should be represented as HTML. React builds
our apps with a fake representation of the Document Object Model (DOM). React calls this the virtual
DOM. Without getting deep into details for now, React allows us to describe a component’s HTML
representation in JavaScript.

The Document Object Model (DOM) refers to the browser’s HTML tree that makes up a
web page.

JSX was created to make this JavaScript representation of HTML more HTML-like. To understand
the difference between HTML and JSX, consider this JavaScript syntax:

WOW! eBook
www.wowebook.org

Your first React Web Application 19

React.createElement('div', {className: 'ui items'},
'Hello, friend! I am a basic React component.'

Which can be represented in JSX as:

<div className='ui items'>
Hello, friend! I am a basic React component.
</div>

The code readability is slightly improved in the latter example. This is exacerbated in a nested tree
structure:

React.createElement('div', {className: 'ui items'},
React.createElement('p', null, 'Hello, friend! I am a basic React component.')

In JSX:

<div className='ui items'>
<p>
Hello, friend! I am a basic React component.
</p>
</div>

JSX presents a light abstraction over the JavaScript version, yet the legibility benefits are huge.
Readability boosts our app’s longevity and makes it easier to onboard new developers.

o Even though the JSX above looks exactly like HTML, it’s important to remember that JSX
is actually just compiled into JavaScript (ex: React.createElement('div"')).

During runtime React takes care of rendering the actual HTML in the browser for each
component.

The developer console

Our first component is written and we now know that it uses a special flavor of JavaScript called
JSX for improved readability.

After editing and saving our app. js, let’s refresh the page in our web browser and see what changed:

WOW! eBook
www.wowebook.org

Your first React Web Application 20

i
Q
n

Popular Products

Nothing?

Every major browser comes with a toolkit that helps developers working on JavaScript code. A
central part of this toolkit is a console. Think of the console as JavaScript’s primary communication
medium back to the developer. If JavaScript encounters any errors in its execution, it will alert you
in this developer console.

0 Our web server, live-server, should refresh the page automatically when it detects that
app. js has changed.

To open the console in Chrome, navigate to View > Developer > JavaScript Console.

Or, just press Command + Option + J on a Mac or Control + Shift + L on Windows/Linux.

Opening the console, we are given a cryptic clue:

Uncaught SyntaxError: Unexpected token <

WOW! eBook
www.wowebook.org

Your first React Web Application 21

i
Q
n

Popular Products

Error in the console

This SyntaxError prevented our code from running. A SyntaxError is thrown when the JavaScript
engine encounters tokens or token order that doesn’t conform to the syntax of the language when
parsing code. This error type indicates some code is out of place or mistyped.

The issue? Our browser’s JavaScript parser tripped when it encountered the JSX. The parser
doesn’t know anything about JSX. As far as it is concerned, this < is completely out of place.

As we discussed, JSX is an extension to standard JavaScript. Let’s have our browser’s JavaScript
interpreter use this extension.

Babel

We mentioned at the beginning of the chapter that all the code in the book would be using ES6
JavaScript. However, most browsers in use today do not fully support ESé.

Babel is a JavaScript transpiler. Babel turns ES6 code into ES5 code. We call this process
transpiling. So we can enjoy the features of ES6 today yet ensure our code still runs in browsers
that only support ES5.

Another handy feature of Babel is that it understands JSX. Babel compiles our JSX into vanilla ES5
JS that our browser can then interpret and execute. We just need to instruct the browser that we
want to use Babel to compile and run our JavaScript code.

The sample code’s index.html already imports Babel in the head tags of index.html:

WOW! eBook
www.wowebook.org

Your first React Web Application 22

<head>
<l-- ... ==
<sceript src="vendor/babel-standalone. js"></script>
<l-- 000 ==>

</head>

All we need to do is tell our JavaScript runtime that our code should be compiled by Babel. We can
do this by setting the type attribute when we import the script in index.html to text/babel.

Open index.html and change the script tag that loads ./js/app.js. We're going to add two
attributes:

<script src="./js/seed. js"></script>

<script
type="text/babel"”
data-plugins="transform-class-properties"
sre="./js/app. js"

></script>

The attribute type="text/babel" indicates to Babel that we would like it to handle the loading
of this script. The attribute data-plugins specifies a special Babel plugin we use in this book. We
discuss this plugin at the end of the chapter.

Save index.html and reload the page.

© 00 /g roectone x Roact
C | ® localhost:3000 Y| i

Popular Products

Still nothing. However, the console no longer has the error. Depending on your version of Chrome,
you might see some warnings (highlighted in yellow as opposed to red). These warnings are safe to
ignore.

Babel successfully compiled our JSX into JavaScript and our browser was able to run that JavaScript
without any issues.

WOW! eBook
www.wowebook.org

Your first React Web Application 23

So what’s happening? We’ve defined the component, but we haven’t told React to do anything
with it yet. We need to tell the React framework that our component should be inserted on this

page.

0 Depending on your version of Chrome, you might see two errors.
The first:

Fetching scripts with an invalid type/language attributes is deprecated and will\
be removed in M56, around January 2017.

This warning is misleading and safe to ignore. The second:

You are using the in-browser Babel transformer. Be sure to precompile your scrip\
ts for production

Again, safe to ignore. To get up and running quickly, we’re having Babel transpile on-the-
fly in the browser. We explore other JavaScript transpiling strategies later in the book that
are more suitable for production.

ReactDOM.render()

We need to instruct React to render this ProductList inside a specific DOM node.

Add the following code below the component inside app. js:

voting_app/public/js/app-1.js

class ProductlList extends React.Component {
render() {
return (
<div className='ui unstackable items'>
Hello, friend! I am a basic React component.
</div>

);

ReactDOM.render(
<ProductList />,
document.getElementById('content')

);

WOW! eBook
www.wowebook.org

Your first React Web Application 24

ReactDOM is from the react-dom library that we also include in index.html. We pass in two
arguments to the ReactDOM.render () method. The first argument is what we’d like to render. The
second argument is where to render it:

ReactDOM.render ([what], [where]);

Here, for the “what,” we’re passing in a reference to our React component ProductlList in JSX. For
the “where,” you might recall index.html contains a div tag with an id of content:

voting_app/public/index.html

<div id="content"></div>

We pass in a reference to that DOM node as the second argument to ReactDOM.render ().

At this point, it’s interesting to note that we use different casing between the different types of React
element declarations. We have HTML DOM elements like <div> and a React component called
<ProductList />. In React, native HTML elements always start with a lowercase letter whereas
React component names always start with an uppercase letter.

With ReactDOM. render () now at the end of app. js, save the file and refresh the page in the browser:

® ©® [projct one x Reat

m &

& €' [localhost:3000

Popular Products

Hello, friend! | am a basic React component.

Our component is rendered to the page

To recap, we wrote a React component using an ES6 class as well as JSX. We specified that we wanted
Babel to transpile this code to ES5. We then used ReactDOM. render () to write this component to the
DOM.

WOW! eBook
www.wowebook.org

Your first React Web Application 25

While an accomplishment, our current ProductList component is rather uninteresting. We eventu-
ally want ProductList to render a list of products.

Each product will be its own UI element, a fragment of HTML. We can represent each of these
elements as their own component, Product. Central to its paradigm, React components can render
other React components. We’ll have ProductList render Product components, one for each product
we’d like to show on the page. Each of these Product components will be a child component to
ProductList, the parent component.

Building Product

Let’s build our child component, Product, that will contain a product listing. Just like with the
ProductList component, we'll declare a new ES6 class that extends React . Component. We’ll define
a single method, render():

class Product extends React.Component {
render() {
return (
<div>
{/* ... todo ... */}
</div>

);

ReactDOM.render (
/]
);

For every product, we’ll add an image, a title, a description, and an avatar of the post author. The
markup is below:

voting_app/public/js/app-2.js

class Product extends React.Component {
render() {
return (
<div className='item'>
<div className='image'>

</div>

<div className='middle aligned content'>

WOW! eBook
www.wowebook.org

Your first React Web Application 26

<div className='description'>
<a>Fort Knight
<p>Authentic renaissance actors, delivered in just two weeks.</p>
</div>
<div className='extra'>
Submitted by:
<img
className='ui avatar image'
src="'images/avatars/daniel. jpg'
/>
</div>
</div>
</div>

);

ReactDOM. render (

0 The title of the code block above references the location of this example in the book’s code
download (voting_app/public/js/app-2.js). This pattern will be common throughout
the book.

If you want to copy and paste the markup into your app. js, refer to this file.

Again, we've used a bit of SemanticUI styling in our code here. As we discussed previously, this
JSX code will be transpiled to regular JavaScript in the browser. Because it runs in the browser as
JavaScript, we cannot use any reserved JavaScript words in JSX. class is a reserved word. Therefore,
React has us use the attribute name className. Later, when the HTML element reaches the page,
this attribute name will be written as class.

Structurally, the Product component is similar to the ProductList component. Both have a single
render () method which returns information about an eventual HTML structure to display.

Remember, the JSX components return is not actually the HTML that gets rendered, but is
the representation that we want React to render in the DOM.

To use the Product component, we can modify the render output of our parent ProductList
component to include the child Product component:

WOW! eBook
www.wowebook.org

Your first React Web Application 27

voting_app/public/js/app-2.js

class ProductlList extends React.Component {
render() {
return (
<div className='ui unstackable items'>
<Product />
</div>

);

Save app. js and refresh the web browser.

[)
[)
=)
4
S
Pl
4

€« C' [localhost:3000

Popular Products

Py Fort Knight
Authentic renaissance actors, delivered in just two weeks.

o
&

With this update, we now have two React components being rendered in our app. The ProductList
parent component is rendering the Product component as a child nested underneath its root div
element.

While neat, at the moment the child Product component is static. We hard-coded an image, the
name, the description, and author details. To use this component in a meaningful way, we’ll want
to change it to be data-driven and therefore dynamic.

Making pProduct data-driven

Driving the Product component with data will allow us to dynamically render the component based
upon the data that we give it. Let’s familiarize ourselves with the product data model.

WOW! eBook
www.wowebook.org

Your first React Web Application 28

The data model

In the sample code, we’ve included a file inside public/js called seed. js. seed. js contains some
example data for our products (it will “seed” our app’s data). The seed. js file contains a JavaScript
object called Seed.products. Seed.products is an array of JavaScript objects, each representing a
product object:

voting_app/public/js/seed.js

const products = [
{
id: 1,
title: 'Yellow Pail',
description: 'On-demand sand castle construction expertise.',
url: '#',
votes: generateVoteCount(),
submitterAvatarUrl: 'images/avatars/daniel. jpg',
productImagelUrl: 'images/products/image-aqua.png',

3

Each product has a unique id and a handful of properties including atitle and description. votes
are randomly generated for each one with the included function generatevoteCount().

We can use the same attribute keys in our React code.

Using props

We want to modify our Product component so that it no longer uses static, hard-coded attributes.
Instead, we want it to be able to accept data passed down from its parent, ProductList. Setting up
our component structure in this way enables our ProductList component to dynamically render
any number of Product components that each have their own unique attributes. Data flow will look

like this:

PRODUCT
LIST

PRODUCT PRODUCT PRODUCT PRODUCT

WOW! eBook
www.wowebook.org

Your first React Web Application 29

The way data flows from parent to child in React is through props. When a parent renders a child,
it can send along props the child depends on.

Let’s see this in action. First, let’s modify ProductList to pass down props to Product. seed. js
will save us from having to create a bunch of data manually. Let’s pluck the first object off of the
Seed.products array and use that as data for a single product:

voting_app/public/js/app-3.js

class ProductlList extends React.Component {
render() {
const product = Seed.products[0];
return (
<div className='ui unstackable items'>
<Product
id={product.id}
title={product.title}
description={product.description}
url={product.url}
votes={product.votes}
submitterAvatarUrl={product.submitterAvatarUrl}
productImageUrl={product.productImagelrl}
/>
</div>

)

Here, the product variable is set to a JavaScript object that describes the first of our products.
We pass the product’s attributes along individually to the Product component using the syntax
[propName]=[propValue]. The syntax of assigning attributes in JSX is exactly the same as HTML

and XML.

There are two interesting things here. The first is the braces ({}) around each of the property values:

voting_app/public/js/app-3.js

id={product.id}

In JSX, braces are a delimiter, signaling to JSX that what resides in-between the braces is a
JavaScript expression. The other delimiter is using quotes for strings, like this:

WOW! eBook
www.wowebook.org

Your first React Web Application 30

id='1"

ﬁ JSX attribute values must be delimited by either braces or quotes.

If type is important and we want to pass in something like a Number or anull, use braces.

0 If you’ve programmed with ES5 JavaScript before, you might be used to using var as
opposed to const or let. See Appendix B for more on these new declarations.

Now the ProductList component is passing props down to Product. Our Product component isn’t
using them yet, so let’s modify the component to use these props.

In React, a component can access all its props through the object this.props. Inside of Product, the
this.props object will look like this:

"id": 1,

"title": "Yellow Pail",

"description": "On-demand sand castle construction expertise.",
"url": "H",

"votes": 41,

"submitterAvatarURL": "images/avatars/daniel. jpg",
"productImageUrl"”: "images/products/image-aqua.png"

Let’s swap out everywhere that we hard-coded data and use props instead. While we’re here, we’ll
add a bit more markup like the description and the up-vote icon:

voting_app/public/js/app-3.js

class Product extends React.Component {
render() {
return (
<div className='item'>
<div className='image'>

</div>
<div className='middle aligned content'>
<div className='header'>
<a>

<i className='large caret up icon' />

WOW! eBook
www.wowebook.org

Your first React Web Application 31

{this.props.votes}
</div>
<div className='description'>

{this.props.title}

<p>
{this.props.description}
</p>
</div>
<div className='extra'>
Submitted by:
<img
className='ui avatar image'
src={this.props.submitterAvatarUrl}
/>
</div>
</div>
</div>

)

Again, everywhere inside of our JSX where we’re interpolating a variable we delimit the variable
with braces ({}). Note that we’re inserting data both as text content inside of tags like this:

voting_app/public/js/app-3.js

<div className='header'>
<a>
<i className='large caret up icon' />
</Ja>
{this.props.votes}
</div>

As well as for attributes on HTML elements:

voting_app/public/js/app-3.js

WOW! eBook
www.wowebook.org

Your first React Web Application 32

Interweaving props with HTML elements in this way is how we create dynamic, data-driven
React components.

0 this is a special keyword in JavaScript. The details about this are a bit nuanced, but for the
purposes of the majority of this book, this will be bound to the React component class.
So, when we write this.props inside the component, we’re accessing the props property

on the component. When we diverge from this rule in later sections, we’ll point it out.

For more details on this, check out this page on MDN?’.

With our updated app . js file saved, let’s refresh the web browser again:

Popular Products

The ProductList component now shows a single product listed, the first object pulled from Seed.

We're getting somewhere interesting. Our Product component is now data-driven. Based on the
props it receives it can render any product that we’d like.

Our code is poised to have ProductList render any number of products. We just need to configure
the component to render some number of Product components, one for each product we’d like to
represent on the page.

Rendering multiple products

To render multiple products, first we’ll have ProductList generate an array of Product components.
Each will be derived from an individual object in the Seed array. We’ll use map to do so:

27https://developerimozilla.org/en-US/docs/Web/JavaSc1ript/Reference/ Operators/this

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Your first React Web Application 33

voting_app/public/js/app-4.js

class ProductlList extends React.Component {
render() {
const productComponents = Seed.products.map((product) => (
<Product
key={"'product-' + product.id}
id={product.id}
title={product.title}
description={product.description}
url={product.url}
votes={product.votes}
submitterAvatarUrl={product.submitterAvatarUrl}
productImageUrl={product.productimagelrl}
/>
));

The function passed to map returns a Product component. This Product is created just as before with
props pulled from the object in Seed.

We pass an arrow function to map. Arrow functions were introduced in ES6. For more info,
see Appendix B.

As such, the productComponents variable ends up being an array of Product components:

// Our “productComponents’ array

[

<Product id={1} ... />,
<Product id={2} ... />,
<Product id={3} ... />,
<Product id={4} ... /»

Notably, we’re able to represent the Product component instance in JSX inside of return. It might
seem odd at first that we’re able to have a JavaScript array of JSX elements, but remember that Babel
will transpile the JSX representation of each Product (<Product />) into regular JavaScript:

WOW! eBook
www.wowebook.org

Your first React Web Application 34

// What “productComponents” looks like in JavaScript
[

React.createElement(Product, { id: 1, ... }),
React.createElement(Product, { id: 2, ... }),
React.createElement(Product, { id: 3, ... }),
React.createElement(Product, { id: 4, ... })

Array’s map()

Array’s map method takes a function as an argument. It calls this function with each item inside
of the array (in this case, each object inside Seed.products) and builds a new array by using the
return value from each function call.

Because the Seed . products array has four items, map will call this function four times, once for each
item. When map calls this function, it passes in as the first argument an item. The return value from
this function call is inserted into the new array thatmap is constructing. After handling the last item,
map returns this new array. Here, we’re storing this new array in the variable productComponents.

0 Note the use of the key={'product-' + product.id} prop. React uses this special property
to create unique bindings for each instance of the Product component. The key prop is not
used by our Product component, but by the React framework. It’s a special property that
we discuss deeper in the chapter “Advanced Component Configuration.” For the time being,

it’s enough to note that this property needs to be unique per React component in a list.

Now, below the declaration of productComponents, we need to modify the return value of
render. Before, we were rendering a single Product component. Now, we can render our array
productComponents:

voting_app/public/js/app-4.js

return (
<div className='ui unstackable items'>
{productComponents}
</div>

)

Refreshing the page, we’ll see all four products from Seed listed:

WOW! eBook
www.wowebook.org

Your first React Web Application

© 0 ® /g projectone x

< C | @ localhost:3000 %t

Popular Products

a 63

E Yellow Pail
On-demand sand castle construction expertise.

SS——
a 54

Supermajority: The Fantasy Congress League
Earn points when your favorite politicians pass legislation.

simieci: @)
- 30

Tinfoild: Tailored tinfoil hats
We already have your and shippi

submicedr: ()

a 61

Haught or Naught
High-minded or absent-minded? You decide.

submicdby: ()

35

We now have five total React components at work. We have a single parent component, Pro-
ductlList. ProductList contains four child Product components, one for each product object in
the Seed.products array in seed. js:

Py

[l

- 63

Yellow Pail
On-demand sand castle construction expertise.

- @
a 54

Supermajority: The Fantasy Congress League
Earn points when your favorite politicians pass legislation.

- @
A 30

Tinfoild: Tailored tinfoil hats

We already have your measurements and shipping address.

Q@
a 61

Haught or Naught
High-minded or absent-minded? You decide.

ID1

ID 2

ID 3

ID 4

Product components (orange) inside of the ProductList component (red)

At the moment, our products aren’t sorted by the number of votes they have. Let’s sort them. We’ll
use Array’s sort method to do so. We’'ll sort the products first before the line where we build our

productComponents array:

WOW! eBook
www.wowebook.org

Your first React Web Application 36

voting_app/public/js/app-5.js

class ProductlList extends React.Component {
render() {
const products = Seed.products.sort((a, b) => (
b.votes - a.votes
));
const productComponents = products.map((product) => (
<Product

Refreshing the page, we’ll see our products are sorted.

sort() mutates the original array it was called on. While fine for now, elsewhere in the
book we discuss why mutating arrays or objects can be a dangerous pattern.

In the markup for Product above, we added an ‘up-vote’ caret icon. If we click on one of these
buttons, we’ll see that nothing happens. We've yet to hook up an event to the button.

Although we have a data-driven React app running in our web browser, this page still lacks
interactivity. While React has given us an easy and clean way to organize our HTML thus far and
enabled us to drive HTML generation based on a flexible, dynamic JavaScript object, we’ve still yet
to tap into its true power: creating dynamic interfaces.

The rest of this book digs deep into this power. Let’s start with something simple: the ability to
up-vote a given product.

o Array’s sort() method takes an optional function as an argument. If the function is
omitted, it will just sort the array by each item’s Unicode code point value. This is rarely
what a programmer desires. If a function is supplied, elements are sorted according to the
function’s return value.

On each iteration, the arguments a and b are two subsequent elements in the array. Sorting
depends on the return value of the function:

1. If the return value is less than @, a should come first (have a lower index).
2. If the return value is greater than o, b should come first.

3. If the return value is equal to 0, leave order of a and b unchanged with respect to
each other.

WOW! eBook
www.wowebook.org

Your first React Web Application 37

React the vote (your app’s first interaction)

When the up-vote button on each one of the Product components is clicked, we expect it to update
the votes attribute for that Product, increasing it by one.

But the Product component can’t modify its votes. this.props is immutable.

While the child can read its props, it can’t modify them. A child does not own its props. In
our app, the parent component ProductList owns the props given to Product. React favors the
idea of one-way data flow. This means that data changes come from the “top” of the app and are
propagated “downwards” through its various components.

A child component does not own its props. Parent components own the props of child
components.

We need a way for the Product component to let ProductList know that a click on its up-vote icon
occurred. We can then have ProductList, the owner of the product’s data, update the vote count
for that product. The updated data will then flow downward from the ProductList component to
the Product component.

o In JavaScript, if we treat an array or object as immutable it means we cannot or should
not make modifications to it.

Propagating the event

We know that parents communicate data to children through props. Because props are immutable,
children need some way to communicate events to parents. The parents could then make whatever
data changes might be necessary.

We can pass down functions as props too. We can have the ProductList component give each
Product component a function to call when the up-vote button is clicked. Functions passed down
through props are the canonical manner in which children communicate events with their parent
components.

Let’s see this in practice. We’ll start by having up-votes log a message to the console. Later, we’ll
have up-votes increment the votes attribute on the target product.

The function handleProductUpVote in ProductList will accept a single argument, productId. The
function will log the product’s id to the console:

WOW! eBook
www.wowebook.org

Your first React Web Application 38

voting_app/public/js/app-6.js

class ProductlList extends React.Component {
handleProductUpVote(productId) {
console.log(productId + ' was upvoted.');

render() {

Next, we’ll pass this function down as a prop to each Product component. We'll name the prop
onVote:

voting_app/public/js/app-6.js

const productComponents = products.map((product) => (
<Product
key={'product-' + product.id}
id={product.id}
title={product.title}
description={product.description}
url={product.url}
votes={product.votes}
submitterAvatarUrl={product.submitterAvatarUrl}
productImageUrl={product.productImageUlrl}
onVote={this.handleProductUpVote}
/>
));

We can now access this function inside Product via this.props.onVote.

Let’s write a function inside Product that calls this new prop-function. We’ll name the function
handleUpVote():

voting_app/public/js/app-6.js

// Inside “Product”
handleUpVote() {
this.props.onVote(this.props.id);

render() {

WOW! eBook
www.wowebook.org

Your first React Web Application 39

We invoke the prop-function this.props.onVote with the id of the product. Now, we just need to
call this function every time the user clicks the caret icon.

In React, we can use the special attribute onClick to handle mouse click events.

We’ll set the onClick attribute on the a HTML tag that is the up-vote button. We’ll instruct it to call
handleUpVote() whenever it is clicked:

voting_app/public/js/app-6.js

{/* Inside ‘render” for Product® */}
<div className='middle aligned content'>
<div className='header'>

<i className='large caret up icon' />

{this.props.votes}
</div>

When the user clicks the up-vote icon, it will trigger a chain of function calls:

1. User clicks the up-vote icon.
2. React invokes Product component’s handleUpVote.

3. handleUpVote invokes its prop onVote. This function lives inside the parent ProductList and
logs a message to the console.

There’s one last thing we need to do to make this work. Inside the function handleUpVote() we refer
to this.props:

voting_app/public/js/app-6.js

handleUpVote() {
this.props.onVote(this.props.id);

Here’s the odd part: When working inside render (), we’ve witnessed that this is always bound to
the component. But inside our custom component method handleUpVote(), this is actually null.

Binding custom component methods

In JavaScript, the special this variable has a different binding depending on the context. For
instance, inside render () we say that this is “bound” to the component. Put another way, this
“references” the component.

WOW! eBook
www.wowebook.org

Your first React Web Application 40

Understanding the binding of this is one of the trickiest parts of learning JavaScript programming.
Given this, it’s fine for a beginner React programmer to not understand all the nuances at first.

In short, we want this inside handleUpVote() to reference the component, just like it does
inside render (). But why does this inside render() reference the component while this inside
handleUpVote() does not?

For the render () function, React binds this to the component for us. React specifies a default
set of special API methods. render() is one such method. As we’ll see at the end of the chapter,
componentDidMount() is another. For each of these special React methods, React will bind the this
variable to the component automatically.

So, any time we define our own custom component methods, we have to manually bind this
to the component ourselves. There’s a pattern that we use to do so.

Add the following constructor() function to the top of Product:

voting_app/public/js/app-6.js

class Product extends React.Component {
constructor(props) {
super(props);

this.handleUpVote = this.handleUpVote.bind(this);

constructor() is a special function in a JavaScript class. JavaScript invokes constructor()
whenever an object is created via a class. If you’ve never worked with an object-oriented language
before, it’s sufficient to know that React invokes constructor() first thing when initializing our
component. React invokes constructor () with the component’s props.

Because constructor () is called when initializing our component, we’ll use it for a couple different
types of situations in the book. For our current purposes, it’s enough to know that whenever we
want to bind custom component methods to a React component class, we can use this pattern:

class MyReactComponent extends React.Component {
constructor(props) {
super(props); // always call this first

// custom method bindings here

this.someFunction = this.someFunction.bind(this);

If you're feeling comfortable reading further details on this pattern, see the aside Binding in
constructor().

WOW! eBook
www.wowebook.org

Your first React Web Application 41

At the end of the chapter, we’ll use an experimental JavaScript feature that allows us to bypass this
pattern. However, when working with regular ES7 JavaScript, it’s important to keep this pattern in
mind:

When defining custom methods on our React component classes, we must perform the
binding pattern inside constructor() so that this references our component.

Saving our updated app. js, refreshing our web browser, and clicking an up-vote will log some text
to our JavaScript console:

® © ® /B rroject One X React

& C | @ localhost:3000 x| i

Popular Products

a 54

E Yellow Pail

On-demand sand castle construction expertise.

2

a 38

Haught or Naught
High-minded or absent-minded? You decide.

= ﬂ Elements Console Sources Network Timeline Profiles Application Security Audits PX

© ¥ top ¥ [Preservelog

1 was upvoted. app.js:12

The events are being propagated up to the parent!

ProductList is the owner of the product data. And Product is now informing its parent whenever
a user up-votes a product. Our next task is to update the vote count on the product.

But where do we perform this update? At the moment, our app doesn’t have a place to store and
manage data. Seed should be thought of as a seed of example data, not our app’s datastore.

What our app is currently missing is state.

WOW! eBook
www.wowebook.org

Your first React Web Application 42
0 In fact, while we might be tempted to update the vote count in Seed. products like this:

// Would this work?
Seed.products. forEach((product) => {
if (product.id === productld) {
product.votes = product.votes + 1;
}
1)

Doing so wouldn’t work. When updating Seed, our React app would not be informed of
the change. On the user interface there would be no indication that the vote count was
incremented.

Binding in constructor()

The first thing we do in constructor() is call super(props). The React.Component class that
our Product class is extending defines its own constructor(). By calling super(props), we’re
invoking that constructor() function first.

Importantly, the constructor() function defined by React.Component will bind this inside our
constructor() to the component. Because of this, it’s a good practice to always call super () first
whenever you declare a constructor() for your component.

After calling super(), we call bind() on our custom component method:
this.handleUpVote = this.handleUpVote.bind(this);

Function’s bind() method allows you to specify what the this variable inside a function body
should be set to. What we’re doing here is a common JavaScript pattern. We're redefining the
component method handleUpVote(), setting it to the same function but bound to this (the
component). Now, whenever handleUpVote() executes, this will reference the component as
opposed to null.

Using state

Whereas props are immutable and owned by a component’s parent, state is owned by the
component. this.state is private to the component and as we’ll see can be updated with
this.setState().

Critically, when the state or props of a component update, the component will re-render itself.

WOW! eBook
www.wowebook.org

Your first React Web Application 43

Every React component is rendered as a function of its this.props and this.state. This
rendering is deterministic. This means that given a set of props and a set of state, a React component
will always render a single way. As we mentioned at the beginning of the chapter, this approach
makes for a powerful Ul consistency guarantee.

Because we are mutating the data for our products (the number of votes), we should consider this
data to be stateful. ProductList will be the owner of this state. It will then pass this state down as
props to Product.

At the moment, ProductList is reading directly from Seed inside render() to grab the products.
Let’s move this data into the component’s state.

When adding state to a component, the first thing we do is define what the initial state should look
like. Because constructor() is called when initializing our component, it’s the best place to define
our initial state.

In React components, state is an object. The shape of our ProductList state object will look like this:

// Shape of the “ProductlList® state object
{

products: <Array>,

We'll initialize our state to an object with an empty products array. Add this constructor() to
ProductlList:

voting_app/public/js/app-7.js

class ProductlList extends React.Component {
constructor(props) {
super(props);

this.state = {
products: [],
};

componentDidMount () {
this.setState({ products: Seed.products });
}

Like with our constructor() call in Product, the first line in constructor() is the super(props)
call. The first line in any constructor() functions we write for React components will always be
this same line.

WOW! eBook
www.wowebook.org

Your first React Web Application 44

Technically, because we don’t supply ProductList any props, we don’t need to propagate
the props argument to super (). But it’s a good habit to get into and helps avoid odd bugs
in the future.

Next, with our state initialized, let’s modify the ProductList component’s render function so that
it uses state as opposed to reading from Seed. We read the state with this.state:

voting_app/public/js/app-7.js

render() {
const products = this.state.products.sort((a, b) => (
b.votes - a.votes

));

ProductList is driven by its own state now. If we were to save and refresh now, all our products
would be missing. We don’t have any mechanisms in ProductList that add products to its state.

Setting state with this.setState()

It’s good practice to initialize components with “empty” state as we’ve done here. We explore the
reasoning behind this when working asynchronously with servers in the chapter “Components &
Servers.”

However, after our component is initialized, we want to seed the state for ProductList with the
data in Seed.

React specifies a set of lifecycle methods. React invokes one lifecycle method, componentDid-
Mount (), after our component has mounted to the page. We’ll seed the state for ProductList inside
this method.

We explore the rest of the lifecycle methods in the chapter “Advanced Component
Configuration.”

Knowing this, we might be tempted to set the state to Seed. products inside componentDidMount ()
like this:

WOW! eBook
www.wowebook.org

Your first React Web Application 45

class ProductList extends React.Component {
Y/
// Is this valid ?
componentDidMount () {
this.state = Seed.products;
}
/).

However, this is invalid. The only time we can modify the state in this manner is in constructor().
For all state modifications after the initial state, React provides components the method
this.setState(). Among other things, this method triggers the React component to re-render
which is essential after the state changes.

Never modify state outside of this.setState(). This function has important hooks
around state modification that we would be bypassing.

We discuss state management in detail throughout the book.

Add componentDidMount() to ProductList now. We'll use setState() to seed the component’s
state:

voting_app/public/js/app-8.js

class ProductlList extends React.Component {
constructor(props) {
super (props);

this.state = {
products: [],
b

componentDidMount () {
this.setState({ products: Seed.products });
}

The component will mount with an empty state this.state.products array. After mounting, we
populate the state with data from Seed. The component will re-render and our products will be
displayed. This happens at a speed that is imperceptible to the user.

If we save and refresh now, we see that the products are back.

WOW! eBook
www.wowebook.org

Your first React Web Application 46

Updating state and immutability

Now that ProductList is managing the products in state, we’re poised to make modifications to this
data in response to user input. Specifically, we want to increment the votes property on a product
when the user votes for it.

We just discussed that we can only make state modifications using this.setState(). So while a
component can update its state, we should treat the this.state object as immutable.

As touched on earlier, if we treat an array or object as immutable we never make modifications to
it. For example, let’s say we have an array of numbers in state:

this.setState({ nums: [1, 2, 3]});

If we want to update the state’s nums array to include a 4, we might be tempted to use push() like
this:

this.setState({ nums: this.state.nums.push(4) });

On the surface, it might appear as though we’ve treated this.state as immutable. However, the
push() method modifies the original array:

console.log(this.state.nums);
/1,2 3]
this.state.nums.push(4);
console.log(this.state.nums);
// [1, 2, 3, 4] <-- Uh-oh!

Although we invoke this.setState() immediately after we push 4 onto the array, we're still
modifying this.state outside of setState() and this is bad practice.

Part of the reason this is bad practice is because setState() is actually asynchronous.
There is no guarantee when React will update the state and re-render our component. We
touch on this in the “Advanced Component Configuration” chapter.

So, while we eventually called this.setState(), we unintentionally modified the state before that.

This next approach doesn’t work either:

WOW! eBook
www.wowebook.org

Your first React Web Application 47

const nextNums = this.state.nums;
nextNums.push(4);

console. log(nextNums);

/7 [1, 2, 3 4]
console.log(this.state.nums);

// [1, 2, 3, 4] <-- Nope!

Our new variable nextNums references the same array as this.state.nums in memory:

VARIABLES MEMORY

nextNums

[1, 2, 3]

this.state.nums

Both variables reference the same array in memory

So when we modify the array with push(), we’re modifying the same array that this.state.nums
is pointing to.

Instead, we can use Array’s concat (). concat() creates a new array that contains the elements of
the array it was called on followed by the elements passed in as arguments.

With concat (), we can avoid mutating state:

console.log(this.state.nums);

/711, 2 3]

const nextNums = this.state.nums.concat(4);
console. log(nextNums);

/[1, 2,8, 4]
console.log(this.state.nums);

// [1, 2, 3] <-- Unmodified!

We touch on immutability throughout the book. While you might be able to “get away” with
mutating the state in many situations, it’s better practice to treat state as immutable.

Treat the state object as immutable. It’s important to understand which Array and Object
methods modify the objects they are called on.

WOW! eBook
www.wowebook.org

Your first React Web Application 48

0 If an array is passed in as an argument to concat(), its elements are appended to the new
array. For example:

> [1, 2, 8].concat([4, 5 1);
=>[1,2, 8, 4, 5]

Knowing that we want to treat the state as immutable, the following approach to handling up-votes
would be problematic:

// Inside “ProductlList’
// Invalid
handleProductUpVote(productId) {
const products = this.state.products;
products. forEach((product) => {
if (product.id === productId) {
product.votes = product.votes + 1;
}

});
this.setState({

products: products,

});

When we initialize products to this.state.products, product references the same array in
memory as this.state.products:

VARIABLES MEMORY
products E [
T | tid1,)
§ { id: 2, .. },
: { id: 3, .},
7 fidi ok,)

this.state.products

Both variables reference the same array in memory

WOW! eBook
www.wowebook.org

Your first React Web Application 49

So, when we modify a product object by incrementing its vote count inside forEach(), we'’re
modifying the original product object in state.

Instead, we should create a new array of products. And if we modify one of the product objects, we
should modify a clone of the object as opposed to the original one.

Let’s see what a handleProductUpVote() implementation looks like that treats state as immutable.
We'll see it in full then break it down:

voting_app/public/js/app-9.js
// Inside “ProductlList"
handleProductUpVote(productId) ({
const nextProducts = this.state.products.map((product) => {
if (product.id === productlId) {
return Object.assign({}, product, {

votes: product.votes + 1,

1
} else {

return product;
}

b
this.setState({

products: nextProducts,

});

First, we usemap() to traverse the products array. Importantly, map() returns a new array as opposed
to modifying the array this.state.products.

Next, we check if the current product matches productId. If it does, we create a new object, copying
over the properties from the original product object. We then overwrite the votes property on our
new product object. We set it to the incremented vote count. We do this using Object’s assign()
method:

voting_app/public/js/app-9.js
if (product.id === productld) {
return Object.assign({}, product, {

votes: product.votes + 1,

1)

We use Object.assign() a lot for avoiding mutating objects. For more details on the
method, check out Appendix B.

If the current product is not the one specified by productId, we return it unmodified:

WOW! eBook
www.wowebook.org

Your first React Web Application 50

voting_app/public/js/app-9.js

} else {
return product;

Finally, we use setState() to update the state.

map() is creating a new array. So you might ask: Why can’t we modify the product object directly?
Like this:

if (product.id === productld) {
product.votes = product.votes + 1;

While we’re creating a new array, the variable product here still references the product object
sitting on the original array in state. Therefore, if we make changes to it we’ll be modifying the
object in state. So we use Object.assign() to clone the original into a new object and then modify
the votes property on that new object.

Our state update for up-votes is in place. There’s one last thing we have to do: Our custom component
method handleProductUpVote() is now referencing this. We need to add abind() call like the one
we have for handleUpVote() in Product:

voting_app/public/js/app-9.js

class ProductList extends React.Component {
constructor (props) {
super (props);

this.state = {
products: [],

};

this.handleProductUpVote = this.handleProductUpVote.bind(this);

Now this in handleProductUpVote() references our component.

Our app should finally be responsive to user interaction. Save app . js, refresh the browser, and cross
your fingers:

WOW! eBook
www.wowebook.org

Your first React Web Application 51

g

ece [9 Project One % Rea

<« C' [localhost:3000

Popular Products

a 49
Tinfoild: Tailored tinfoil hats
a 40
Yellow Pail
o
-
a 33
Supermajority: The Fantasy Congress League
a 19
Haught or Naught

At last, the vote counters are working! Try up-voting a product a bunch of times and notice how it
immediately jumps above products with lower vote counts.

Refactoring with the Babel plugin

transform-class-properties

In this last section, we’ll explore a possible refactor that we can make to our class components
using an experimental JavaScript feature. For reasons you’ll soon see, this feature is popular among
React developers. Because the community is still adopting this feature, we expose you to both class
component styles throughout the book.

We’re able to access this feature using Babel’s library of plugins and presets.

Babel plugins and presets

We’ve been using Babel in this project to give us the ability to write modern JavaScript that will
run in a majority of browsers on the web. Specifically, our code has been using Babel to convert ES6
syntax and JSX into vanilla ES5 JavaScript.

There’s a few ways to integrate Babel into your project. We've been using babel -standalone which
allows us to setup Babel quickly for use directly in the browser.

WOW! eBook
www.wowebook.org

Your first React Web Application 52

babel-standalone by default uses two presets. In Babel, a preset is a set of plugins used to
support particular language features. The two presets Babel has been using by default:

+ es2015%: Adds support for ES2015 (or ES6) JavaScript
« react®: Adds support for JSX

Remember: ES2015 is just another name used for ES6. We let Babel use the default es2015
preset for this project because we don’t need or use either of ES7’s two new features.

JavaScript is an ever-changing language. At its current pace, new syntax will be ratified for adoption
on a yearly basis.

Because JavaScript will continue to evolve, tools like Babel are here to stay. Developers want to take
advantage of the latest language features. But it takes time for browsers to update their JavaScript
engines. And it takes even more time for the majority of the public to upgrade their browsers to the
latest versions. Babel closes this gap. It enables a codebase to evolve along with JavaScript without
leaving older browsers behind.

Beyond ES7, proposed JavaScript features can exist in various stages. A feature can be an
experimental proposal, one that the community is still working out the details for (“stage 17).
Experimental proposals are at risk of being dropped or modified at any time. Or a feature might
already be “ratified,” which means it will be included in the next release of JavaScript (“stage 4”).

We can customize Babel with presets and plugins to take advantage of these upcoming or
experimental features.

In this book, we generally avoid features that are experimental. However, there is one feature that
looks to be ratified that we make an exception for: property initializers.

0 We avoid features that are experimental because we don’t want to teach features that might
be modified or dropped. For your own projects, it’s up to you and your team to decide how
“strict” you want to be about the JavaScript features that you use.

If you’d like to read more about the various Babel presets and plugins, check out the docs®.

Property initializers

Property initializers are detailed in the proposal “ES Class Fields & Static Properties®’” While an
experimental feature that has yet to be ratified, property initializers offer a compelling syntax that

28https://babeljs.io/docs/plugins/prese‘[—esZO 15/
29https://babeljs‘io/docs/plugins/preset— react/

3 https://babeljs.io/docs/plugins/

31https:/ /github.com/tc39/proposal-class-public-fields

WOW! eBook
www.wowebook.org

https://babeljs.io/docs/plugins/preset-es2015/
https://babeljs.io/docs/plugins/preset-react/
https://babeljs.io/docs/plugins/
https://github.com/tc39/proposal-class-public-fields
https://babeljs.io/docs/plugins/preset-es2015/
https://babeljs.io/docs/plugins/preset-react/
https://babeljs.io/docs/plugins/
https://github.com/tc39/proposal-class-public-fields

Your first React Web Application 53

greatly simplify React class components. This feature works so well with React that the Facebook
team has written about using it internally™.

Property initializers are available in the Babel plugin transform-class-properties. Recall that we
specified this plugin for app. js inside index.html:

<script
type="text/babel"
data-plugins="transform-class-properties"”
src="./js/app.js"

></script>

Therefore, we’re ready to use this feature in our code. The best way to understand what this feature
gives us is to see it in action.

Refactoring Product

Inside Product, we defined the custom component method handleUpVote. As we discussed, because
handleUpVote is not part of the standard React component API, React does not bind this inside the
method to our component. So we had to perform a manual binding trick inside constructor:

voting_app/public/js/app-9.js

class Product extends React.Component {
constructor(props) {
super(props);

this.handleUpVote = this.handleUpVote.bind(this);

handleUpVote() {
this.props.onVote(this.props.id);

render() {

With the transform-class-properties plugin, we can write handleUpVote as an arrow function.
This will ensure this inside the function is bound to the component, as expected:

32https://babeljs.io/blog/zo15/06/07/react-on—es6-plus

WOW! eBook
www.wowebook.org

https://babeljs.io/blog/2015/06/07/react-on-es6-plus
https://babeljs.io/blog/2015/06/07/react-on-es6-plus

Your first React Web Application 54

voting_app/public/js/app-complete.js

class Product extends React.Component {
handleUpVote = () => (
this.props.onVote(this.props.id)

);

render() {

Using this feature, we can drop constructor(). There is no need for the manual binding call.

Note that methods that are part of the standard React API, like render(), will remain as class
methods. If we write a custom component method in which we want this bound to the component,
we write it as an arrow function.

Refactoring ProductList

We can give the same treatment to handleProductUpVote inside ProductList. In addition, property
initializers give us an alternative way to define the initial state of a component.

Before, we used constructor() in ProductList to both bind handleProductUpVote to the compo-
nent and define the component’s initial state:

class ProductlList extends React.Component {
constructor(props) {
super(props);

this.state = {
products: [],
b

this.handleProductUpVote = this.handleProductUpVote.bind(this);

With property initializers, we no longer need to use constructor. Instead, we can define the initial
state like this:

WOW! eBook
www.wowebook.org

Your first React Web Application 55

voting_app/public/js/app-complete.js

class ProductlList extends React.Component {
state = {
products: [],

};

And, if we define handleProductUpVote as an arrow function, this will be bound to the component
as desired:

voting_app/public/js/app-complete.js

handleProductUpVote = (productlId) => {
const nextProducts = this.state.products.map((product) => {
if (product.id === productId) {
return Object.assign({}, product, {
votes: product.votes + 1,
1);
} else {
return product;
}
1
this.setState({
products: nextProducts,

});

In sum, we can use property initializers to make two refactors to our React components:

1. We can use arrow functions for custom component methods (and avoid having to bind this)
2. We can define the initial state outside of constructor()

We expose you to both approaches in this book as both are in widespread use. Each project will be
consistent as to whether or not it uses transform-class-properties. You're welcome to continue
to use vanilla ES6 in your own projects. However, the terseness afforded by transform-class-
properties is often too attractive to pass up.

Using ES6/ES7 with additional presets or plugins is sometimes referred to by the commu-
nity as “ES6+/ES7+”.

WOW! eBook
www.wowebook.org

Your first React Web Application 56

Congratulations!

We just wrote our first React app. There are a ton of powerful features we’ve yet to go over, yet all
of them build upon the core fundamentals we just covered:

We think about and organize our React apps as components
Using JSX inside the render method

Data flows from parent to children through props

Event flows from children to parent through functions
Utilizing React lifecycle methods

Stateful components and how state is different from props

N s e

How to manipulate state while treating it as immutable

Onward!

WOW! eBook
www.wowebook.org

Components

A time-logging app

In the last chapter, we described how React organizes apps into components and how data flows
between parent and child components. And we discussed core concepts such as how we manage
state and pass data between components using props.

In this chapter, we construct a more intricate application. We investigate a pattern that you can use
to build React apps from scratch and then put those steps to work to build an interface for managing
timers.

In this time-tracking app, a user can add, delete, and modify various timers. Each timer corresponds
to a different task that the user would like to keep time for:

eoe [Project Two: Timers b React

€« C' [localhost:3000 ve| =

Timers

Mow the lawn

01:30:56
8w

Start

Clear paper jam

00:21:13

g

Start

Ponder origins of
universe

14:00:29
8w

Stop

+

This app will have significantly more interactive capabilities than the one built in the last chapter.
This will present us with some interesting challenges that will deepen our familiarity with React’s
core concepts.

WOW! eBook
www.wowebook.org

Components 58

Getting started

As with all chapters, before beginning make sure you’ve downloaded the book’s sample code and
have it at the ready.

Previewing the app

Let’s begin by playing around with a completed implementation of the app.

In your terminal, cd into the time_tracking_app directory:
$ cd time_tracking_app

Use npm to install all the dependencies:

$ npm install

Then boot the server:

$ npm start

Now you can view the app in your browser. Open your browser and enter the URLhttp: //localhost : 3000.

Play around with it for a few minutes to get a feel for all the functionality. Refresh and note that
your changes have been persisted.

Note that this app uses a different web server than the one used in the voting app. The
app won’t automatically launch in your browser or automatically refresh when you make
changes.

Prepare the app

In your terminal, run 1s to see the project’s layout:

WOW! eBook
www.wowebook.org

Components

$ 1s

README . md

data. json
nightwatch. json
node_modules/
package. json
public/
semantic. json
server. js
tests/

There are a few organizational changes from the last project.

59

First, notice that there is now a server. js in this project. In the last chapter, we used a pre-built
Node package (called 1ive-server) to serve our assets.

This time we have a custom-built server which serves our assets and also adds a persistence layer.
We will cover the server in detail in the next chapter.

0 When you visit a website, assets are the files that your browser downloads and uses to
display the page. index.html is delivered to the browser and inside its head tags it specifies
which additional files from the server the browser needs to download.

In the last project, our assets were index.html as well as our stylesheets and images.

In this project, everything under public/ is an asset.

In the voting app, we loaded all of our app’s initial data from a JavaScript variable, loaded in the file

seed. js.

This time, we're going to eventually store it in the text file data. json. This brings the behavior a bit
closer to a database. By using a JSON file, we can make edits to our data that will be persisted even

if the app is closed.

JSON stands for JavaScript Object Notation. JSON enables us to serialize a JavaScript object

and read/write it from a text file.

If you’re not familiar with JSON, take a look at data. json. Pretty recognizable, right?
JavaScript has a built-in mechanism to parse the contents of this file and initialize a

JavaScript object with its data.

Peek inside public:

WOW! eBook
www.wowebook.org

Components 60

$ cd public
$ 1s

The structure here is the same as the last project:

favicon.ico
index.html
Js/
semantic/
style.css
vendor/

Again, index.html is the centerpiece of the app. It’s where we include all of our JavaScript and CSS
files and where we specify the DOM node where we’ll ultimately mount our React app.

We’re using SemanticUI again here for styling. All of SemanticUT’s assets are underneath semantic/.

All our JavaScript files are inside of js/:

$ 1s js/
app-1.]js
app-2.]Js
app-3.js
app-4.]js
app-5.Js
app-6.]Js
app-T.js
app-8.js
app-9.Jjs
app-complete. js
app.js
client. js
helpers. js

We’ll be building the app inside app. js. The completed version of the app which we reach in the
next chapter is inside app-complete. js. Each step we take along the way is included here: app-1. js,
app-2. js, and so forth. Like the last chapter, code examples in the book are titled with the file in
which you can find that example.

Furthermore, we’ll be using a couple additional JavaScript files for this project. As we’ll see,
client. js contains functions that we’ll use to interface with our server in the next chapter.
helpers. js contains some helper functions that our components will use.

As before, our first step is to ensure app-complete. js is no longer loaded in index.html. We’ll
instead load the empty file app. js.

Open up index.html:

WOW! eBook
www.wowebook.org

Components 61

time_tracking_app/public/index.html

<IDOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Project Two: Timers</title>
<link rel="stylesheet" href="./semantic/dist/semantic.css" />
<link rel="stylesheet" href="style.css" />
<script src="vendor/babel-standalone. js"></script>
<script src="vendor/react. js"></script>
<script src="vendor/react-dom. js"></script>
<script src="vendor/uuid.js"></script>
<script src="vendor/fetch. js"></script>

</head>

<body>
<div id="main" class="main ui">
<h1 class="ui dividing centered header">Timers</hi1>
<div id="content"></div>
</div>
<script type="text/babel" src="./js/client.js"></script>
<script type="text/babel" src="./js/helpers. js"></script>
<script
type="text/babel”
data-plugins="transform-class-properties"
src="./js/app. js"
></script>
<I-- Delete the script tag below to get started. -->
<script
type="text/babel"
data-plugins="transform-class-properties"
src="./js/app-complete. js"
></script>
</body>

</html>

Overall, this file is very similar to the one we used in our voting app. We load in our dependencies
within the head tags (the assets). Inside of body we have a few elements. This div is where we will
ultimately mount our React app:

WOW! eBook
www.wowebook.org

Components 62

time_tracking_app/public/index.html

<div id="content"></div>

And this script tag is where we instruct the browser to load app. js into the page:

time_tracking_app/public/index.html

<script
type="text/babel"
data-plugins="transform-class-properties"
src="./js/app.js"

></script>

We’re using the Babel plugin transform-class-properties again in this chapter. We discussed this
plugin at the end of the previous chapter.

Do as the comment says and delete the script tag that loads app-complete. js:

<script
type="text/babel"
data-plugins="transform-class-properties"
src="./js/app. js"

></script>

<!-- Delete the script tag below to get started. -->

<seript

><fseriph>-
Save index.html. If you reload the page now, you’ll see the app has disappeared.

Breaking the app into components

As we did with our last project, we begin by breaking our app down into its components. Again,
visual components often map tightly to their respective React components. Let’s examine the
interface of our app:

WOW! eBook
www.wowebook.org

63

Components

=
]
2

o
m

® O ® /[project Two: Timers

€ - C' | [J localhost:3000

Timers

Mow the lawn

House Chares

01:30:56
8@

Start

Clear paper jam
Office Chores

00:21:13
1]

Start

Ponder origins of
universe

Life Chares

14:00:29

=g

Stop

In the last project, we had ProductList and Product components. The first contained instances of
the second. Here, we spot the same pattern, this time with TimerList and Timer components:

WOW! eBook
www.wowebook.org

Components

However, there’s one subtle difference: This list of timers has a little

TimerlList

Mow the lawn

01:30:56

=g

Clear paper jam

00:21:13

|-gr

Ponder origins of
universe

14:00:29

|-

| Stop

64

icon at the bottom. As

we saw, we're able to add new timers to the list using this button. So, in reality, the TimerList

component isn’t just a list of timers. It also contains a widget to create new timers.

Think about components as you would functions or objects. The single responsibility principle®
applies. A component should, ideally, only be responsible for one piece of functionality. So, the
proper response here is for us to shrink TimerList back into its responsibility of just listing timers
and to nest it under a parent component. We’ll call the parent TimersDashboard. TimersDashboard
will have TimerList and the “+”/create form widget as children:

33https:// en.wikipedia.org/wiki/Single_responsibility_principle

WOW! eBook

www.wowebook.org

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

Components 65

Timerlist

Mow the lawn

01:30:56

|-gr 4

Clear paper jam

00:21:13

=g

Ponder origins of
universe

14:00:29

g @

| Stop |

227

Not only does this separation of responsibilities keep components simple, but it often also improves
their re-usability. In the future, we can now drop the TimerList component anywhere in the app
where we just want to display a list of timers. This component no longer carries the responsibility
of also creating timers, which might be a behavior we want to have for just this dashboard view.

0 How you name your components is indeed up to you, but having some consistent rules
around language as we do here will greatly improve code clarity.

In this case, developers can quickly reason that any component they come across that ends
in the word List simply renders a list of children and no more.

The “+”/create form widget is interesting because it has two distinct representations. When the “+”
button is clicked, the widget transmutes into a form. When the form is closed, the widget transmutes

«

back into a “+” button.

There are two approaches we could take. The first one is to have the parent component, Timers-
Dashboard, decide whether or not to render a “+” component or a form component based on
some piece of stateful data. It could swap between the two children. However, this adds more
responsibility to TimersDashboard. The alternative is to have a new child component own the single
responsibility of determining whether or not to display a “+” button or a create timer form. We’'ll
call it ToggleableTimerForm. As a child, it can either render the component TimerForm or the HTML
markup for the “+” button.

At this point, we’ve carved out four components:

WOW! eBook
www.wowebook.org

Components 66

TimerlList

Mow the lawn

01:30:56

|- jrs

Clear paper jam

00:21:13
-

Start

Ponder origins of
universe

14:00:29

|=gF

| Stop |

L - |

ToggleableTimerForm

Now that we have a sharp eye for identifying overburdened components, another candidate should
catch our eye:

Mow the lawn Title

Maow the lawn
01:30:56

il S Project

Start ‘ House Chores

‘ Update Cancel

A single timer: Displaying time (left) vs. edit form (right)

The timer itself has a fair bit of functionality. It can transform into an edit form, delete itself, and
start and stop itself. Do we need to break this up? And if so, how?

Displaying a timer and editing a timer are indeed two distinct UI elements. They should be two
distinct React components. Like ToggleableTimerForm, we need some container component that
renders either the timer’s face or its edit form depending on if the timer is being edited.

WOW! eBook
www.wowebook.org

Components 67

We'll call this EditableTimer. The child of EditableTimer will then be either a Timer component
or the edit form component. The form for creating and editing timers is very similar, so let’s assume
that we can use the component TimerForm in both contexts:

Mow the lawn

01:30:56

e

Title TimerForm

Clear paper jam

Project

Office Chores

As for the other functionality of the timer, like the start and stop buttons, it’s a bit tough to determine
at this point whether or not they should be their own components. We can trust that the answers
will be more apparent after we’ve written some code.

Working back up the component tree, we can see that the name TimerList would be a misnomer.
It really is a EditableTimerList. Everything else looks good.

So, we have our final component hierarchy, with some ambiguity around the final state of the timer
component:

WOW! eBook
www.wowebook.org

Components

EditableTimerList

Mow the lawn

01:30:56

g &

Start

Title TimerForm
Clear paper jam

Project

Office Chores

Ponder origins of
universe

15:56:26
-frs

Stop

+

ToggleableTimerForm

 TimersDashboard: Parent container
— EditableTimerList: Displays a list of timer containers
* EditableTimer: Displays either a timer or a timer’s edit form
- Timer: Displays a given timer
- TimerForm: Displays a given timer’s edit form
— ToggleableTimerForm: Displays a form to create a new timer
* TimerForm (not displayed): Displays a new timer’s create form

Represented as a hierarchical tree:

WOW! eBook
www.wowebook.org

68

Components 69

Timers-

Dashboard

Editable- Toggleable-
TimerlList TimerForm

EditableTimer TimerForm

TimerForm

0 In our previous app, ProductList handled not only rendering components, but also the
responsibility of handling up-votes and talking to the store. While this worked for that
app, you can imagine that as a codebase expands, there may come a day where we’d want

to free ProductList of this responsibility.

For example, imagine if we added a “sort by votes” feature to ProductList. What if we
wanted some pages to be sortable (category pages) but other pages to be static (top 10)?
We’d want to “hoist” sort responsibility up to a parent component and make ProductList
the straightforward list renderer that it should be.

This new parent component could then include the sorting-widget component and then
pass down the ordered products to the ProductList component.

The steps for building React apps from scratch

Now that we have a good understanding of the composition of our components, we’re ready to build
a static version of our app. Ultimately, our top-level component will communicate with a server. The

WOW! eBook
www.wowebook.org

Components 70

server will be the initial source of state, and React will render itself according to the data the server
provides. Our app will also send updates to the server, like when a timer is started:

Server

Timers-

Dashboard

Editable- Toggleable-

TimerList TimerForm

However, it will simplify things for us if we start off with static components, as we did in the last
chapter. Our React components will do little more than render HTML. Clicking on buttons won’t
yield any behavior as we will not have wired up any interactivity. This will enable us to lay the
framework for the app, getting a clear idea of how the component tree is organized.

Next, we can determine what the state should be for the app and in which component it should
live. We'll start off by just hard-coding the state into the components instead of loading it from the
server.

At that point, we’ll have the data flow from parent to child in place. Then we can add inverse data
flow, propagating events from child to parent.

Finally, we’ll modify the top-level component to have it communicate with the server.

In fact, this follows from a handy framework for developing a React app from scratch:

Break the app into components

Build a static version of the app

Determine what should be stateful

Determine in which component each piece of state should live
Hard-code initial states

AR S

Add inverse data flow

WOW! eBook
www.wowebook.org

Components 71
7. Add server communication

We followed this pattern in the last project:

1. Break the app into components

We looked at the desired UI and determined we wanted ProductList and Product components.
2. Build a static version of the app

Our components started off without using state. Instead, we had ProductList pass down static
props to Product.

3. Determine what should be stateful

In order for our application to become interactive, we had to be able to modify the vote property on
each product. Each product had to be mutable and therefore stateful.

4. Determine in which component each piece of state should live

ProductList managed the voting state using React component class methods.

5. Hard-code initial state

When we re-wrote ProductList to use this.state, we seeded it from Seed. products.
6. Add inverse data flow

We defined the handleUpVote function in ProductList and passed it down in props so that each
Product could inform ProductList of up-vote events.

7. Add server communication
We did not add a server component to our last app, but we will be doing so in this one.

If steps in this process aren’t completely clear right now, don’t worry. The purpose of this chapter is
to familiarize yourself with this procedure.

We've already covered step (1) and have a good understanding of all of our components, save for
some uncertainty down at the Timer component. Step (2) is to build a static version of the app. As
in the last project, this amounts to defining React components, their hierarchy, and their HTML
representation. We completely avoid state for now.

Step 2: Build a static version of the app

TimersDashboard

Let’s start off with the TimersDashboard component. Again, all of our React code for this chapter
will be inside of the file public/app. js.

We’ll begin by defining a familiar function, render ():

WOW! eBook
www.wowebook.org

Components 72

time_tracking_app/public/js/app-1.js

class TimersDashboard extends React.Component {
render() {
return (
<div className='ui three column centered grid'>
<div className='column'>
<EditableTimerList />
<ToggleableTimerForm
isOpen={true}
/>
</div>
</div>
)i

This component renders its two child components nested under div tags. TimersDashboard passes
down one prop to ToggleableTimerForm: isOpen. This is used by the child component to determine
whether to render a “+” or TimerForm. When ToggleableTimerForm is “open” the form is being
displayed.

0 As in the last chapter, don’t worry about the className attribute on the div tags. This will
ultimately define the class on HTML div elements and is purely for styling purposes.

In this example, classes like ui three column centered grid all come from the CSS
framework Semantic UT**. The framework is included in the head of index.html.

We will define EditableTimerList next. We’'ll have it render two EditableTimer components. One
will end up rendering a timer’s face. The other will render a timer’s edit form:

time_tracking_app/public/js/app-1.js

class EditableTimerList extends React.Component {
render() {
return (
<div id='timers'>
<EditableTimer
title='Learn React'
project="Web Domination'
elapsed="'8986300"
runningSince={null}

34http:/ /semantic-ui.com

WOW! eBook
www.wowebook.org

http://semantic-ui.com/
http://semantic-ui.com/

Components

editFormOpen={false}

/>

<EditableTimer
title="Learn extreme ironing'
project='World Domination'
elapsed="3890985"
runningSince={null}
editFormOpen={true}

/>

</div>

)

73

We’re passing five props to each child component. The key difference between the two Editable-
Timer components is the value being set for editFormOpen. We’ll use this boolean to instruct

EditableTimer which sub-component to render.

0 The purpose of the prop runningSince will be covered later on in the app’s development.

EditableTimer

EditableTimer returns either a TimerForm or a Timer based on the prop editFormOpen:

time_tracking_app/public/js/app-1.js

class EditableTimer extends React.Component {
render() {
if (this.props.editFormOpen) {
return (
<TimerForm
title={this.props.title}
project={this.props.project}
/>
);
} else {
return (
<Timer
title={this.props.title}
project={this.props.project}

WOW! eBook
www.wowebook.org

Components 74

elapsed={this.props.elapsed}
runningSince={this.props.runningSince}

/>

Note that title and project are passed down as props to TimerForm. This will enable the component
to fill in these fields with the timer’s current values.

TimerForm

We'll build an HTML form that will have two input fields. The first input field is for the title and
the second is for the project. It also has a pair of buttons at the bottom:

time_tracking_app/public/js/app-1.js

class TimerForm extends React.Component {
render() {
const submitText = this.props.title ? 'Update' : 'Create’;
return (
<div className='ui centered card'>
<div className='content'>
<div className='ui form'>
<div className='field'>

<label>Title</label>
<input type='text' defaultValue={this.props.title} />
</div>

<div className='field'>
<label>Project</label>
<input type='text' defaultValue={this.props.project} />
</div>
<div className='ui two bottom attached buttons'>
<button className='ui basic blue button'>
{submitText}
</button>
<button className='ui basic red button'>
Cancel
</button>
</div>
</div>

WOW! eBook
www.wowebook.org

Components 75

</div>
</div>

);

Look at the input tags. We're specifying that they have type of text and then we are using the
React property defaultValue. When the form is used for editing as it is here, this sets the fields to
the current values of the timer as desired.

o Later, we’ll use TimerForm again within ToggleableTimerForm for creating timers.
ToggleableTimerForm will not pass TimerForm any props. this.props.title and
this.props.project will therefore return undefined and the fields will be left empty.

At the beginning of render (), before the return statement, we define a variable submitText. This
variable uses the presence of this.props.title to determine what text the submit button at the
bottom of the form should display. If title is present, we know we’re editing an existing timer, so
it displays “Update.” Otherwise, it displays “Create.”

With all of this logic in place, TimerForm is prepared to render a form for creating a new timer or
editing an existing one.

0 We used an expression with the ternary operator to set the value of submitText. The
syntax is:

1 condition ? expressionl : expression2

If the condition is true, the operator returns the value of expressioni. Otherwise, it
returns the value of expression2. In our example, the variable submitText is set to the
returned expression.

ToggleableTimerForm

Let’s turn our attention next to ToggleableTimerForm. Recall that this is a wrapper component
around TimerForm. It will display either a “+” or a TimerForm. Right now, it accepts a single prop,
isOpen, from its parent that instructs its behavior:

WOW! eBook
www.wowebook.org

Components 76

time_tracking_app/public/js/app-1.js

class ToggleableTimerForm extends React.Component {
render() {
if (this.props.isOpen) {
return (
<TimerForm />
);
} else {
return (
<div className='ui basic content center aligned segment'>
<button className='ui basic button icon'>
<i className='plus icon' />
</button>
</div>

);

As noted earlier, TimerForm does not receive any props from ToggleableTimerForm. As such, its
title and project fields will be rendered empty.

The return statement under the else block is the markup to render a “+” button. You could make
a case that this should be its own React component (say PlusButton) but at present we’ll keep the
code inside ToggleableTimerForm.

Timer

Time for the Timer component. Again, don’t worry about all the div and span elements and
className attributes. We’ve provided these for styling purposes:

time_tracking_app/public/js/app-1.js

class Timer extends React.Component {
render() {
const elapsedString = helpers.renderElapsedString(this.props.elapsed);
return (
<div className='ui centered card'>
<div className='content'>
<div className='header'>
{this.props.title}
</div>

WOW! eBook
www.wowebook.org

Components 77

<div className='meta'>
{this.props.project}
</div>
<div className='center aligned description'>
<h2>
{elapsedString}
</h2>
</div>
<div className='extra content'>

<1 className='edit icon' />

<i className='trash icon' />

</div>
</div>
<div className='ui bottom attached blue basic button'>
Start
</div>
</div>
);

elapsed in this app is in milliseconds. This is the representation of the data that React will keep.
This is a good representation for machines, but we want to show our carbon-based users a more
readable format.

We use a function defined in helpers. js, renderElapsedString(). You can pop open that file if
you’re curious about how it’s implemented. The string it renders is in the format ‘HH:MM:SS’.

o Note that we could store elapsed in seconds as opposed to milliseconds, but JavaScript’s
time functionality is all in milliseconds. We keep elapsed consistent with this for simplicity.
As a bonus, our timers are also slightly more accurate, even though they round to seconds

when displayed to the user.

Render the app

With all of the components defined, the last step before we can view our static app is to ensure we
call ReactDOM#render (). Put this at the bottom of the file:

WOW! eBook
www.wowebook.org

Components 78
time_tracking_app/public/js/app-1.js
ReactDOM.render (
<TimersDashboard />,
document .getElementById('content")
);
Again, we specify with ReactDOM#render() which React component we want to render
and where in our HTML document (index . html) to render it.
In this case, we're rendering TimersDashboard at the div with the id of content.
Try it out
Save app. js and boot the server (hpm start). Find it at 1ocalhost : 3000:
L] ® [Project Two: Timers x E
<« €' [1 localhost:3000 wl =
Timers
Learn React
02:29:46
=gr
Start
Learn extreme ironing
Project
Weorld Domination
Title
Project
Tweak some of the props and refresh to see the results. For example:
« Flip the prop passed down to ToggleableTimerForm from true to false and see the “+” button

render.

WOW! eBook
www.wowebook.org

Components 79

« Flip parameters on editFormOpen and witness EditableTimer flip the child it renders
accordingly.

Let’s review all of the components represented on the page:
Inside TimersDashboard are two child components: EditableTimerList and ToggleableTimerForm.

EditableTimerList contains two EditableTimer components. The first of these has a Timer
component as a child and the second a TimerForm. These bottom-level components — also known
as leaf components — hold the majority of the page’s HTML. This is generally the case. The
components above leaf components are primarily concerned with orchestration.

ToggleableTimerForm renders a TimerForm. Notice how the two forms on the page have different
language for their buttons, as the first is updating and the second is creating.

Step 3: Determine what should be stateful

In order to bestow our app with interactivity, we must evolve it from its static existence to a mutable
one. The first step is determining what, exactly, should be mutable. Let’s start by collecting all of the
data that’s employed by each component in our static app. In our static app, data will be wherever
we are defining or using props. We will then determine which of that data should be stateful.

TimersDashboard

In our static app, this declares two child components. It sets one prop, which is the isOpen boolean
that is passed down to ToggleableTimerForm.

EditableTimerList

This declares two child components, each which have props corresponding to a given timer’s
properties.

EditableTimer

This uses the prop editFormOpen.
Timer

This uses all the props for a timer.
TimerForm

This has two interactive input fields, one for title and one for project. When editing an existing
timer, these fields are initialized with the timer’s current values.

State criteria

We can apply criteria to determine if data should be stateful:

WOW! eBook
www.wowebook.org

Components 80

These questions are from the excellent article by Facebook called “Thinking In React”. You
can read the original article here®.

1. Is it passed in from a parent via props? If so, it probably isn’t state.

A lot of the data used in our child components are already listed in their parents. This criterion helps
us de-duplicate.

For example, “timer properties” is listed multiple times. When we see the properties declared in
EditableTimerList, we can consider it state. But when we see it elsewhere, it’s not.

2. Does it change over time? If not, it probably isn’t state.
This is a key criterion of stateful data: it changes.

3. Can you compute it based on any other state or props in your component? If so, it’s not
state.

For simplicity, we want to strive to represent state with as few data points as possible.
Applying the criteria
TimersDashboard

 isOpen boolean for ToggleableTimerForm
Stateful. The data is defined here. It changes over time. And it cannot be computed from other state
or props.
EditableTimerList

« Timer properties

Stateful. The data is defined in this component, changes over time, and cannot be computed from
other state or props.

EditableTimer
+ editFormOpen for a given timer
Stateful. The data is defined in this component, changes over time, and cannot be computed from

other state or props.

Timer

35https:/ /facebook.github.io/react/docs/thinking-in-react.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

Components 81
« Timer properties

In this context, not stateful. Properties are passed down from the parent.
TimerForm

We might be tempted to conclude that TimerForm doesn’t manage any stateful data, as title and
project are props passed down from the parent. However, as we’ll see, forms are special state
managers in their own right.

So, outside of TimerForm, we’ve identified our stateful data:

+ The list of timers and properties of each timer
+ Whether or not the edit form of a timer is open
» Whether or not the create form is open

Step 4: Determine in which component each piece of
state should live

While the data we’ve determined to be stateful might live in certain components in our static app,
this does not indicate the best position for it in our stateful app. Our next task is to determine the
optimal place for each of our three discrete pieces of state to live.

This can be challenging at times but, again, we can apply the following steps from Facebook’s guide
“Thinking in React®” to help us with the process:

For each piece of state:

+ Identify every component that renders something based on that state.

+ Find a common owner component (a single component above all the components
that need the state in the hierarchy).

« Either the common owner or another component higher up in the hierarchy
should own the state.

« If you can’t find a component where it makes sense to own the state, create a new
component simply for holding the state and add it somewhere in the hierarchy
above the common owner component.

Let’s apply this method to our application:

36https:/ /facebook.github.io/react/docs/thinking-in-react.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

Components 82

The list of timers and properties of each timer

At first glance, we may be tempted to conclude that TimersDashboard does not appear to use this
state. Instead, the first component that uses it is EditableTimerList. This matches the location of
the declaration of this data in our static app. Because ToggleableTimerForm doesn’t appear to use
the state either, we might deduce that EditableTimerList must then be the common owner.

While this may be the case for displaying timers, modifying them, and deleting them, what about
creates? ToggleableTimerForm does not need the state to render, but it can affect state. It needs to
be able to insert a new timer. It will propagate the data for the new timer up to TimersDashboard.

Therefore, TimersDashboard is truly the common owner. It will render EditableTimerList by
passing down the timer state. It can the handle modifications from EditableTimerList and
creates from ToggleableTimerForm, mutating the state. The new state will flow downward through
EditableTimerlList.

Whether or not the edit form of a timer is open

In our static app, EditableTimerlList specifies whether or not a EditableTimer should be rendered
with its edit form open. Technically, though, this state could just live in each individual Editable-
Timer. No parent component in the hierarchy depends on this data.

Storing the state in EditableTimer will be fine for our current needs. But there are a few
requirements that might require us to “hoist” this state up higher in the component hierarchy in
the future.

For instance, what if we wanted to impose a restriction such that only one edit form could be
open at a time? Then it would make sense for EditableTimerList to own the state, as it would
need to inspect it to determine whether to allow a new “edit form open” event to succeed. If we
wanted to allow only one form open at all, including the create form, then we’d hoist the state up
to TimersDashboard.

Visibility of the create form
TimersDashboard doesn’t appear to care about whether ToggleableTimerForm is open or closed. It
feels safe to reason that the state can just live inside ToggleableTimerForm itself.

So, in summary, we’ll have three pieces of state each in three different components:

« Timer data will be owned and managed by TimersDashboard.
« Each EditableTimer will manage the state of its timer edit form.
+ The ToggleableTimerForm will manage the state of its form visibility.

WOW! eBook
www.wowebook.org

Components 83

Step 5: Hard-code initial states

We’re now well prepared to make our app stateful. At this stage, we won’t yet communicate with
the server. Instead, we’ll define our initial states within the components themselves. This means
hard-coding a list of timers in the top-level component, TimersDashboard. For our two other pieces
of state, we’ll have the components’ forms closed by default.

After we’ve added initial state to a parent component, we’ll make sure our props are properly
established in its children.

Adding state to TimersDashboard

Start by modifying TimersDashboard to hold the timer data directly inside the component:

time_tracking_app/public/js/app-2.js

class TimersDashboard extends React.Component {
state = {
timers: |

{
title: 'Practice squat’,
project: 'Gym Chores',
id: uuid.v4(),
elapsed: 5456099,
runningSince: Date.now(),

b

{
title: 'Bake squash’,

project: 'Kitchen Chores',
id: uuid.v4(),

elapsed: 1273998,
runningSince: null,

render() {
return (
<div className='ui three column centered grid'>
<div className='column'>
<EditableTimerlList
timers={this.state.timers}

/>

WOW! eBook
www.wowebook.org

Components 84

<ToggleableTimerForm />
</div>
</div>

);

We’re leaning on the Babel plugin transform-class-properties to give us the property initializers
syntax. We set the initial state to an object with the key timers. timers points to an array with two
hard-coded timer objects.

o We discuss property initializers in the previous chapter.

Below, in render, we pass down state.timers to EditableTimerList.

For the id property, we’re using a library called uuid. We load this library in index.html. We use
uuid.v4() to randomly generate a Universally Unique IDentifier”” for each item.

0 A UUID is a string that looks like this:

2030efbd-a32f-4fcc-8637-7c410896b3e3

Receiving props in EditableTimerList

EditableTimerList receives the list of timers as a prop, timers. Modify that component to use those
props:

time_tracking_app/public/js/app-2.js

class EditableTimerList extends React.Component {
render() {
const timers = this.props.timers.map((timer) => (
<EditableTimer

key={timer.id}

id={timer.id}

title={timer.title}

project={timer.project}

37 https://en.wikipedia.org/wiki/Universally_unique_identifier

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Components 85

elapsed={timer.elapsed}
runningSince={timer.runningSince}

/>
));
return (
<div id='timers'>
{timers}
</div>

);

Hopefully this looks familiar. We’re using map on the timers array to build a list of EditableTimer
components. This is exactly how we built our list of Product components inside ProductList in the
last chapter.

We pass the id down to EditableTimer as well. This is a bit of eager preparation. Remember how
Product communicated up to ProductList by calling a function and passing in its id? It’s safe to
assume we’ll be doing this again.

Props vs. state

With your renewed understanding of React’s state paradigm, let’s reflect on props again.

Remember, props are state’s immutable accomplice. What existed as mutable state in Timers-
Dashboard is passed down as immutable props to EditableTimerList.

We talked at length about what qualifies as state and where state should live. Mercifully, we do not
need to have an equally lengthy discussion about props. Once you understand state, you can see
how props act as its one-way data pipeline. State is managed in some select parent components
and then that data flows down through children as props.

If state is updated, the component managing that state re-renders by calling render (). This, in turn,
causes any of its children to re-render as well. And the children of those children. And on and on
down the chain.

Let’s continue our own march down the chain.

Adding state to EditableTimer

In the static version of our app, EditableTimer relied on editFormOpen as a prop to be passed down
from the parent. We decided that this state could actually live here in the component itself.

We’ll set the initial value of editFormOpen to false, which means that the form starts off as closed.
We’ll also pass the id property down the chain:

WOW! eBook
www.wowebook.org

Components 86

time_tracking_app/public/js/app-2.js

class EditableTimer extends React.Component {
state = {
editFormOpen: false,

};

render() {
if (this.state.editFormOpen) {
return (
<TimerForm
id={this.props.id}
title={this.props.title}
project={this.props.project}
/>
),
} else {
return (
<Timer
id={this.props.id}
title={this.props.title}
project={this.props.project}
elapsed={this.props.elapsed}
runningSince={this.props.runningSince}

Timer remains stateless

If you look at Timer, you’ll see that it does not need to be modified. It has been using exclusively
props and is so far unaffected by our refactor.

Adding state to ToggleableTimerForm

We know that we’ll need to tweak ToggleableTimerForm as we've assigned it some stateful
responsibility. We want to have the component manage the state isOpen. Because this state is isolated
to this component, let’s also add our app’s first bit of interactivity while we’re here.

Let’s start by initializing the state. We want the component to initialize to a closed state:

WOW! eBook
www.wowebook.org

Components 87

time_tracking_app/public/js/app-2.js

class ToggleableTimerForm extends React.Component {
state = {
isOpen: false,

b

Next, let’s define a function that will toggle the state of the form to open:

time_tracking_app/public/js/app-2.js

handleFormOpen = () => {
this.setState({ isOpen: true });
b

render() {

As we explored at the end of the last chapter, we need to write this function as an arrow function in
order to ensure this inside the function is bound to the component. React will automatically bind
class methods corresponding to the component API (like render and componentDidMount) to the
component for us.

As a refresher, without the property initializer feature we’d write our custom component method
like this:

handleFormOpen() {
this.setState({ isOpen: true });

}
Our next step would be to bind this method to the component inside the constructor, like this:

constructor(props) {
super(props);

this.handleFormOpen = this.handleFormOpen.bind(this);
}

This is a perfectly valid approach and does not use any features beyond ES7. However, we’ll be
using property initializers for this project.

While we're here, we can also add a little bit of interactivity:

WOW! eBook
www.wowebook.org

Components 88

time_tracking_app/public/js/app-2.js

render() {
if (this.state.isOpen) {
return (
<TimerForm />
);
} else {
return (
<div className='ui basic content center aligned segment'>
<button
className='ui basic button icon'
onClick={this.handleFormOpen}

<i className='plus icon' />
</button>
</div>
),

Like the up-vote button in the last app, we use the onClick property onbutton to invoke the function
handleFormOpen(). handleFormOpen() modifies the state, setting isOpen to true. This causes the
component to re-render. When render() is called this second time around, this.state.isOpen is
true and ToggleableTimerForm renders TimerForm. Neat.

Adding state to TimerForm

We mentioned earlier that TimerForm would manage state as it includes a form. In React, forms are
stateful.

Recall that TimerForm includes two input fields:

Title

Mow the lawn

Project

House Chaores

Update Cancel

WOW! eBook
www.wowebook.org

Components 89

These input fields are modifiable by the user. In React, all modifications that are made to a
component should be handled by React and kept in state. This includes changes like the modification
of an input field. By having React manage all modifications, we guarantee that the visual component
that the user is interacting with on the DOM matches the state of the React component behind the
scenes.

The best way to understand this is to see what it looks like.

To make these input fields stateful, let’s first initialize state at the top of the component:

time_tracking_app/public/js/app-2.js

class TimerForm extends React.Component {

state = {
title: this.props.title || '',
project: this.props.project || '',
}

Our state object has two properties, each corresponding to an input field that TimerForm manages.
We set the initial state of these properties to the values passed down via props. If TimerForm is
creating a new timer as opposed to editing an existing one, those props would be undefined. In that
case, we initialize both to a blank string (' ').

0 We want to avoid initializing title or project to undefined. That’s because the value of

an input field can’t technically ever be undefined. If it’s empty, its value in JavaScript is a

blank string. In fact, if you initialize the value of an input field to undefined, React will
complain.

defaultValue only sets the value of the input field for the initial render. Instead of using
defaultValue, we can connect our input fields directly to our component’s state using value. We
could do something like this:

<div className='field'>
<label>Title</label>
<input
type="text'
value={this.state.title}
/>
</div>

With this change, our input fields would be driven by state. Whenever the state properties title or
project change, our input fields would be updated to reflect the new value.

WOW! eBook
www.wowebook.org

Components 90

However, this misses a key ingredient: We don’t currently have any way for the user to modify
this state. The input field will start off in-sync with the component’s state. But the moment the user
makes a modification, the input field will become out-of-sync with the component’s state.

We can fix this by using React’s onChange attribute for input elements. Like onClick for button or a
elements, we can set onChange to a function. Whenever the input field is changed, React will invoke
the function specified.

Let’s set the onChange attributes on both input fields to functions we’ll define next:

time_tracking_app/public/js/app-2.js

<div className='field'>

<label>Title</label>
<input
type="'text'

value={this.state.title}
onChange={this.handleTitleChange}
/>
</div>
<div className="'field'>
<label>Project</label>
<input
type="'text'
value={this.state.project}
onChange={this.handleProjectChange}
/>
</div>

The functions handleTitleChange and handleProjectChange will both modify their respective
properties in state. Here’s what they look like:

time_tracking_app/public/js/app-2.js

handleTitleChange = (e) => {
this.setState({ title: e.target.value });
}

handleProjectChange = (e) => {
this.setState({ project: e.target.value });
};

When React invokes the function passed to onChange, it invokes the function with an event
object. We call this argument e. The event object includes the updated value of the field under
target.value. We update the state to the new value of the input field.

WOW! eBook
www.wowebook.org

Components 91

Using a combination of state, the value attribute, and the onChange attribute is the canonical method
we use to write form elements in React. We explore forms in depth in the chapter “Forms.” We explore
this topic specifically in the section “Uncontrolled vs. Controlled Components.”

To recap, here’s an example of the lifecycle of TimerForm:

On the page is a timer with the title “Mow the lawn.”

The user toggles open the edit form for this timer, mounting TimerForm to the page.
TimerForm initializes the state property title to the string "Mow the lawn".

The user modifies the input field, changing it to the value "Cut the grass".

With every keystroke, React invokes handleTitleChange. The internal state of title is kept
in-sync with what the user sees on the page.

o W e

With TimerForm refactored, we’ve finished establishing our stateful data inside our elected compo-
nents. Our downward data pipeline, props, is assembled.

We’re ready — and perhaps a bit eager — to build out interactivity using inverse data flow. But
before we do, let’s save and reload the app to ensure everything is working. We expect to see new

example timers based on the hard-coded data in TimersDashboard. We also expect clicking the “+
button toggles open a form:

Practice squat

01:30:56
Practice squat e
01:30:56
8 Bake squash
— 00:21:13
Bake squash g
00:21:13
-]
Title
Project

Step 6: Add inverse data flow

As we saw in the last chapter, children communicate with parents by calling functions that are
handed to them via props. In the ProductHunt app, when an up-vote was clicked Product didn’t do
any data management. It was not the owner of its state. Instead, it called a function given to it by
ProductlList, passing in its id. ProductList was then able to manage state accordingly.

We are going to need inverse data flow in two areas:

WOW! eBook
www.wowebook.org

Components 92

« TimerForm needs to propagate create and update events (create while under Toggleable-
TimerForm and update while under EditableTimer). Both events will eventually reach
TimersDashboard.

« Timer has a fair amount of behavior. It needs to handle delete and edit clicks, as well as the
start and stop timer logic.

Let’s start with TimerForm.

TimerForm

To get a clear idea of what exactly TimerForm will require, we’ll start by adding event handlers to it
and then work our way backwards up the hierarchy.

TimerForm needs two event handlers:

+ When the form is submitted (creating or updating a timer)
« When the “Cancel” button is clicked (closing the form)

TimerForm will receive two functions as props to handle each event. The parent component that uses
TimerForm is responsible for providing these functions:

 props.onFormSubmit(): called when the form is submitted
« props.onFormClose(): called when the “Cancel” button is clicked

As we’ll see soon, this empowers the parent component to dictate what the behavior should be when
these events occur.

Let’s first modify the buttons on TimerForm. We'll specify onClick attributes for each:

time_tracking_app/public/js/app-3.js

<div className='ui two bottom attached buttons'>
<button
className='ui basic blue button'
onClick={this.handleSubmit}

{submitText}

</button>

<button
className="'ui basic red button’
onClick={this.props.onFormClose}

Cancel
</button>
</div>

WOW! eBook
www.wowebook.org

Components 93

The onClick attribute for the “Submit” button specifies the function this.handleSubmit, which
we’ll define next. The onClick attribute for the “Cancel” button specifies the prop onFormClose
directly.

Let’s see what handleSubmit looks like:

time_tracking_app/public/js/app-3.js

handleSubmit = () => {
this.props.onFormSubmit ({
id: this.props.id,
title: this.state.title,
project: this.state.project,
1
};

render() {

handleSubmit() calls a yet-to-be-defined function, onFormSubmit(). It passes in a data object with
id, title, and project attributes. This means id will be undefined for creates, as no id exists yet.

Before moving on, let’s make one last tweak to TimerForm:

time_tracking_app/public/js/app-3.js

render() {
const submitText = this.props.id ? 'Update' : 'Create’;

We have submitText switch on id as opposed to title. Using the id property to determine whether
or not an object has been created is a more common practice.

ToggleableTimerForm

Let’s chase the submit event from TimerForm as it bubbles up the component hierarchy. First,
we’ll modify ToggleableTimerForm. We need it to pass down two prop-functions to TimerForm,
onFormClose() and onFormSubmit():

WOW! eBook
www.wowebook.org

Components 94

time_tracking_app/public/js/app-3.js

// Inside ToggleableTimerForm
handleFormOpen = () => {
this.setState({ isOpen: true });

b

handleFormClose = () => {
this.setState({ isOpen: false });
b

handleFormSubmit = (timer) => {
this.props.onFormSubmit(timer);
this.setState({ isOpen: false });
}

render() {
if (this.state.isOpen) {
return (
<TimerForm
onFormSubmit={this.handleFormSubmit}
onFormClose={this.handleFormClose}
/>
);
} else {

Looking first at the render () function, we can see we pass in the two functions as props. Functions
are just like any other prop.

Of most interest here is handleFormSubmit (). Remember, ToggleableTimerForm is not the manager
of timer state. TimerForm has an event it’s emitting, in this case the submission of a new timer.
ToggleableTimerForm is just a proxy of this message. So, when the form is submitted, it calls its own
prop-function props.onFormsubmit (). We’ll eventually define this function in TimersDashboard.

handleFormSubmit() accepts the argument timer. Recall that in TimerForm this argument is an
object containing the desired timer properties. We just pass that argument along here.

After invoking onFormSubmit (), handleFormSubmit() calls setState() to close its form.

0 Note that the result of onFormSubmit() will not impact whether or not the form is closed.
We invoke onFormSubmit (), which may eventually create an asynchronous call to a server.

Execution will continue before we hear back from the server which means setState() will
be called.

If onFormSubmit () fails — such as if the server is temporarily unreachable — we’d ideally
have some way to display an error message and re-open the form.

WOW! eBook
www.wowebook.org

Components 95

TimersDashboard

We’ve reached the top of the hierarchy, TimersDashboard. As this component will be responsible for
the data for the timers, it is here that we will define the logic for handling the events we’re capturing
down at the leaf components.

The first event we’re concerned with is the submission of a form. When this happens, either a new
timer is being created or an existing one is being updated. We’ll use two separate functions to handle
the two distinct events:

+ handleCreateFormSubmit() will handle creates and will be the function passed to Tog-
gleableTimerForm

+ handleEditFormSubmit() will handle updates and will be the function passed to Editable-
TimerList

Both functions travel down their respective component hierarchies until they reach TimerForm as
the prop onFormSubmit().

Let’s start with handleCreateFormSubmit, which inserts a new timer into our timer list state:

time_tracking_app/public/js/app-3.js

// Inside TimersDashboard
handleCreateFormSubmit = (timer) => {
this.createTimer(timer);

};

createTimer = (timer) => {
const t = helpers.newTimer(timer);
this.setState({
timers: this.state.timers.concat(t),
b
};

render() {
return (
<div className='ui three column centered grid'>
<div className='column'>
<EditableTimerlList
timers={this.state.timers}
/>
<ToggleableTimerForm
onFormSubmit={this.handleCreateFormSubmit}

/>

WOW! eBook
www.wowebook.org

Components 96

</div>
</div>

);

We create the timer object with helpers.newTimer(). You can peek at the implementation inside
of helpers. js. We pass in the object that originated down in TimerForm. This object has title and
project properties. helpers.newTimer () returns an object with those title and project properties
as well as a generated id.

The next line calls setState(), appending the new timer to our array of timers held under timers.
We pass the whole state object to setState().

9 You might wonder: why separate handleCreateFormSubmit() and createTimer()? While

not strictly required, the idea here is that we have one function for handling the event

(handleCreateFormSubmit()) and another for performing the operation of creating a timer
(createTimer()).

This separation follows from the Single Responsibility Principle and enables us to call
createTimer() from elsewhere if needed.

We’ve finished wiring up the create timer flow from the form down in TimerForm up to the state
managed in TimersDashboard. Save app. js and reload your browser. Toggle open the create form
and create some new timers:

WOW! eBook
www.wowebook.org

Components

Practice squat

01:30:56

Bake squash

00:21:13

e

Practice squat

01:30:56

Start

g

Start

Title

Refine squawk

Project

Animal Chores

Bake squash

00:21:13

Start

=g

Refine squawk

00:00:00

-jry

| Crifate ‘ Cancel
W

Updating timers

We need to give the same treatment to the update timer flow. However, as you can see in the current
state of the app, we haven’t yet added the ability for a timer to be edited. So we don’t have a way
to display an edit form, which will be a prerequisite to submitting one.

Start

97

To display an edit form, the user clicks on the edit icon on a Timer. This should propagate an event

up to EditableTimer and tell it to flip its child component, opening the form.

Adding editability to Timer

To notify our app that the user wants to edit a timer we need to add an onClick attribute to the span
tag of the edit button. We anticipate a prop-function, onEditClick():

WOW! eBook

www.wowebook.org

Components 98

time_tracking_app/public/js/app-4.js

{/* Inside Timer.render() */}
<div className='extra content'>
<span
className='right floated edit icon'
onClick={this.props.onEditClick}

<i className='edit icon' />

<1 className='trash icon' />

</div>

Updating EditableTimer

Now we’re prepared to update EditableTimer. Again, it will display either the TimerForm (if we're
editing) or an individual Timer (if we’re not editing).

Let’s add event handlers for both possible child components. For TimerForm, we want to handle the
form being closed or submitted. For Timer, we want to handle the edit icon being pressed:

time_tracking_app/public/js/app-4.js

// Inside EditableTimer
handleEditClick = () => {
this.openForm();

};

handleFormClose = () => {
this.closeForm();

};

handleSubmit = (timer) => {
this.props.onFormSubmit(timer);
this.closeForm();

};

closeForm = () => {
this.setState({ editFormOpen: false });

};

WOW! eBook
www.wowebook.org

Components 99

openForm = () => {
this.setState({ editFormOpen: true });
};

We pass these event handlers down as props:

time_tracking_app/public/js/app-4.js

render() {
if (this.state.editFormOpen) {
return (
<TimerForm
id={this.props.id}
title={this.props.title}
project={this.props.project}
onFormSubmit={this.handleSubmit}
onFormClose={this.handleFormClose}
/>
);
} else {
return (
<Timer
id={this.props.id}
title={this.props.title}
project={this.props.project}
elapsed={this.props.elapsed}
runningSince={this.props.runningSince}
onEditClick={this.handleEditClick}

Look a bit familiar? EditableTimer handles the same events emitted from TimerForm in a very
similar manner as ToggleableTimerForm. This makes sense. Both EditableTimer and Toggleable-
TimerForm are just intermediaries between TimerForm and TimersDashboard. TimersDashboard is
the one that defines the submit function handlers and assigns them to a given component tree.

Like ToggleableTimerForm, EditableTimer doesn’t do anything with the incoming timer. In
handleSubmit(), it just blindly passes this object along to its prop-function onFormSubmit(). It then
closes the form with closeForm().

We pass along a new prop to Timer, onEditClick. The behavior for this function is defined in
handleEditClick, which modifies the state for EditableTimer, opening the form.

WOW! eBook
www.wowebook.org

Components 100

Updating EditableTimerList

Moving up a level, we make a one-line addition to EditableTimerList to send the submit function
from TimersDashboard to each EditableTimer:

time_tracking_app/public/js/app-4.js

// Inside EditableTimerList
const timers = this.props.timers.map((timer) => (
<EditableTimer
key={timer.id}
id={timer.id}
title={timer.title}
project={timer.project}
elapsed={timer.elapsed}
runningSince={timer.runningSince}
onFormSubmit={this.props.onFormSubmit}
/>
));
/...

EditableTimerList doesn’t need to do anything with this event so again we just pass the function
on directly.

Defining onEditFormSubmit() iN TimersDashboard

Last step with this pipeline is to define and pass down the submit function for edit forms in
TimersDashboard.

For creates, we have a function that creates a new timer object with the specified attributes and we
append this new object to the end of the timers array in the state.

For updates, we need to hunt through the timers array until we find the timer object that is being
updated. As mentioned in the last chapter, the state object cannot be updated directly. We have to
use setState().

Therefore, we’ll use map() to traverse the array of timer objects. If the timer’s id matches that of
the form submitted, we’ll return a new object that contains the timer with the updated attributes.
Otherwise we’ll just return the original timer. This new array of timer objects will be passed to
setState():

WOW! eBook
www.wowebook.org

Components 101

time_tracking_app/public/js/app-4.js

// Inside TimersDashboard
handleEditFormSubmit = (attrs) => {
this.updateTimer(attrs);

};

createTimer = (timer) => {
const t = helpers.newTimer(timer);
this.setState({
timers: this.state.timers.concat(t),
1
¥

updateTimer = (attrs) => {
this.setState({
timers: this.state.timers.map((timer) => {
if (timer.id === attrs.id) {
return Object.assign({}, timer, {
title: attrs.title,
project: attrs.project,
});
} else {
return timer;
}
b,
1
};

We pass this down as a prop inside render():

time_tracking_app/public/js/app-4.js

{ /* Inside TimersDashboard.render() */}
<EditableTimerlList
timers={this.state.timers}
onFormSubmit={this.handleEditFormSubmit}
/>

Note that we can call map() on this.state.timers from within the JavaScript object we're passing
to setState(). This is an often used pattern. The call is evaluated and then the property timers is
set to the result.

WOW! eBook
www.wowebook.org

Components 102

Inside of the map() function we check if the timer matches the one being updated. If not, we
just return the timer. Otherwise, we use Object*assign() to return a new object with the timer’s
updated attributes.

Remember, it’s important here that we treat state as immutable. By creating a new timers object
and then using Object*assign() to populate it, we’re not modifying any of the objects sitting in
state.

0 We discuss the Ob ject#assign() method in the last chapter.

As we did with ToggleableTimerForm and handleCreateFormSubmit, we pass down handleEd-
itFormSubmit as the prop onFormSubmit. TimerForm calls this prop, oblivious to the fact that
this function is entirely different when it is rendered underneath EditableTimer as opposed to
ToggleableTimerForm.

Both of the forms are wired up! Save app. js, reload the page, and try both creating and updating
timers. You can also click “Cancel” on an open form to close it:

Practice squat Practice squat
01:30:56 01:30:56
= jF4 o
| Start ‘ ‘ Start
Title Bake squash
Bake squash 00 21 13
Project w8 =
Kitchen Chores ‘ Start
I Update Cd”a:_b“
+

The rest of our work resides within the timer. We need to:

+ Wire up the trash button (deleting a timer)
« Implement the start/stop buttons and the timing logic itself

At that point, we’ll have a complete server-less solution.

WOW! eBook
www.wowebook.org

Components 103

Try it yourself: Before moving on to the next section, see how far you can get wiring up the trash
button by yourself. Move ahead afterwards and verify your solution is sound.

Deleting timers

Adding the event handler to Timer

In Timer, we define a function to handle trash button click events:

time_tracking_app/public/js/app-5.js

class Timer extends React.Component {
handleTrashClick = () => {
this.props.onTrashClick(this.props.id);

};

render() {

And then use onClick to connect that function to the trash icon:

time_tracking_app/public/js/app-5.js

{/* Inside Timer.render() */}
<div className='extra content'>
<span
className='right floated edit icon'
onClick={this.props.onEditClick}

<i className='edit icon' />

<span
className='right floated trash icon'
onClick={this.handleTrashClick}

<i className='trash icon' />

</div>

We’ve yet to define the function that will be set as the prop onTrashClick(). But you can imagine
that when this event reaches the top (TimersDashboard), we’re going to need the id to sort out which
timer is being deleted. handleTrashClick() provides the id to this function.

WOW! eBook
www.wowebook.org

Components 104

Routing through EditableTimer

EditableTimer just proxies the function:

time_tracking_app/public/js/app-5.js

// Inside EditableTimer
} else {
return (
<Timer
id={this.props.id}
title={this.props.title}
project={this.props.project}
elapsed={this.props.elapsed}
runningSince={this.props.runningSince}
onEditClick={this.handleEditClick}
onTrashClick={this.props.onTrashClick}
/>

Routing through EditableTimerList

As does EditableTimerList:

time_tracking_app/public/js/app-5.js

// Inside EditableTimerList.render()
const timers = this.props.timers.map((timer) => (
<EditableTimer
key={timer.id}
id={timer.id}
title={timer.title}
project={timer.project}
elapsed={timer.elapsed}
runningSince={timer.runningSince}
onFormSubmit={this.props.onFormSubmit}
onTrashClick={this.props.onTrashClick}
/>
));

WOW! eBook
www.wowebook.org

Components 105

Implementing the delete function in TimersbDashboard

The last step is to define the function in TimersDashboard that deletes the desired timer from the
state array. There are many ways to accomplish this in JavaScript. Don’t sweat it if your solution
was not the same or if you didn’t quite work one out.

We add our handler function that we ultimately pass down as a prop:

time_tracking_app/public/js/app-5.js

// Inside TimersDashboard
handleEditFormSubmit = (attrs) => {
this.updateTimer(attrs);

};

handleTrashClick = (timerId) => {
this.deleteTimer(timerlId);

};

deleteTimer() uses Array’s filter () method to return a new array with the timer object that has
an id matching timerId removed:

time_tracking_app/public/js/app-5.js

// Inside TimersDashboard
deleteTimer = (timerId) => {
this.setState({
timers: this.state.timers.filter(t => t.id !== timerld),
b
};

Finally, we pass down handleTrashClick() as a prop:

time_tracking_app/public/js/app-5.js

{/* Inside TimersDashboard.render() */}

<EditableTimerlList
timers={this.state.timers}
onFormSubmit={this.handleEditFormSubmit}
onTrashClick={this.handleTrashClick}

/>

WOW! eBook
www.wowebook.org

Components 106

0 Array’s filter () method accepts a function that is used to “test” each element in the array.
It returns a new array containing all the elements that “passed” the test. If the function
returns true, the element is kept.

Save app. js and reload the app. Low and behold, you can delete timers:

Practice squat Practice squat
01:30:56 01:30:56
=ES s s
Start ‘ | Start
Bake squash "
00:21:13
@D@
Start ‘
+

Adding timing functionality

Create, update, and delete (CRUD) capability is now in place for our timers. The next challenge:
making these timers functional.

There are several different ways we can implement a timer system. The simplest approach would
be to have a function update the elapsed property on each timer every second. But this is severely
limited. What happens when the app is closed? The timer should continue “running.”

This is why we’ve included the timer property runningSince. A timer is initialized with elapsed
equal to 8. When a user clicks “Start”, we do not increment elapsed. Instead, we just set
runningSince to the start time.

We can then use the difference between the start time and the current time to render the time for
the user. When the user clicks “Stop”, the difference between the start time and the current time is
added to elapsed. runningSince is set to null.

Therefore, at any given time, we can derive how long the timer has been running by taking
Date.now() - runningSince and adding it to the total accumulated time (elapsed). We’ll calculate
this inside the Timer component.

WOW! eBook
www.wowebook.org

Components 107

For the app to truly feel like a running timer, we want React to constantly perform this operation
and re-render the timers. But elapsed and runningSince will not be changing while the timer is
running. So the one mechanism we’ve seen so far to trigger a render () call will not be sufficient.

Instead, we can use React’s forceUpdate() method. This forces a React component to re-render. We
can call it on an interval to yield the smooth appearance of a live timer.

Adding a forceUpdate() interval to Timer

helpers.renderElapsedString() accepts an optional second argument, runningSince. It will add
the delta of Date.now() - runningSince to elapsed and use the function millisecondsToHuman()
to return a string formatted as HH: MM: SS.

We will establish an interval to run forceUpdate() after the component mounts:

time_tracking_app/public/js/app-6.js

class Timer extends React.Component {
componentDidMount () {
this. forceUpdatelnterval = setInterval(() => this.forceUpdate(), 50);

componentWillUnmount() {
clearInterval(this. forceUpdatelnterval);

handleTrashClick = () => {
this.props.onTrashClick(this.props.id);

};

render() {
const elapsedString = helpers.renderElapsedString(
this.props.elapsed, this.props.runningSince
)i

return (

In componentDidMount(), we use the JavaScript function setInterval(). This will invoke the
function forceUpdate() once every 50 ms, causing the component to re-render. We set the return
of setInterval() to this. forceUpdateInterval.

In componentWillUnmount(), we useclearInterval() to stop the interval this. forceUpdateInterval.
componentWillUnmount() is called before a component is removed from the app. This will happen

if a timer is deleted. We want to ensure we do not continue calling forceUpdate() after the timer
has been removed from the page. React will throw errors.

WOW! eBook
www.wowebook.org

Components 108

0 setInterval() accepts two arguments. The first is the function you would like to call
repeatedly. The second is the interval on which to call that function (in milliseconds).

setInterval() returns a unique interval ID. You can pass this interval ID to
clearInterval() at any time to halt the interval.

9 You might ask: Wouldn’t it be more efficient if we did not continuously call forceUpdate()
on timers that are not running?

Indeed, we would save a few cycles. But it would not be worth the added code complexity.
React will call render () which performs some inexpensive operations in JavaScript. It will
then compare this result to the previous call to render () and see that nothing has changed.
It stops there — it won’t attempt any DOM manipulation.

0 The 50 ms interval was not derived scientifically. Selecting an interval that’s too high
will make the timer look unnatural. It would jump unevenly between values. Selecting
an interval that’s too low would just be an unnecessary amount of work. A 50 ms interval

looks good to humans and is ages in computerland.

Try it out

Save app. js and reload. The first timer should be running.

We’ve begun to carve out the app’s real utility! We need only wire up the start/stop button and our
server-less app will be feature complete.

Add start and stop functionality

The action button at the bottom of each timer should display “Start” if the timer is paused and “Stop”
if the timer is running. It should also propagate events when clicked, depending on if the timer is
being stopped or started.

We could build all of this functionality into Timer. We could have Timer decide to render one HTML
snippet or another depending on if it is running. But that would be adding more responsibility and
complexity to Timer. Instead, let’s make the button its own React component.

Add timer action events to Timer

Let’s modify Timer, anticipating a new component called TimerActionButton. This button just needs
to know if the timer is running. It also needs to be able to propagate two events, onStartClick() and

WOW! eBook
www.wowebook.org

Components

109

onStopClick(). These events will eventually need to make it all the way up to TimersDashboard,
which can modify runningSince on the timer.

First, the event handlers:

time_tracking_app/public/js/app-7.js

// Inside Timer

componentWillUnmount() {

clearInterval(this. forceUpdatelnterval);

handleStartClick = () => {
this.props.onStartClick(this.props.id);

};

handleStopClick = () => {
this.props.onStopClick(this.props.id);

b

/] ..

Then, inside render (), we’ll declare TimerActionButton at the bottom of the outermost div:

time_tracking_app/public/js/app-7.js

)

{/* At the bottom of “Timer.render() " */}
<TimerActionButton

/>

timerIsRunning={!!this.props.runningSince}
onStartClick={this.handleStartClick}
onStopClick={this.handleStopClick}

</div>

We use the same technique used in other click-handlers: onClick on the HTML element specifies a

handler function in the component that invokes a prop-function, passing in the timer’s id.

We use !'! here to derive the boolean prop timerIsRunning for TimerActionButton. !!

returns false when runningSince is null.

Create TimerActionButton

Create the TimerActionButton component now:

WOW! eBook
www.wowebook.org

Components 110

time_tracking_app/public/js/app-7.js

class TimerActionButton extends React.Component {
render() {
if (this.props.timerIsRunning) {
return (
<div
className="'ui bottom attached red basic button'
onClick={this.props.onStopClick}

Stop
</div>
),
} else {
return (
<div
className="'ui bottom attached green basic button'
onClick={this.props.onStartClick}

Start
</div>

);

We render one HTML snippet or another based on this.props.timerIsRunning.

You know the drill. Now we run these events up the component hierarchy, all the way up to
TimersDashboard where we’re managing state:

Run the events through EditableTimer and EditableTimerList

First EditableTimer:

WOW! eBook
www.wowebook.org

Components 111

time_tracking_app/public/js/app-7.js

// Inside EditableTimer
} else {
return (
<Timer
id={this.props.id}
title={this.props.title}
project={this.props.project}
elapsed={this.props.elapsed}
runningSince={this.props.runningSince}
onEditClick={this.handleEditClick}
onTrashClick={this.props.onTrashClick}
onStartClick={this.props.onStartClick}
onStopClick={this.props.onStopClick}
/>

And then EditableTimerList:

time_tracking_app/public/js/app-7.js

// Inside EditableTimerList
const timers = this.props.timers.map((timer) => (
<EditableTimer
key={timer.id}
id={timer.id}
title={timer.title}
project={timer.project}
elapsed={timer.elapsed}
runningSince={timer.runningSince}
onFormSubmit={this.props.onFormSubmit}
onTrashClick={this.props.onTrashClick}
onStartClick={this.props.onStartClick}
onStopClick={this.props.onStopClick}
/>
));

Finally, we define these functions in TimersDashboard. They should hunt through the state timers
array using map, setting runningSince appropriately when they find the matching timer.

First we define the handling functions:

WOW! eBook
www.wowebook.org

Components 112

time_tracking_app/public/js/app-7.js

// Inside TimersDashboard
handleTrashClick = (timerId) => {
this.deleteTimer(timerld);

b

handleStartClick = (timerId) => {
this.startTimer(timerId);
};

handleStopClick = (timerId) => {
this.stopTimer(timerlId);
};

And then startTimer() and stopTimer():

time_tracking_app/public/js/app-7.js

deleteTimer = (timerId) => {
this.setState({
timers: this.state.timers.filter(t => t.id !== timerld),
1
¥

startTimer = (timerId) => {

const now = Date.now();

this.setState({
timers: this.state.timers.map((timer) => {
if (timer.id === timerId) {
return Object.assign({}, timer, {
runningSince: now,
1)
} else {
return timer;
}
D,
b
};

stopTimer = (timerId) => {
const now = Date.now();

WOW! eBook
www.wowebook.org

Components

this.setState({
timers: this.state.timers.map((timer) => {
if (timer.id === timerlId) {
const lastElapsed = now - timer.runningSince;
return Object.assign({}, timer, {
elapsed: timer.elapsed + lastElapsed,
runningSince: null,
1)
} else {
return timer;
}
b,
1
b

113

Finally, we pass them down as props:

time_tracking_app/public/js/app-7.js

{/* Inside TimerDashboard.render() */}

<EditableTimerlList
timers={this.state.timers}
onFormSubmit={this.handleEditFormSubmit}
onTrashClick={this.handleTrashClick}
onStartClick={this.handleStartClick}
onStopClick={this.handleStopClick}

/>

When startTimer comes across the relevant timer within its map call, it sets the property run-

ningSince to the current time.

stopTimer calculates 1astElapsed, the amount of time that the timer has been running for since it
was started. It adds this amount to elapsed and sets runningSince to null, “stopping” the timer.

Try it out

Save app. js, reload, and behold! You can now create, update, and delete timers as well as actually

use them to time things:

WOW! eBook
www.wowebook.org

Components 114

Practice squat Practice squat
01:31:08 01:31:09
Qs S
Stop &y ‘ | Start
Bake squash Bake squash
00:21:13 00:21:13
aF B
+ +

This is excellent progress. But, without a connection to a server, our app is ephemeral. If we refresh
the page, we lose all of our timer data. Our app does not have any persistence.

A server can give us persistence. We’ll have our server write all changes to timer data to a file.
Instead of hard-coding state inside of the TimersDashboard component, when our app loads it will
query the server and construct its timer state based on the data the server provides. We’ll then have
our React app notify the server about any state changes, like when a timer is started.

Communicating with a server is the last big major building block you’ll need to develop and
distribute real-world web applications with React.

Methodology review

While building our time-logging app, we learned and applied a methodology for building React
apps. Again, those steps were:

1. Break the app into components

We mapped out the component structure of our app by examining the app’s working UI. We
then applied the single-responsibility principle to break components down so that each had
minimal viable functionality.

2. Build a static version of the app

Our bottom-level (user-visible) components rendered HTML based on static props, passed
down from parents.

3. Determine what should be stateful

We used a series of questions to deduce what data should be stateful. This data was represented
in our static app as props.

4. Determine in which component each piece of state should live
We used another series of questions to determine which component should own each

piece of state. TimersDashboard owned timer state data and ToggleableTimerForm and
EditableTimer both held state pertaining to whether or not to render a TimerForm.

WOW! eBook
www.wowebook.org

Components 115

5. Hard-code initial states

We then initialized state-owners’ state properties with hard-coded values.
6. Add inverse data flow

We added interactivity by decorating buttons with onClick handlers. These called functions
that were passed in as props down the hierarchy from whichever component owned the
relevant state being manipulated.

The final step is 7. Add server communication. We’ll tackle this in the next chapter.

WOW! eBook
www.wowebook.org

Components & Servers

Introduction

In the last chapter, we used a methodology to construct a React app. State management of timers
takes place in the top-level component TimersDashboard. As in all React apps, data flows from the
top down through the component tree to leaf components. Leaf components communicate events to
state managers by calling prop-functions.

At the moment, TimersDashboard has a hard-coded initial state. Any mutations to the state will
only live as long as the browser window is open. That’s because all state changes are happening
in-memory inside of React. We need our React app to communicate with a server. The server will
be in charge of persisting the data. In this app, data persistence happens inside of a file, data. json.

EditableTimer and ToggleableTimerForm also have hard-coded initial state. But because this state
is just whether or not their forms are open, we don’t need to communicate these state changes to
the server. We’re OK with the forms starting off closed every time the app boots.

Preparation

To help you get familiar with the API for this project and working with APIs in general, we have a
short section where we make requests to the API outside of React.

curl

We'll use a tool called curl to make more involved requests from the command line.

OS X users should already have curl installed.

Windows users can download and install curl here: https://curl.haxx.se/download.html*®.

server. js

Included in the root of your project folder is a file called server. js. This is a Node.js server
specifically designed for our time-tracking app.

You don’t have to know anything about Node.js or about servers in general to work with
the server we’ve supplied. We’ll provide the guidance that you need.

38https:// curl.haxx.se/download.html

WOW! eBook
www.wowebook.org

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Components & Servers 117

server . js uses the file data. json as its “store.” The server will read and write to this file to persist
data. You can take a look at that file to see the initial state of the store that we’ve provided.

server . js will return the contents of data. json when asked for all items. When notified, the server
will reflect any updates, deletes, or timer stops and starts in data. json. This is how data will be
persisted even if the browser is reloaded or closed.

Before we start working with the server, let’s briefly cover its API. Again, don’t be concerned if this
outline is a bit perplexing. It will hopefully become clearer as we start writing some code.

The Server API

Our ultimate goal in this chapter is to replicate state changes on the server. We’re not going to
move all state management exclusively to the server. Instead, the server will maintain its state (in
data. json) and React will maintain its state (in this case, within this.state in TimersDashboard).
We’'ll demonstrate later why keeping state in both places is desirable.

Server

Timers-

Dashboard

Editable- Toggleable-
TimerlList TimerForm

TimersDashboard communicates with the server

If we perform an operation on the React (“client”) state that we want to be persisted, then we also
need to notify the server of that state change. This will keep the two states in sync. We’ll consider
these our “write” operations. The write operations we want to send to the server are:

o A timer is created

WOW! eBook
www.wowebook.org

Components & Servers 118

A timer is updated
A timer is deleted
A timer is started
A timer is stopped

We’ll have just one read operation: requesting all of the timers from the server.

9 HTTP APIs

This section assumes a little familiarity with HTTP APIs. If you’re not familiar with HTTP
APIs, you may want to read up on them® at some point.

However, don’t be deterred from continuing with this chapter for the time being. Essen-
tially what we’re doing is making a “call” from our browser out to a local server and
conforming to a specified format.

text/html endpoint

GET /

This entire time, server. js has actually been responsible for serving the app. When your browser
requests localhost: 3000/, the server returns the file index.html. index.html loads in all of our
JavaScript/React code.

0 Note that React never makes a request to the server at this path. This is just used by the
browser to load the app. React only communicates with the JSON endpoints.

JSON endpoints

data. json is a JSON document. As touched on in the last chapter, JSON is a format for storing
human-readable data objects. We can serialize JavaScript objects into JSON. This enables JavaScript
objects to be stored in text files and transported over the network.

data. json contains an array of objects. While not strictly JavaScript, the data in this array can be
readily loaded into JavaScript.

In server. js, we see lines like this:

¥ http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/

WOW! eBook
www.wowebook.org

http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/
http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/

Components & Servers 119

fs.readFile(DATA_FILE, function(err, data) {
const timers = JSON.parse(data);
/S

1)

data is a string, the JSON. JSON.parse() converts this string into an actual JavaScript array of
objects.

GET /api/timers
Returns a list of all timers.
POST /api/timers

Accepts a JSON body with title, project, and id attributes. Will insert a new timer object into its
store.

POST /api/timers/start

Accepts a JSON body with the attribute id and start (a timestamp). Hunts through its store and
finds the timer with the matching id. Sets its runningSince to start.

POST /api/timers/stop

Accepts a JSON body with the attribute id and stop (a timestamp). Hunts through its store and finds
the timer with the matching id. Updates elapsed according to how long the timer has been running
(stop - runningSince). Sets runningSince to null.

PUT /api/timers

Accepts a JSON body with the attributes id and title and/or project. Hunts through its store and
finds the timer with the matching id. Updates title and/or project to new attributes.

DELETE /api/timers

Accepts a JSON body with the attribute id. Hunts through its store and deletes the timer with the
matching id.

Playing with the API

If your server is not booted, make sure to boot it:
npm start

You can visit the endpoint /api/timers endpoint in your browser and see the JSON response
(localhost:3000/api/timers). When you visit a new URL in your browser, your browser makes a
GET request. So our browser calls GET /api/timers and the server returns all of the timers:

WOW! eBook
www.wowebook.org

Components & Servers 120

® © ® /B iocalnost:3000/apiftimers x React

& C' | ® localhost:3000/apijtimers e

[{"title":"Mow the lawn", project”:"House Chores","elapsed":5456099,"id":"0ataT9cb-b06d-
4cbl1-883d-549ale3b66d7"}, {"title": "Clear paper jam",'project”:"0ffice

Chores", "elapsed":1273998,"id": "a73c1d19-£32d-4aff-b470-ceade?92406a"}, {"title" : "Ponder
origins of universe","project”:"Life Chores","id":"2c43306e-5b44-4££8-8753-
33c35adbd06f", "elapsed”: 11750, "runningSince" : 1456225941911}]

Note that the server stripped all of the extraneous whitespace in data. json, including newlines, to
keep the payload as small as possible. Those only exist in data. json to make it human-readable.

We can use a Chrome extension like JSONView* to “humanize” the raw JSON. JSONView takes
these raw JSON chunks and adds back in the whitespace for readability:

e L] - localhost:3000/api/timers X React
&« C | ® localhost:3000/apiftimers i d

[
-1
title: "Mow the lawn",
project: "House Chores",
elapsed: 5456099,
id: "Dada79cb-b06d-4cbl-883d-549ale3b6EdT"

title: "Clear paper jam"
project: "Office Chores",

elapsed: 1273998,

id: "a73cld19-f32d-4aff-b470-ceade792406a"

title: "Ponder origins of universe,
project: "Life Chores",

id: "2c43306e-5b44-4££8-8753-33c35adbd06E",
elapsed: 11750,

runningSince: 1456225941911

Visiting the endpoint after installing JSONView

We can only easily use the browser to make GET requests. For writing data — like starting and
stopping timers — we’ll have to make POST, PUT, or DELETE requests. We’ll use curl to play around
with writing data.

Run the following command from the command line:

40 https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnethakgolnmec

WOW! eBook
www.wowebook.org

https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc

Components & Servers 121

$ curl -X GET localhost:3000/api/timers

The -X flag specifies which HTTP method to use. It should return a response that looks a bit like
this:

[{"title":"Mow the lawn", "project":"House Chores", "elapsed":5456099,"id":"0a4aT79\
cb-b@6d-4chb1-883d-549a1e3b66d7"}, {"title":"Clear paper jam",'"project":"Office Ch\
ores","elapsed":1273998,"id":"a73c1d19-f32d-4aff-b470-ceadeT92406a"}, {"title" : "P\
onder origins of universe", "project":"Life Chores","id":"2c43306e-5b44-4ff8-8753\
-33c35adbdo6f", "elapsed":11750, "runningSince" : "1456225941911" }]

You can start one of the timers by issuing a PUT request to the /api/timers/start endpoint. We
need to send along the id of one of the timers and a start timestamp:

$ curl -X POST \

-H 'Content-Type: application/json' \

-d '{"start":1456468632194,"id":"a73c1d19-f32d-4aff-b470-ceade792406a"}"' \
localhost :3000/api/timers/start

The -H flag sets a header for our HTTP request, Content-Type. We're informing the server that the
body of the request is JSON.

The -d flag sets the body of our request. Inside of single-quotes ' ' is the JSON data.

When you press enter, curl will quickly return without any output. The server doesn’t return
anything on success for this endpoint. If you open up data. json, you will see that the timer you
specified now has a runningSince property, set to the value we specified as start in our request.

If you’d like, you can play around with the other endpoints to get a feel for how they work. Just be
sure to set the appropriate method with -X and to pass along the JSON Content-Type for the write
endpoints.

We’ve written a small library, client, to aid you in interfacing with the API in JavaScript.

0 Note that the backslash \ above is only used to break the command out over multiple lines
for readability. This only works on macOS and Linux. Windows users can just type it out
as one long string.

Tool tip: jq

macOS and Linux users: If you want to parse and process JSON on the command line, we highly
recommend the tool “jq””

You can pipe curl responses directly into jq to have the response pretty-formatted:

WOW! eBook
www.wowebook.org

Components & Servers 122

curl -X GET localhost:3000/api/timers | jq '

You can also do some powerful manipulation of JSON, like iterating over all objects in the response
and returning a particular field. In this example, we extract just the id property of every object in
an array:

curl -X GET localhost:3000/api/timers | jq '.[] | { id }'

You can download jq here: https://stedolan.github.io/jq/¢.

“https://stedolan.github.io/jq/

Loading state from the server

Right now, we set initial state in TimersDashboard by hardcoding a JavaScript object, an array of
timers. Let’s modify this function to load data from the server instead.

We’ve written the client library that your React app will use to interact with the server, client. The
library is defined in public/js/client. js. We'll use it first and then take a look at how it works in
the next section.

TheGET /api/timers endpoint provides a list of all timers, as represented in data. json. We can use
client.getTimers() to call this endpoint from our React app. We'll do this to “hydrate” the state
kept by TimersDashboard.

When we call client.getTimers(), the network request is made asynchronously. The function call
itself is not going to return anything useful:

// Wrong
// “getTimers() does not return the list of timers
const timers = client.getTimers();

Instead, we can pass getTimers() a success function. getTimers() will invoke that function after it
hears back from the server if the server successfully returned a result. getTimers() will invoke the
function with a single argument, the list of timers returned by the server:

WOW! eBook
www.wowebook.org

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Components & Servers 123

// Passing “getTimers()’ a success function
client.getTimers((serverTimers) => (
// do something with the array of timers, “serverTimers’

));

0 client.getTimers() uses the Fetch API, which we cover in the next section. For our
purposes, the important thing to know is that when getTimers() is invoked, it fires off
the request to the server and then returns control flow immediately. The execution of our
program does not wait for the server’s response. This is why getTimers() is called an
asynchronous function.

The success function we pass to getTimers() is called a callback. We’re saying: “When
you finally hear back from the server, if it’s a successful response, invoke this function.”

This asynchronous paradigm ensures that execution of our JavaScript is not blocked by
/0.

We’ll initialize our component’s state with the timers property set to a blank array. This will allow
all components to mount and perform their initial render. Then, we can populate the app by making
a request to the server and setting the state:

time_tracking_app/public/js/app-8.js

class TimersDashboard extends React.Component {
state = {
timers: [],

};

componentDidMount () {
this.loadTimersFromServer();
setInterval(this.loadTimersFromServer, 5000);

loadTimersFromServer = () => {
client.getTimers((serverTimers) => (
this.setState({ timers: serverTimers })

A timeline is the best medium for illustrating what happens:

WOW! eBook
www.wowebook.org

Components & Servers 124

1. Before initial render

React initializes the component. state is set to an object with the property timers, a blank
array, is returned.

2. The initial render

React then callsrender () on TimersDashboard. In order for the render to complete, Editable-
TimerList and ToggleableTimerForm — its two children — must be rendered.
3. Children are rendered

EditableTimerList has its render method called. Because it was passed a blank data array, it
simply produces the following HTML output:

<div id="timers'>
</div>

ToggleableTimerForm renders its HTML, which is the “+” button.
4. Initial render is finished

With its children rendered, the initial render of TimersDashboard is finished and the HTML
is written to the DOM.

5. componentDidMount is invoked
Now that the component is mounted, componentDidMount() is called on TimersDashboard.

This method calls 1oadTimersFromServer (). In turn, that function callsclient.getTimers().
That will make the HTTP request to our server, requesting the list of timers. When client
hears back, it invokes our success function.

On invocation, the success function is passed one argument, serverTimers. This is the array
of timers returned by the server. We then call setState(), which will trigger a new render.
The new render populates our app with EditableTimer children and all of their children. The
app is fully loaded and at an imperceptibly fast speed for the end user.

We also do one other interesting thing in componentDidMount. We use setInterval() to ensure
loadTimersFromServer () is called every 5 seconds. While we will be doing our best to mirror state
changes between client and server, this hard-refresh of state from the server will ensure our client
will always be correct should it shift from the server.

The server is considered the master holder of state. Our client is a mere replica. This becomes
incredibly powerful in a multi-instance scenario. If you have two instances of your app running
— in two different tabs or two different computers — changes in one will be pushed to the other
within five seconds.

WOW! eBook
www.wowebook.org

Components & Servers 125

Try it out

Let’s have fun with this now. Save app. js and reload the app. You should see a whole new list of
timers, driven by data. json. Any action you take will be wiped out within five seconds. Every five
seconds, state is restored from the server. For instance, try deleting a timer and witness it resiliently
spring back unscathed. Because we're not telling the server about these actions, its state remains
unchanged.

On the flip-side, you can try modifying data. json. Notice how any modifications to data. json will
be propagated to your app in under five seconds. Neat.

We're loading the initial state from the server. We have an interval function in place to ensure the
client app’s state does not drift from the server’s in a multi-instance scenario.

We’ll need to inform our server of the rest of our state changes: creates, updates (including starts
and stops), and deletes. But first, let’s pop open the logic behind client to see how it works.

0 While it is indeed neat that changes to our server data is seamlessly propagated to our view,
in certain applications — like messaging — five seconds is almost an eternity. We’ll cover
the concept of long-polling in a future app. Long-polling enables changes to be pushed to

clients near instantly.

client

If you open up client. js, the first method defined in the library is getTimers():

time_tracking_app/public/js/client.js

function getTimers(success) {

return fetch('/api/timers', {

headers: ({
Accept: 'application/json',

3

}) .then(checkStatus)
.then(parseJSON)
.then(success);

We are using the new Fetch API to perform all of our HTTP requests. Fetch’s interface should look
relatively familiar if you’ve ever used XMLHttpRequest or jQuery’s ajax().

WOW! eBook
www.wowebook.org

Components & Servers 126

Fetch

Until Fetch, JavaScript developers had two options for making web requests: Use XMLHttpRequest
which is supported natively in all browsers or import a library that provides a wrapper around it
(like jQuery’s ajax()). Fetch provides a better interface than XMLHttpRequest. And while Fetch is
still undergoing standardization, it is already supported by a few major browsers. At the time of
writing, Fetch is turned on by default in Firefox 39 and above and Chrome 42 and above.

Until Fetch is more widely adopted by browsers, it’s a good idea to include the library just in case.
We’ve already done so inside index.html:

<l-- inside "head” tags index.html -->
<script src="vendor/fetch. js"></script>

As we can see in client.getTimers(), fetch() accepts two arguments:

+ The path to the resource we want to fetch
+ An object of request parameters

By default, Fetch makes a GET request, so we're telling Fetch to make a GET request to /api/timers.
We also pass along one parameter: headers, the HTTP headers in our request. We're telling the
server we'll accept only a JSON response.

Attached to the end of our call to fetch(), we have a chain of .then() statements:

time_tracking_app/public/js/client.js

}).then(checkStatus)
.then(parseJSON)
.then(success);

To understand how this works, let’s first review the functions that we pass to each .then()
statement:

« checkStatus(): This function is defined inside of client. js. It checks if the server returned
an error. If the server returned an error, checkStatus() logs the error to the console.

« parseJSON(): This function is also defined inside of client. js. It takes the response object
emitted by fetch() and returns a JavaScript object.

« success(): This is the function we pass as an argument to getTimers(). getTimers() will
invoke this function if the server successfully returned a response.

WOW! eBook
www.wowebook.org

Components & Servers 127

Fetch returns a promise. While we won’t go into detail about promises, as you can see here a promise
allows you to chain .then() statements. We pass each .then() statement a function. What we’re
essentially saying here is: “Fetching the timers from /api/timers then check the status code returned
by the server. Then, extract the JavaScript object from the response. Then, pass that object to the
success function”

At each stage of the pipeline, the result of the previous statement is passed as the argument to the
next one:

When checkStatus() is invoked, it’s passed a Fetch response object that fetch() returns.
checkStatus(), after verifying the response, returns the same response object.
parseJSON() is invoked and passed the response object returned by checkStatus().
parseJSON() returns the JavaScript array of timers returned by the server.

AN e

success() is invoked with the array of timers returned by parseJSON().

We could attach an infinite number of .then() statements to our pipeline. This pattern enables
us to chain multiple function calls together in an easy-to-read format that supports asynchronous
functions like fetch().

0 It’s OK if you’re still uncomfortable with the concept of promises. We've written all the
client code for this chapter for you, so you won’t have trouble completing this chapter. You
can come back afterwards to play around with client. js and get a feel for how it works.

You can read more about JavaScript’s Fetch here*! and promises here*.

Looking at the rest of the functions inclient. js, you'll note the methods contain much of the same
boilerplate with small differences based on the endpoint of the API we are calling.

We just looked at getTimers() which demonstrates reading from the server. We’ll look at one more
function, one that writes to the server.

startTimer () makes a POST request to the /api/timers/start endpoint. The server needs the id of
the timer and the start time. That request method looks like:

41https:/ /developer.mozilla.org/en-US/docs/Web/API/Fetch_API
42https:/ /developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Components & Servers 128

time_tracking_app/public/js/client.js

function startTimer(data) {
return fetch('/api/timers/start', {
method: 'post',
body: JSON.stringify(data),
headers: ({
"Accept': 'application/json',
'"Content-Type': 'application/json',
b
}).then(checkStatus);

In addition to headers, the request parameters object that we pass to fetch() has two more
properties:

time_tracking_app/public/js/client.js

method: 'post',
body: JSON.stringify(data),

Those are:

+ method: The HTTP request method. fetch() defaults to a GET request, so we specify we’d like
a POST here.
+ body: The body of our HTTP request, the data we’re sending to the server.

startTimer() expects an argument, data. This is the object that will be sent along in the body of
our request. It contains the properties id and start. An invocation of startTimer () might look like

this:

// Example invocation of “startTimer()"’

startTimer(

{
id: "bc5eabt3b-9a21-4233-8a76- f4bca9d0a42",

start: 1455584369113,

}
)

In this example, the body of our request to the server will look like this:

WOW! eBook
www.wowebook.org

Components & Servers 129

"id": "bc5eab3b-9a21-4233-8a76-f4bca9doan42",
"start": 1455584369113

The server will extract the id and start timestamp from the body and “start” the timer.

We don’t pass startTimers() a success function. Our app does not need data from the server for
this request and indeed our server will not return anything besides an “OK” anyway.

getTimers() is our only read operation and therefore the only one we’ll pass a success function.
The rest of our calls to the server are writes. Let’s implement those now.

Sending starts and stops to the server

We can use the methods startTimer() and stopTimer () onclient to make calls to the appropriate
endpoints on the server. We just need to pass in an object that includes the id of the timer as well
as the time it was started/stopped:

time_tracking_app/public/js/app-9.js

// Inside TimersDashboard

// ...

startTimer = (timerId) => {
const now = Date.now();

this.setState({
timers: this.state.timers.map((timer) => {
if (timer.id === timerlId) {
return Object.assign({}, timer, ({
runningSince: now,
1)
} else {
return timer;
}
1),
1

client.startTimer(
{ id: timerId, start: now }
);
1

WOW! eBook
www.wowebook.org

Components & Servers 130

stopTimer = (timerId) => {
const now = Date.now();

this.setState({
timers: this.state.timers.map((timer) => {
if (timer.id === timerld) {
const lastElapsed = now - timer.runningSince;
return Object.assign({}, timer, {
elapsed: timer.elapsed + lastElapsed,
runningSince: null,
1)
} else {
return timer;
}
1,
1

client.stopTimer(
{ id: timerld, stop: now }
)
¥

render() {

You might ask: Why do we still manually make the state change within React? Can’t we just inform
the server of the action taken and then update state based on the server, the source of truth? Indeed,
the following implementation is valid:

startTimer: function (timerId) {
const now = Date.now();

client.startTimer(
{ id: timerId, start: now }
).then(loadTimersFromServer);

}l

We can chain a .then() to startTimer() as that function returns our original promise object.
The last stage of the startTimer() pipeline would then be invoking the function loadTimers-
FromServer (). So immediately after the server processes our start timer request, we would make a
subsequent request asking for the latest list of timers. This response would contain the now-running
timer. React’s state updates and the running timer would then be reflected in the UL

WOW! eBook
www.wowebook.org

Components & Servers 131

Again, this is valid. However, the user experience will leave something to be desired. Right now,
clicking the start/stop button gives instantaneous feedback because the state changes locally and
React immediately re-renders. If we waited to hear back from the server, there might be a noticeable
delay between the action (mouse click) and the response (timer starts running). You can try it yourself
locally, but the delay would be most noticeable if the request had to go out over the internet.

What we’re doing here is called optimistic updating. We’re updating the client locally before
waiting to hear from the server. This duplicates our state update efforts, as we perform updates
on both the client and the server. But it makes our app as responsive as possible.

Q The “optimism” we have here is that the request will succeed and not fail with an error.

Using the same pattern as we did with starts and stops, see if you can implement creates, updates,
and deletes on your own. Come back and compare your work with the next section.

Optimistic updating: Validations

Whenever we optimistic update, we always try to replicate whatever restrictions the server would
have. This way, our client state changes under the same conditions as our server state.

For example, imagine if our server enforced that a timer’s title cannot contain symbols. But the
client did not enforce such a restriction. What would happen?

A user has a timer named Gardening. He feels a bit cheeky and renames it Gardening :P. The Ul
immediately reflects his changes, displaying Gardening :P as the new name of the timer. Satisfied,
the user is about to get up and grab his shears. But wait! His timer’s name suddenly snaps back to
Gardening.

To successfully pull off eager updating, we must diligently replicate the code that manages state
changes on both the client and the server. Furthermore, in a production app we should surface any
errors the request to the server returns in the event that there is an inconsistency in the code or a
fluke (the server is down).

Sending creates, updates, and deletes to the server

WOW! eBook
www.wowebook.org

Components & Servers 132

time_tracking_app/public/js/app-complete.js

// Inside TimersDashboard
/]
createTimer = (timer) => {
const t = helpers.newTimer(timer);
this.setState({
timers: this.state.timers.concat(t),

});

client.createTimer(t);

b

updateTimer = (attrs) => {
this.setState({
timers: this.state.timers.map((timer) => {
if (timer.id === attrs.id) {
return Object.assign({}, timer, ({
title: attrs.title,
project: attrs.project,
1)
} else {
return timer;
}
1,
1

client.updateTimer(attrs);

b

deleteTimer = (timerId) => {
this.setState({
timers: this.state.timers.filter(t => t.id !== timerld),

});

client.deleteTimer(
{ id: timerlId }
)i
1

startTimer = (timerId) => {

Recall that, in createTimer () and updateTimer () respectively, the timer and attrs objects contain

WOW! eBook
www.wowebook.org

Components & Servers 133

an id property, as required by the server.

For creates, we need to send a full timer object. It should have an id, a title, and a project. For
updates, we can send an id along with just whatever attributes are being updated. Right now, we
always send along title and project regardless of what has changed. But it’s worth noting this
difference as it’s reflected in the variable names that we are using (timer vs attrs).

Give it a spin

We are now sending all of our state changes to the server. Save app. js and reload the app. Add
some timers, start some timers, and refresh and note that everything is persisted. You can even
make changes to your app in one browser tab and see the changes propagate to another tab.

Next up

We've worked through a reusable methodology for building React apps and now have an under-
standing of how we connect a React app to a web server. Armed with these concepts, you're already
equipped to build a variety of dynamic web applications.

In imminent chapters, we’ll cover a variety of different component types that you encounter across
the web (like forms and date pickers). We’'ll also explore state management paradigms for more
complex applications.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM

React Uses a Virtual DOM

React works differently than many earlier front-end JavaScript frameworks in that instead of
working with the browser’s DOM, it builds a virtual representation of the DOM. By virtual,
we mean a tree of JavaScript objects that represent the “actual DOM”. More on this in a minute.

In React, we do not directly manipulate the actual DOM. Instead, we must manipulate the virtual
representation and let React take care of changing the browser’s DOM.

As we’ll see in this chapter, this is a very powerful feature but it requires us to think differently
about how we build web apps.

Why Not Modify the Actual DOM?

It’s worth asking: why do we need a Virtual DOM? Can’t we just use the “actual-DOM”?

When we do “classic-“ (e.g. jQuery-) style web development, we would typically:

1. locate an element (using document . querySelector or document.getElementById) and then
2. modify that element directly (say, by calling . innerHTML() on the element).

This style of development is problematic in that:

« It’s hard to keep track of changes - it can become difficult keep track of current (and prior)
state of the DOM to manipulate it into the form we need

+ It can be slow - modifying the actual-DOM is a costly operation, and modifying the DOM
on every change can cause poor performance

What is a Virtual DOM?

The Virtual DOM was created to deal with these issues. But what is the Virtual DOM anyway?
The Virtual DOM is a tree of JavaScript objects that represents the actual DOM.

One of the interesting reasons to use the Virtual DOM is the API it gives us. When using the Virtual
DOM we code as if we’re recreating the entire DOM on every update.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 135

This idea of re-creating the entire DOM results in an easy-to-comprehend development model:
instead of the developer keeping track of all DOM state changes, the developer simply returns the
DOM they wish to see. React takes care of the transformation behind the scenes.

This idea of re-creating the Virtual DOM every update might sound like a bad idea: isn’t it going
to be slow? In fact, React’s Virtual DOM implementation comes with important performance
optimizations that make it very fast.

The Virtual DOM will:

« use efficient diffing algorithms, in order to know what changed
+ update subtrees of the DOM simultaneously
« batch updates to the DOM

All of this results in an easy-to-use and optimized way to build web apps.

Virtual DOM Pieces

Again, when building a web app in React, we’re not working directly with the browser’s “actual
DOM?” directly, but instead a virtual representation of it. Our job is to provide React with enough
information to build a JavaScript object that represents what the browser will render.

But what does this Virtual DOM JavaScript object actually consist of?
React’s Virtual DOM is a tree of ReactElements.

Understanding the Virtual DOM, ReactElements, and how they interact with the “actual DOM” is
a lot easier to understand by working through some examples, which we’ll do below.

9 Q: Virtual DOM vs. Shadow DOM, are they the same thing? (A: No)

Maybe you’ve heard of the “Shadow DOM” and you’re wondering, is the Shadow DOM
the same thing as the Virtual DOM? The answer is no.

The Virtual DOM is a tree of JavaScript objects that represent the real DOM elements.

The Shadow DOM is a form of encapsulation on our elements. Think about using the
<video> tag in your browser. In a video tag, your browser will create a set of video controls
such as a play button, a timecode number, a scrubber progress bar etc. These elements aren’t
part of your “regular DOM”, but instead, part of the “Shadow DOM”.

Talking about the Shadow DOM is outside the scope of this chapter. But if you want to
learn more about the Shadow DOM checkout this article: Introduction to Shadow DOM*?

43http://webcomponents.org/ articles/introduction-to-shadow-dom/

WOW! eBook
www.wowebook.org

http://webcomponents.org/articles/introduction-to-shadow-dom/
http://webcomponents.org/articles/introduction-to-shadow-dom/

JSX and the Virtual DOM 136

ReactElement

A ReactElement is a representation of a DOM element in the Virtual DOM.
React will take these ReactElements and place them into the “actual DOM” for us.

One of the best ways to get an intuition about ReactElement is to play around with it in our browser,
so let’s do that now.

Experimenting with ReactElement

Q Try this in your browser

For this section, open up the file code/jsx/basic/index.html (from the code
download) in your browser.

Then open up your developer console and type commands into the console. You
can access the console in Chrome by right-clicking and picking “Inspect” and then
clicking on “Console” in the inspector.

aaaaaaaaaaaaaaaaaaaaaaa

Basic Console

We’ll start by using a simple HTML template that includes one <div> element with an id tag:

1 <«div id='root' />

WOW! eBook
www.wowebook.org

1

JSX and the Virtual DOM 137

® O ® /[gasic Example * \T | Fullstack React |
C' | [file:jfUsers/nmurray/projects/fs/books/react-book/manuscript/codefadvanced-components/basic/index. html "f3 =
[w ﬂ Elements Console Sources Network Timeline Profiles » PX
<html=
P <head>..</head=>
¥ <body=

=div id="root">=</div=

<script src="wvendor/react.js"=</script>

=script src="wendor/react-dom. js"></script=
</body>
=/html=

html body

Styles | Event Listeners DOM Breakpoints Properties

+,ds X #

element.style {

ko ol user agent stylesheet N E—— 0
display: block; H

"I Show all

display

L block

Root Element

Let’s walk through how we render a tag in our (actual) DOM using React. Of course, we
are not going to create a tag directly in the DOM (like we might if we were using jQuery).

Instead, React expects us to provide a Virtual DOM tree. That is, we're going to give React a set of
JavaScript objects which React will turn into a real DOM tree.

The objects that make up the tree will be ReactElements. To create a ReactElement, we use the
createElement method provided by React.

For instance, to create a ReactElement that represents a (bold) element in React, type the
following in the browser console:

var boldElement = React.createElement('b');

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM

L L D Basic Example

x

138

| Fullstack React |

C' [file:fj/Users/nmurray/projects/fs/books/react-book/manuscript/code/advanced-components/basicfindex.html

[(1] | Elements Console Sources » :

® ¥ top ¥ Preserve log

» var boldElement = React.createElement('b');
undefined
» boldElement
y Object {§stypeof: Symbol(react.element), type: "b",
key: null, ref: null, props: Object..}
$stypeof: Symbol(react.element)
_owner: null
_self: null
_source: null
» _store: Object
key: null
» props: Object
ref: null
type: "b"
» __proto__: Object

X

boldElement is a ReactElement

Our boldElement above is an instance of a ReactElement. Now, we have this boldElement, but it’s
not visible without giving it to React to render in the actual DOM tree.

Rendering Our ReactElement

In order to render this element to the actual DOM tree we need to use ReactDOM.render () (which

we cover in more detail a bit later in this chapter. ReactDOM.render () requires two things:

1. The root of our virtual tree

2. the mount location where we want React write to the actual browser DOM

In our simple template we want to get access to the div tag with an id of root. To get a reference
to our actual DOM root element, we use one of the following:

WOW! eBook

www.wowebook.org

O O B W N~

B W N -

JSX and the Virtual DOM 139

// Either of these will work
var mountElement = document.getElementById('root');
var mountElement = document.querySelector('#root');

// 1f we were using jQuery this would work too
var mountElement = $('#root')

With our mountElement retrieved from the DOM, we can give React a point to insert it’s own
rendered DOM.

var boldElement = React.createElement('b');

var mountElement = document.querySelector('#root');
// Render the boldElement in the DOM tree
ReactDOM.render (boldElement, mountElement);

ece /' [} Basic Example * O\, lemck_JReam
S

~ = C' [} filezfjfUsers/nmurrayfprojects/fs/books/react-book/manuscript/codefadvanced-components/basic/index.html b —
[(1] | Elements Console Sources » P X

® W top ¥ [JPreservelog

> var boldElement = React.createElement('b');
undefined
» var mountElement = document.querySelector('#root');
undefined
> ReactDOM.render(boldElement, mountElement);
<b data-reactroot=
> |

Despite the fact that nothing appears in the DOM, a new empty element has been inserted into the
document as a child of the mountElement.

WOW! eBook
www.wowebook.org

W N -

JSX and the Virtual DOM 140

Q If we click the “Elements” tab in the Chrome inspector, we can see that a b tag was created
in the actual DOM.

Adding Text (with children)

Although we now have a b tag in our DOM, it would be nice if we could add some text in the tag.
Because text is in-between the opening and closing b tags, adding text is a matter of creating a child
of the element.

Above, we used React .createE lement with only a single argument ('b' for the b tag), however the
React.createElement() function accepts three arguments:

1. The DOM element type
2. The element props
3. The children of the element

We’ll walk through props in detail later in this section, so for now we’ll set this parameter to null.

The children of the DOM element must be a ReactNode object, which is any of the following:

1. ReactElement
2. A string or a number (a ReactText object)
3. An array of ReactNodes

For example, to place text in our boldElement, we can pass a string as the third argument in the
createElement() function from above:

var mountElement = document.querySelector('#root');

// Third argument is the inner text

var boldElement = React.createElement('b', null, "Text (as a string)");
ReactDOM.render (boldElement, mountElement);

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 141

® L D Basic Example * siinel Fullstack React
C' | [file:jfUsers/nmurray/projects/fs/books/react-book/manuscript/codefadvanced-components/basic/index. html "C? =
Text (as a string) [(] | Elements Console Sources » P %

® ¥ top ¥ Preserve log

> var mountElement = document.querySelector('#root');
undefined

> var boldElement = React.createElement('b', null, "Text
(as a string)");

undefined
> ReactDOM.render(boldElement, mountElement);

»<b data-reactroot=.</b=

ReactDOM.render()

As we’ve seen, we use a React renderer places the virtual tree into a “hard” browser view (the “actual”
DOM).

But there’s a neat side effect of React using it’s own virtual representation of the view-tree: it can
render this tree in multiple types of canvases.

That is, not only can React render into the browser’s DOM, but it can also be used to render views
in other frameworks such as mobile apps. In React Native (which we talk about later in this book),
this tree is rendered into native mobile views.

That said, in this section we’ll spend most of our time in the DOM, so we’ll use the ReactDOM renderer
to manage elements in the browser DOM.

As we’ve seen ReactDOM.render () is the way we get our React app into the DOM:

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 142

/e

const component = ReactDOM.render(boldElement, mountElement);

We can call the ReactDOM.render() function multiple times and it will only perform updates
(mutations) to the DOM as necessary.

The ReactDOM.render function accepts a 3rd argument: a callback argument that is executed after
the component is rendered/updated. We can use this callback as a way to run functions after our
app has started:

ReactDOM.render (boldElement, mountElement, function() {
// The React app has been rendered/updated

1)
JSX

JSX Creates Elements

When we created our ReactElement earlier, we used React.createElement like this:
var boldElement = React.createElement('b', null, "Text (as a string)");

This works fine as we had a small component, but if we had many nested components the syntax
could get messy very quickly. Our DOM is hierarchical and our React component tree is hierarchical
as well.

We can think of it this way: to describe pages to our browser we write HTML; the HTML is parsed
by the browser to create HTML Elements which become the DOM.

HTML works very well for specifying tag hierarchies. It would be nice to represent our React
component tree using markup, much like we do for HTML.

This is the idea behind JSX.

When using JSX, creating the ReactElement objects are handled for us. Instead of calling Re-
act.createElement for each element, the equivalent structure in JSX is:

var boldElement = Text (as a string);
// => boldElement is now a ReactElement

The JSX parser will read that string and call React.createElement for us.

WOW! eBook
www.wowebook.org

0 I O O b W N =~

JSX and the Virtual DOM 143

JSX stands for JavaScript Syntax Extension, and it is a syntax React provides that looks a lot like
HTML/XML. Rather than building our component trees using normal JavaScript directly, we write
our components almost as if we were writing HTML.

JSX provides a syntax that is similar to HTML. However, in JSX we can create our own tags (which
encapsulate functionality of other components).

Although it has a scary-sounding name, writing JSX is not much more difficult than writing HTML.
For instance, here is a JSX component:

const element = <div>Hello world</div>;

One difference between React components and HTML tags is in the naming. HTML tags start with
a lowercase letter, while React components start with an uppercase. For example:

// html tag
const htmlElement = (<div>Hello world</div>);

// React component
const Message = props => (<div>{props.text}</div>)

// Use our React component with a “Message™ tag
const reactComponent = (<Message text="Hello world" />);

We often surround JSX with parenthesis (). Although this is not always technically required, it helps
us set apart JSX from JavaScript.

Our browser doesn’t know how to read JSX, so how is JSX possible?

JSX is transformed into JavaScript by using a pre-processor build-tool before we load it with
the browser.

When we write JSX, we pass it through a “compiler” (sometimes we say the code is transpiled) that
converts the JSX to JavaScript. The most common tool for this is a plugin to babel, which we’ll cover
later.

Besides being able to write HTML-like component trees, JSX provides another advantage: we can
mix JavaScript with our JSX markup. This lets us add logic inline with our views.

We've seen basic examples of JSX several times in this book already. What is different in this section
is that we’re going to take a more structured look at the different ways we can use JSX. We'll cover
tips for using JSX and then talk about how to handle some tricky cases.

Let’s look at:

attribute expressions
child expressions
boolean attributes

« and comments

WOW! eBook
www.wowebook.org

O = W N =

0 N O O & W N =

RN
N »~ O ©

JSX and the Virtual DOM 144

JSX Attribute Expressions

In order to use a JavaScript expression in a component’s attribute, we wrap it in curly braces {}
instead of quotes "".

V7

const warninglLevel = 'debug';

const component = (<Alert
color={warningLevel === 'debug' ? 'gray' : 'red'}
log={true} />)

This example uses the ternary operator* on the color prop.

If the warningLevel variable is set to debug, then the color prop will be 'gray', otherwise it will
be 'red’.

JSX Conditional Child Expressions

Another common pattern is to use a boolean checking expression and then render another element
conditionally.

For instance, if we’re building a menu that shows options for an admin user, we might write:

Y/
const renderAdminMenu = function() {
return (<MenuLink to="/users">User accounts</MenulLink>)
}
Y/
const userlLevel = this.props.userlLevel;
return (

Menu</11i>
{userLevel === 'admin' && renderAdminMenu()}

We can also use the ternary operator to render one component or another.

For instance, if we want to show a <UserMenu> component for a logged in user and a <LoginLink>
for an anonymous user, we can use this expression:

44https:/ /developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional _Operator

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

O O b W N =~

JSX and the Virtual DOM 145

const Menu = ({loggedInUser ? <UserMenu /> : <LoginLink />})

JSX Boolean Attributes

In HTML, the presence of some attributes sets the attribute to true. For instance, a disabled <input>
HTML element can be defined:

<input name='Name' disabled />

In React we need to set these as booleans. That is, we need to pass a true or false explicitly as an
attribute:

// Set the boolean in brackets directly
<input name='Name' disabled={true} />

// ... or use JavaScript variables

let formDisabled = true;
<input name='Name' disabled={formDisabled} />

If we ever need to enable the input above, then we set formDisabled to false.

JSX Comments

We can define comments inside of JSX by using the curly braces ({}) with comment delimiters (/*
*/)

let userlLevel = 'admin';
{/*
Show the admin menu if the userlLevel is 'admin'
*/}
{userLevel === 'admin' && <AdminMenu />}

JSX Spread Syntax

Sometimes when we have many props to pass to a component, it can be cumbersome to list each
one individually. Thankfully, JSX has a shortcut syntax that makes this easier.

For instance, if we have a props object that has two keys:

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 146
const props = {msg: "Hello", recipient: "World"}

We could pass each prop individually like this:

<Component msg={"Hello"} recipient={"World"} />

But by using the JSX spread syntax we can do it like this instead:

<Component {...props} />
<I-- essentially the same as this: -->
<Component msg={"Hello"} recipient={"World"} />

JSX Gotchas

Although JSX mimics HTML, there are a few important differences to pay attention to.

Here’s a few things to keep in mind:

JSX Gotcha: c1ass and className

When we want to set the CSS class of an HTML element, we normally use the class attribute in
the tag:

<div class='box'></div>

Since JSX is so closely tied to JavaScript, we cannot use identifiers that JavaScript uses in our tag
attributes. Attributes such as for and class conflict with the JavaScript keywords for and class.

Instead of using class to identify a class, JSX uses className:

<l-- Same as <div class='box'></div> -->

<div className="'box'></div>

The className attributes works similarly to the class attribute in HTML. It expects to receive a
string that identifies the class (or classes) associated with a CSS class.

To pass multiple classes in JSX, we can join an array to convert it to a string:

WOW! eBook
www.wowebook.org

W N -

JSX and the Virtual DOM 147

var cssNames = ['box', 'alert']
// and use the array of cssNames in JSX

(<div className={cssNames. join("' ')}></div>)
Tip: Managing className With classnames

The classnames npm package® is a great extension that we use to help manage css classes. It can
take a list of strings or objects and allows us to conditionally apply classes to an element.

The classnames package takes the arguments, converts them to an object and conditionally applies
a CSS class if the value is truthy.

code/jsx/basic/app.js

class App extends React.Component {
render() {
const klass = classnames({
box: true, // always apply the box class
alert: this.props.isAlert, // if a prop is set
severity: this.state.onHighAlert, // with a state
timed: false // never apply this class

});

return (<div className={klass} />)

The package readme® provides alternate examples for more complex environments.
JSX Gotcha: for and htmlFor

For the same reason we cannot use the class attribute, we cannot apply the for attribute toa <label>
element. Instead, we must use the attribute htmlFor. The property is a pass-through property in that
it applies the attribute as for:

<T-- .-
<label htmlFor='email'>Email</label>
<input name='email' type='email' />
<l-- .0 -

JSX Gotcha: HTML Entities and Emoji

Entities are reserved characters in HTML which include characters such as less-than <, greater-than

>, the copyright symbol, etc. In order to display entities, we can just place the entity code in literal
text.

45https://WWW‘npmjs.com/package/elassnames
46https:// github.com/JedWatson/classnames/blob/master/README.md

WOW! eBook
www.wowebook.org

https://www.npmjs.com/package/classnames
https://github.com/JedWatson/classnames/blob/master/README.md
https://www.npmjs.com/package/classnames
https://github.com/JedWatson/classnames/blob/master/README.md

W N~

O O B W N -

N O O B~ W N

JSX and the Virtual DOM 148

phone: ☎</1i>
star: ☆
</Jul>

In order to display entities in dynamic data, we need to surround them in a string inside of curly
braces ({}). Using unicode directly in JS works as expected. Just as we can send our JS to the browser
as UTF-8 text directly. Our browser knows how to display UTF-8 code natively.

Alternatively, instead of using the entity character code, we can use unicode version instead.

return (

phone: {'\u@260e'}</1i>
star: {'\u2606'}</1i>

Emoji are just unicode character sequences, so we can add emoji the same way:

return(

dolphin: {'\uD83D\uDC2C'}</1i>
dolphin: {'\uD83D\uDC2C'}</1i>
dolphin: {'\uD83D\uDC2C'}</1i>

» dolphin:
» dolphin:

d 3

= dolphin:

Everyone needs more dolphins

JSX Gotcha: data-anything

If we want to apply our own attributes that the HTML spec does not cover, we have to prefix the
attribute key with the string data-.

WOW! eBook
www.wowebook.org

JSX and the Virtual DOM 149

<div className='box' data-dismissible={true} />

This requirements only applies to DOM components that are native to HTML and does not mean
custom components cannot accept arbitrary keys as props. That is, we can accept any attribute on a
custom component:

<{Message dismissible={true} />
<Note highlight={true} />

There are a standard set of web accessibility* attributes* and its a good idea to use them because
there are many people who will have a hard time using our site without them. We can use any of
these attribute on an element with the key prepended with the string aria-. For instance, to set the
hidden attribute:

<div aria-hidden={true} />

JSX Summary

JSXisn’t magic. The key thing to keep in mind is that JSX is syntactic sugar to callReact . createElement.

JSX is going to parse the tags we write and then create JavaScript objects. JSX is a convenience
syntax to help build the component tree.

As we saw earlier, when we use JSX tags in our code, it gets converted to a ReactElement:

var boldElement = Text (as a string);

// => boldElement is now a ReactElement

We can pass that ReactElement to ReactDOM.render and see our code rendered on the page.

There’s one problem though: ReactElement is stateless and immutable. If we want to add interac-
tivity (with state) into our app, we need another piece of the puzzle: ReactComponent.

In the next chapter, we’ll talk about ReactComponents in depth.

47https://wwwiw3.org/WAI/intro/ aria
48https://WWW.WS.org/TR/vvai—aria/

WOW! eBook
www.wowebook.org

https://www.w3.org/WAI/intro/aria
https://www.w3.org/TR/wai-aria/
https://www.w3.org/WAI/intro/aria
https://www.w3.org/TR/wai-aria/

JSX and the Virtual DOM 150

References

Here are some places to read more about JSX and the Virtual DOM:

JSX in Depth*® - (Facebook)

If-Else in JSX*° - (Facebook)

React (Virtual) DOM Terminology®! - (Facebook)
What is Virtual DOM* - (Jack Bishop)

9 https://facebook.github.io/react/docs/jsx-in-depth.html
50https:/ /facebook.github.io/react/tips/if-else-in-JSX.html
> 1https:/ /facebook.github.io/react/docs/glossary.html
52http:/ /jbi.sh/what-is-virtual-dom/

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/jsx-in-depth.html
https://facebook.github.io/react/tips/if-else-in-JSX.html
https://facebook.github.io/react/docs/glossary.html
http://jbi.sh/what-is-virtual-dom/
https://facebook.github.io/react/docs/jsx-in-depth.html
https://facebook.github.io/react/tips/if-else-in-JSX.html
https://facebook.github.io/react/docs/glossary.html
http://jbi.sh/what-is-virtual-dom/

Advanced Component Configuration
with props, state, and children

Unlike the rest of the chapters in this book, this chapter is intended on being read as
an in-depth, deep dive into the different features of React, from an encylopedia-like
perspective. For this reason, we did not include a step-by-step follow-along style project
in this section of the book.

Intro

In this chapter we’re going to dig deep into the configuration of components.

A ReactComponent is a JavaScript object that, at a minimum, has a render () function. render() is
expected to return a ReactElement.

Recall that ReactElement is a representation of a DOM element in the Virtual DOM.

In the chapter on JSX and the Virtual DOM we talked about ReactElement extensively.
Checkout that chapter if you want to understand ReactElement better.

The goal of a ReactComponent is to

« render() aReactElement (which will eventually become the real DOM) and
« attach functionality to this section of the page

“Attaching functionality” is a bit ambiguous; it includes attaching event handlers, managing state,
interacting with children, etc. In this chapter we’re going to cover:

« render() - the one required function on every ReactComponent

« props - the “input parameters” to our components

« context - a “global variable” for our components

+ state - a way to hold data that is local to a component (that affects rendering)
« Stateless components - a simplified way to write reusable components

+ children - how to interact and manipulate child components

« statics - how to create “class methods” on our components

Let’s get started!

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 152

How to use this chapter

This chapter is built using a specific tool called styleguidist. In the code included with this course is
a section called components-cookbook, which accompanies this chapter with the styleguidist tool
bundled in with it. To use the styleguidist tool, which allows introspection into the components
themselves, we can boot up the section through the chapter.

In order to get it started, change into the directory in terminal and issue the following commands.
First, we’ll need to get the dependencies for the project using npm install:

npm install
To start the application, issue the npm start command:
npm start

Once the server is running, we can navigate to our browser and head to the URL of http://localhost : 3000.
We'll see the styleguide running with all the components exposed by this chapter, where we can
navigate through running examples of the components executing in real-time.

ReactComponent
Creating ReactComponents - createClass or ES6 Classes
As discussed in the first chapter, there are two ways to define a ReactComponent instance:

1. React.createClass() or
2. ES6 classes

As we've seen, the two methods of creating components are roughly equivalent:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 153

advanced-components/components-cookbook/src/components/Component/CreateClassApp.js

import React from 'react'’

// React.createClass
const App = React.createClass({
render: function() {} // required method

});

export default App

and

advanced-components/components-cookbook/src/components/Component/Components.js

import React from 'react’
// ES6 class-style

class App extends React.Component {
render() {} // required

export default App

Regardless of the method we used to define the ReactComponent, React expects us to define the
render () function.

render() Returns a ReactElement Tree

The render () method is the only required method to be defined on a ReactComponent.

After the component is mounted and initialized, render () will be called. The render () function’s
job is to provide React a virtual representation of a native DOM component.

An example of using React .createClass with the render function might look like this

WOW! eBook
www.wowebook.org

O 00 9 O O » W

© 00 9 O U b W

Advanced Component Configuration with props, state, and children 154

advanced-components/components-cookbook/src/components/Component/CreateClassHeading,.js

const CreateClassHeading = React.createClass({
render: function() {
return (
<h1>Hello</h1>

}
});

Or with ES6 class-style components:

advanced-components/components-cookbook/src/components/Component/Header.js

class Heading extends React.Component {
render() {
return (
<h1>Hello</h1>

}
};

The above code should look familiar. It describes a Heading component class with a single render ()
method that returns a simple, single Virtual DOM representation of a <h1> tag.

Remember that this render () method returns a ReactElement which isn’t part of the “actual DOM”,
but instead a description of the Virtual DOM.

React expects the method to return a single child element. It can be a virtual representation of a
DOM component or can return the falsy value of null or false. React handles the falsy value by
rendering an empty element (a <noscript /> tag). This is used to remove the tag from the page.

Keeping the render () method side-effect free provides an important optimization and makes our
code easier to understand.

Getting Data into render()

Of course, while render is the only required method, it isn’t very interesting if the only data we can
render is known at compile time. That is, we need a way to:

. [13 » .
« input "arguments” into our components and
+ maintain state within a component.

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 155

React provides ways to do both of these things, with props and state, respectively.

Understanding these are crucial to making our components dynamic and useable within a larger
app.

In React, props are immutable pieces of data that are passed into child components from parents

(if we think of our component as the “function” we can think of props as our component’s
“arguments”).

Component state is where we hold data, local to a component. Typically, when our component’s
state changes, the component needs to be re-rendered. Unlike props, state is private to a component
and is mutable.

We'll look at both props and state in detail below. Along the way we’ll also talk about context, a
sort of “implicit props” that gets passed through the whole component tree.

Let’s look at each of these in more detail.

props are the parameters

props are the inputs to your components. If we think of our component as a “function”, we can think
of the props as the “parameters”.

Let’s look at an example:

<div>
<Header headerText="Hello world" />
</div>

In the example code, we're creating both a <div> and a <Header> element, where the <div> is a usual
DOM element, while <Header> is an instance of our Header component.

In this example, we're passing data from the component (the string "Hello world") through the
attribute headerText to the component.

Q Passing data through attributes to the component is often called passing props.

When we pass data to a component through an attribute it becomes available to the component
through the this. props property. So in this case, we can access our headerText through the property
this.props.headerText:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 156

import React from 'react’;

export class Header extends React.Component {
render() {
return (
<h1>{this.props.headerText}</h1>

);

While we can access the headerText property, we cannot change it.

By using props we’ve taken our static component and allowed it to dynamically render whatever
headerText is passed into it. The <Header> component cannot change the headerText, but it can
use the headerText itself or pass it on to its children.

We can pass any JavaScript object through props. We can pass primitives, simple JavaScript objects,
atoms, functions etc. We can even pass other React elements and Virtual DOM nodes.

We can document the functionality of our components using props and we can specify the type of
each prop by using PropTypes.

PropTypes

PropTypes are a way to validate the values that are passed in through our props. Well-defined
interfaces provide us with a layer of safety at the run time of our apps. They also provide a layer of
documentation to the consumer of our components.

We include the prop-types package in our package. json.

We define PropTypes by setting a static (class) property propTypes. This object should be a map of
prop-name keys to PropTypes values:

class Map extends React.Component {
static propTypes = {
lat: PropTypes.number,
1ng: PropTypes.number,
zoom: PropTypes.number,
place: PropTypes.object,
markers: PropTypes.array,

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 157
Q If using createClass, we define PropTypes by passing them as an option to createClass():

const Map = React.createClass({
propTypes: {
lat: PropTypes.number,
Ing: PropTypes.number
/S
1
i)

In the example above, our component will validate that name is a string and that totalCount is a
number.

There are a number of built-in PropTypes, and we can define our own.

We’ve written a code example for many of the PropTypes validators here in the appendix on
PropTypes. For more details on PropTypes, check out that appendix.

For now, we need to know that there are validators for scalar types:

e string
e number

e boolean
We can also validate complex types such as:

e function

e object

e array

« arrayOf - expects an array of a particular type
¢ node

e element

We can also validate a particular shape of an input object, or validate that it is an instanceOf a
particular class.

Q Checkout the appendix on PropTypes for more details and code examples on PropTypes

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 158

Default props with getDefaultProps()

Sometimes we want our props to have defaults. We can use the static property defaultProps to do
this.

For instance, create a Counter component definition and tell the component that if no initialvalue
is set in the props to set it to 1 using defaultProps:

class Counter extends React.Component {
static defaultProps = {
initialValue: 1
1
/).
¥

Now the component can be used without setting the initialValue prop. The two usages of the
component are functionally equivalent:

<Counter />
<Counter initialValue={1} />

context

Sometimes we might find that we have a prop which we want to expose “globally”. In this case, we
might find it cumbersome to pass this particular prop down from the root, to every leaf, through
every intermediate component.

Instead, specifying context allows us to automatically pass down variables from component to
component, rather than needing to pass down our props at every level,

ﬂ The context feature is experimental and it’s similar to using a global variable to handle
state in an application - i.e. minimize the use of context as relying on it too frequently is
a code smell.

That is, context works best for things that truly are global, such as the central store in
Redux.

When we specify a context, React will take care of passing down context from component to
component so that at any point in the tree hierarchy, any component can reach up to the “global”
context where it’s defined and get access to the parent’s variables.

In order to tell React we want to pass context from a parent component to the rest of its children we
need to define two attributes in the parent class:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 159

e childContextTypes and
e getChildContext

To retrieve the context inside a child component, we need to define the contextTypes in the child.

To illustrate, let’s look at a possible message reader implementation:

‘B Chat with Cristian_Yost

G, Cristian_Yost
®oniine

Cristian_Yost

£ Sabinad
* eshou

& Weldon72
L @ 5hour

@ AwelBauch92
“* @ 6hours aga

class Messages extends React.Component {
static propTypes = {
users: PropTypes.array.isRequired,
messages: PropTypes.array.isRequired

b

render() {
return (
<div>
<ThreadlList />
<ChatWindow />
</div>

}
1)

// ThreadlList and ChatWindow are also React.Components

Without context, our Messages will have to pass the users along with the messages to the two child
components (which in turn pass them to their children). Let’s set up our hierarchy to accept context
instead of needing to pass down this.props.users and this.props.messages along with every
component.

In the Messages component, we’ll define the two required properties. First, we need to tell React
what the types of our context.

We define this with the childContextTypes key. Similar to propTypes, the childContextTypes is a
key-value object that lists the keys as the name of a context item and the value is a PropType.

Implementing childContextTypes in our Messages component looks like the following:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 160

advanced-components/components-cookbook/src/components/Messages/Messages.js

class Messages extends React.Component {
static propTypes = {
users: PropTypes.array.isRequired,
initialActiveChatIdx: PropTypes.number,
messages: PropTypes.array.isRequired,

};

static childContextTypes = {
users: PropTypes.array,
userMap: PropTypes.object,

b

Just like propTypes, the childContextTypes doesn’t populate the context, it just defines it. In

order to fill data the this.context object, we need to define the second required function:
getChildContext().

With getChildContext() we can set the initial value of our context with the return value of the
function. Back in our Messages component, we will set our users context object to the value of the
this.props.users given to the component.

advanced-components/components-cookbook/src/components/Messages/Messages.js

class Messages extends React.Component {
/S
static childContextTypes = {
users: PropTypes.array,
userMap: PropTypes.object,
1
/S
getChildContext() {
return {
users: this.getUsers(),
userMap: this.getUserMap(),
¥
}
/S

Since the state and props of a component can change, the context can change as well. The
getChildContext() method in the parent component gets called every time the state or props

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 161

change on the parent component. If the context is updated, then the children will receive the updated
context and will subsequently be re-rendered.

With the two required properties set on the parent component, React automatically passes the object
down it’s subtree where any component can reach into it. In order to grab the context in a child
component, we need to tell React we want access to it. We communicate this to React using the
contextTypes definition in the child.

Without the contextTypes property on the child React component, React won’t know what to send
our component. Let’s give our child components access to the context of our Messages.

advanced-components/components-cookbook/src/components/Messages/ThreadList.js

class ThreadlList extends React.Component {
/S
static contextTypes = {
users: PropTypes.array,
1
V7

advanced-components/components-cookbook/src/components/Messages/ChatWindow.js

class ChatWindow extends React.Component {
/)
static contextTypes = {
userMap: PropTypes.object,
};
/S

advanced-components/components-cookbook/src/components/Messages/ChatMessage.js

class ChatMessage extends React.Component {
VA
static contextTypes = {
userMap: PropTypes.object,
1
/).

Now anywhere in any one of our child components (that have contextTypes defined), we can reach
into the parent and grab the users without needing to pass them along manually via props. The
context data is set on the this.context object of the component with contextTypes defined.

For instance, our complete ThreadList might look something like:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 162

advanced-components/components-cookbook/src/components/Messages/ThreadList.js

class ThreadlList extends React.Component {
VA
render() {
return (
<div className={styles.threadlList}>
<ul className={styles.list}>
{this.context.users.map((u, idx) => {
return (
<UserListing
onClick={this.props.onClick}
key={idx}
index={idx}
user={u}
/>
)i
1N
</Jul>
</div>

)

If contextTypes is defined on a component, then several of it’s lifecycle methods will get passed an
additional argument of nextContext:

advanced-components/components-cookbook/src/components/Messages/ThreadList.js

class ThreadlList extends React.Component {

/).

static contextTypes = {
users: PropTypes.array,

¥

/S

componentWillReceiveProps(nextProps, nextContext) {
V2

}

/)

shouldComponentUpdate(nextProps, nextState, nextContext) {
Y/

}

V7

componentWillUpdate(nextProps, nextState, nextContext) ({

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 163

VA

}
/S
componentDidUpdate(prevProps, prevState, prevContext) ({

V2

In a functional stateless component, context will get passed as the second argument:

0 We talk about stateless components below

advanced-components/components-cookbook/src/components/Messages/ChatHeader.js

const ChatHeader = (props, context) => {
Y/
¥

Using global variables in JavaScript is usually a never good idea and context is usually best reserved
for limited situations where a global variable needs to be retrieved, such as a logged-in user. We err
on the side of caution in terms of using context in our production apps and tend to prefer props.

state

The second type of data we’ll deal with in our components is state. To know when to apply state,
we need to understand the concept of stateful components. Any time a component needs to hold on
to a dynamic piece of data, that component can be considered stateful.

For instance, when a light switch is turned on, that light switch is holding the state of “on.” Turning
a light off can be described as flipping the state of the light to “off”

In building our apps, we might have a switch that describe a particular setting, such as an input that
requires validation, or a presence value for a particular user in a chat application. These are all cases
for keeping state about a component within it.

We'll refer to components that hold local-mutable data as stateful components. We'll talk a bit more
below about when we should use component state. For now, know that it’s a good idea to have
as few stateful components as possible. This is because state introduces complexity and makes
composing components more difficult. That said, sometimes we need component-local state, so let’s
look at how to implement it, and we’ll discuss when to use it later..

WOW! eBook
www.wowebook.org

© 00 39 O O b W

10
11

Advanced Component Configuration with props, state, and children 164

Using state: Building a Custom Radio Button

In this example, we’re going to use internal state to build a radio button to switch between payment
methods. Here’s what the form will look like when we’re done:

Switch

Pay with Creditcard
Pay with Biicoin
Paying with: Creditcard

<Switch />

Switch between choices.

Simple Switch

Let’s look at how to make a component stateful:

advanced-components/components-cookbook/src/components/Switch/steps/Switch1.js

class Switch extends React.Component {
state = {};

render() {
return <div>Template will be here</div>;

module.exports = Switch;

That’s it! Of course, just setting state on the component isn’t all that interesting. To use the state on
our component, we’ll reference it using this.state.

WOW! eBook
www.wowebook.org

0 N O O &~ W

1
12
13
14
15
16
17
18
19
20
21
22

Advanced Component Configuration with props, state, and children 165

advanced-components/components-cookbook/src/components/Switch/steps/Switch2.js

const CREDITCARD = 'Creditcard';
const BTC = 'Bitcoin';

class Switch extends React.Component {
state = {
payMethod: BTC,

};

render() {
return (
<div className='switch'>
<div className='choice'>Creditcard</div>
<div className='choice'>Bitcoin</div>
Pay with: {this.state.payMethod}
</div>
)

module.exports = Switch;

In our render function, we can see the choices our users can pick from (although we can’t change
a method of payment yet) and their current choice stored in the component’s state. This Switch
component is now stateful as it’s keeping track of the user’s preferred method of payment.

Our payment switch isn’t yet interactive; we cannot change the state of the component. Let’s hook
up our first bit of interactivity by adding an event handler to run when our user selects a different
payment method.

In order to add interaction, we’ll want to respond to a click event. To add a callback handler to any
component, we can use the onClick attribute on a component. The onClick handler will be fired
anytime the component it’s defined on is clicked.

WOW! eBook
www.wowebook.org

21
22
23
24
25
26
27
28
29
30
31
32
33

o N O

11
12
13
14
15
16
17
18

Advanced Component Configuration with props, state, and children

advanced-components/components-cookbook/src/components/Switch/steps/Switch3.js

166

return (
<div className='switch'>
<div
className="choice'
onClick={this.select(CREDITCARD)} // add this
>Creditcard</div>
<div
className="choice'
onClick={this.select(BTC)} // ... and this
>Bitcoin</div>
Pay with: {this.state.payMethod}
</div>

);

Using the onClick attribute, we've attached a callback handler that will be called every time either

one of the <div> elements are clicked.

The onClick handler expects to receive a function that it will call when the click event occurs. Let’s

look at the select function:

advanced-components/components-cookbook/src/components/Switch/steps/Switch3.js

class Switch extends React.Component {
state = {
payMethod: BTC,

}/

select = (choice) => {
return (evt) => {
// <-- handler starts here
this.setState({
payMethod: choice,
1
};
}

Notice two things about select:

1. It returns a function
2. It uses setState

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 167

Returning a New Function

Notice something interesting about select and onClick: the attribute onClick expects a function
to be passed in, but we’re calling a function first. That’s because the select function will return a
function itself.

This is a common pattern for passing arguments to handlers. We close over the choice argument
when we call select. select returns a new function that will call setState with the appropriate
choice.

When one of the child <div> elements are clicked, the handler function will be called. Note that
select is actually called during render, and it’s the return value of select that gets called onClick.

Updating the State

When the handler function is called, the component will call setState on itself. Calling setState
triggers a refresh, which means the render function will be called again, and we’ll be able to see the
current state.payMethod in our view.

ﬁ setState has performance implications

Since the setState method triggers a refresh, we want to be careful about how often we
call it.

Modifying the actual-DOM is slow so we don’t want to cause a cascade of setStates to
be called, as that could result it poor performance for our user.

Viewing the Choice
In our component we don’t (yet) have a way to indicate which choice has been selected other than
the accompanying text.

It would be nice if the choice itself had a visual indication of being the selected one. We usually do
this with CSS by applying an active class. In our example, we use the className attribute.

In order to do this, we’ll need to add some logic around which CSS classes to add depending upon
the current state of the component.

But before we add too much logic around the CSS, let’s refactor component to use a function to
render each choice:

WOW! eBook
www.wowebook.org

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Advanced Component Configuration with props, state, and children 168

advanced-components/components-cookbook/src/components/Switch/steps/Switch4.js

<div className='choice' onClick={this.select(choice)}>
{choice}
</div>
)i
¥

render() {
return (
<div className='switch'>
{this.renderChoice(CREDITCARD)}
{this.renderChoice(BTC)}
Pay with: {this.state.payMethod}
</div>

)

module.exports = Switch;

Now, instead of putting all render code into render () function, we isolate the choice rendering into
it’s own function.

Lastly, let’s add the .active class to the <div> choice component.

advanced-components/components-cookbook/src/components/Switch/steps/Switch5.js

const cssClasses = [];

if (this.state.payMethod === choice) {
cssClasses.push(styles.active); // add .active class
}
return (
<div

className="'choice'
onClick={this.select(choice)}

className={cssClasses}

{choice}
</div>

)

WOW! eBook
www.wowebook.org

37
38
39
40
41
42
43
44
45
46
47

Advanced Component Configuration with props, state, and children 169

b

render() {
return (
<div className='switch'>
{this.renderChoice(CREDITCARD)}
{this.renderChoice(BTC)}
Pay with: {this.state.payMethod}
</div>
)

0 Notice that we push the style styles.active onto the cssClassses array. Where did
styles come from?

For this code example, we’re using a webpack loader to import the CSS. Diving in to how
webpack works is beyond the scope of this chapter. But just so you know how we’re using
it, there are two things to know:

1. We're importing the styles like this: import styles from '../Switch.css';
2. This means all of the styles in that file are accessible like an object - e.g.
styles.active gives us a reference to the .active class from Switch.css

We do it this way because it’s a form of CSS encapsulation. That is, the actual CSS class
won’t actually be .active, which means we won’t conflict with other components that
might use the same class name.

Stateful components

Defining state on our component requires us to set an instance variable called this.state in the
object prototype class. In order to do this, it requires us to set the state in one of two places, either
as a property of the class or in the constructor.

Setting up a stateful component in this way allows us to:

1. It allows us to define the initial state of our component.
2. Ittells React that our component will be stateful. Without this method defined, our component
will be considered to be stateless.

For a component, this looks like:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 170

advanced-components/components-cookbook/src/components/InitialState/Component.js

class InitialStateComponent extends React.Component {
V7
constructor(props) {
super(props)

this.state = {
currentValue: 1,
currentUser: {

name: 'Ari

VAR

In this example, the state object is just a JavaScript object, but we can return anything in this
function. For instance, we may want to set it to a single value:

advanced-components/components-cookbook/src/components/InitialState/Component.js

class Counter extends React.Component {
constructor(props) {
super(props)

this.state = 0

Setting props inside of our component is usually always a bad idea. Setting the initial value of the
state property is the only time we should ever use props when dealing with a component’s state.
That is, if we ever want to set the value of a prop to the state, we should do it here.

For instance, if we have a component where the prop indicates a value of the component, we should
apply that value to the state in the constructor() method. A better name for the value as a prop
is initialValue, indicating that the initial state of the value will be set.

For example, consider a Counter component that displays some count and contains an increment
and decrement button. We can set the initial value of the counter like this:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 171

advanced-components/components-cookbook/src/components/Counter/CounterWrapper.js

const CounterWrapper = props => (
<div>

<Counter initialValue={125} /»
</div>

From the usage of the <Counter> component, we know that the value of the Counter will change
simply by the name initialValue. The Counter component can use this prop in constructor(),
like so:

advanced-components/components-cookbook/src/components/Counter/Counter.js

class Counter extends Component {
constructor (props) {
super(props);

this.state = {
value: this.props.initialValue
b
}
/).

Since the constructor is run once and only once before the component itself is mounted, we can use
it to establish our initial state.

State updates that depend on the current state

Counter has buttons for incrementing and decrementing the count:

125

The Counter component

When the “-“ button is pressed, React will invoke decrement(). decrement() will subtract 1 from
state’s value. Something like this would appear to be sufficient:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 172

advanced-components/components-cookbook/src/components/Counter/Counter1.js

decrement = () => {
// Appears correct, but there is a better way
const nextValue = this.state.value - 1;
this.setState({
value: nextValue,

});

However, whenever a state update depends on the current state, it is preferable to pass a
function to setState(). We can do so like this:

advanced-components/components-cookbook/src/components/Counter/Counter.js

decrement = () => {
this.setState(prevState => {
return {
value: prevState.value - 1,
¥
1

setState() will invoke this function with the previous version of the state as the first argument.
Why is setting state this way necessary? Because setState() is asynchronous.

Here’s an example. Let’s say we’re using the first decrement() method where we pass an object
to setState(). When we invoke decrement() for the first time, value is 125. We’d then invoke
setState(), passing an object with a value of 124.

However, the state will not necessarily be updated immediately. Instead, React will add our
requested state update to its queue.

Let’s say that the user is particularly fast with her mouse and her computer is particularly slow
with its processing. The user manages to click the decrement button again before React gets around
to our previous state update. Responding to user interactions are high-priority, so React invokes
decrement(). The value in state is still 125. So, we enqueue another state update, again setting
value to 124.

React then commits both state updates. To the dismay of our astute and quick-fingered user, instead
of the correct value of 123 the app shows a count of 124.

In our simple example, there’s a thin chance this bug would occur. But as a React app grows in
complexity, React might encounter periods where it is overloaded with high-priority work, like

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 173

animations. And it is conceivable that state updates might be queued for consequential lengths of
time.

Whenever a state transition depends on the current state, using a function to set the state helps to
avoid the chance for such enigmatic bugs to materialize.

o For further reading on this topic, see our own Sophia Shoemaker’s post Using a function
in setState instead of an object™.

Thinking About State

Spreading state throughout our app can make it difficult to reason about. When building stateful
components, we should be mindful about what we put in state and why we’re using state.

Generally, we want to minimize the number of components in our apps that keep component-local
state.

If we have a component that has UI states which:

1. cannot be “fetched” from outside or
2. cannot be passed into the component,

that’s usually a case for building state into the component.

However, any data that can be passed in through props or by other components is usually best to
leave untouched. The only information we should ever put in state are values that are not computed
and do not need to be sync’d across the app.

The decision to put state in our components or not is deeply related to the tension between “object-
oriented programming” and “functional programming”.

In functional programming, if you have a pure function, then calling the same function, with the
same arguments, will always return the same value for a given set of inputs. This makes the
behavior of a pure function easy to reason about, because the output is consistent at all times,
with respect to the inputs.

In object-oriented programming you have objects which hold on to state within that object. The
object state then becomes implicit parameters to the methods on the object. The state can change
and so calling the same function, with the same arguments, at different times in your program can
return different answers.

This is related to props and state in React components because you can think of props as
“arguments” to our components and state as “instance variables” to an object.

If our component uses only props for configuring a component (and it does not use state or any

53https:/ /medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object- 1f5cfd6e55d1

WOW! eBook
www.wowebook.org

https://medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1
https://medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1
https://medium.com/@shopsifter/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1

Advanced Component Configuration with props, state, and children 174

other outside variables) then we can easily predict how a particular component will render.

However, if we use mutable, component-local state then it becomes more difficult to understand
what a component will render at a particular time.

So while carrying “implicit arguments” through state can be convenient, it can also make the system
difficult to reason about.

That said, state can’t be avoided entirely. The real world has state: when you flip a light switch the
world has now changed - our programs have to be able to deal with state in order to operate in the
real world.

The good news is that there are a variety of tools and patterns that have emerged for dealing with
state in React (notably Flux and its variants), which we talk about elsewhere in the book. The rule
of thumb you should work with is to minimize the number of components with state.

Keeping state is usually good to enforce and maintain consistent Ul that wouldn’t otherwise be
updated. Additionally, one more thing to keep in mind is that we should try to minimize the amount
of information we put into our state. The smaller and more serializable we can keep it (i.e. can we
easily turn it into JSON), the better. Not only will our app be the faster, but it will be easier to reason
about. It’s usually a red-flag when our state gets large and/or unmanageable.

One way that we can mitigate and minimize the complex states is by building our apps with a single
stateful component composed of stateless components: components that do not keep state.

Stateless Components

An alternative approach to building stateful components would be to use stateless components.
Stateless components are intended to be lightweight components that do not need any special
handling around the component.

Stateless components are React’s lightweight way of building components that only need the
render () method.

Let’s look an example of a stateless component:

advanced-components/components-cookbook/src/components/Header/StatelessHeader.js

const Header = function(props) {
return (<h1>{props.headerText}</h1>)

}

Notice that we don’t reference this when accessing our props as they are simply passed into the
function. In fact, the stateless component here isn’t actually a class in the sense that it isn’t a
ReactElement.

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 175

Functional, stateless components do not have a this property to reference. In fact, when we use
a stateless component, the React rendering processes does not introduce a new ReactComponent
instance, but instead it is null. They are just functions and do not have a backing instance. These
components cannot contain state and do not get called with the normal component lifecycle
methods. We cannot use refs (described below), cannot reference the DOM, etc.

React does allow us to use propTypes and defaultProps on stateless components

With so many constraints, why would we want to use stateless components? There are two reasons:

+ Minimizing stateful components and
+ Performance

As we discussed above, stateful components often spread complexity throughout a system. A
component being stateless, when used properly, can help contain the state in fewer locations, which
can make our programs easier to reason about.

Also, since React doesn’t have to keep track of component instance in memory, do any dirty checking
etc., we can get a significant performance increase.

A good rule of thumb is to use stateless components as much as we can. If we don’t need any lifecycle
methods and can get away with only a rendering function, using a stateless component is a great
choice.

switching to Stateless

Can we convert our Switch component above to a stateless component? Well, the currently selected
payment choice is state and so it has to be kept somewhere.

While we can’t remove state completely, we could at least isolate it. This is a common pattern in
React apps: try to pull the state into a few parent components.

In our Switch component we pulled each choice out into the renderChoice function. This indicates
that this is a good candidate for pulling into it’s own stateless component. There’s one problem:
renderChoice is the function that calls select, which means that it indirectly is the function that
calls setState. Let’s take a look at how to handle this issue:

WOW! eBook
www.wowebook.org

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

38
39
40
41
42
43
44
45

Advanced Component Configuration with props, state, and children 176

advanced-components/components-cookbook/src/components/Switch/steps/Switché.js

const Choice = function (props) {
const cssClasses = [];

if (props.active) {
// <-- check props, not state
cssClasses.push(styles.active);

return (
<div
className='"choice'
onClick={props.onClick}
className={cssClasses}

{props.label} {/* <-- allow any label */}

Here we’ve created a Choice function which is a stateless component. But we have a problem: if our
component is stateless then we can’t read from state. What do we do instead? Pass the arguments
down through props.

In Choice we make three changes (which is marked by comments in the code above):

1. We determine if this choice is the active one by reading props.active
2. When a Choice is clicked, we call whatever function that is on props.onClick
3. The label is determined by props. label

All of these changes mean that Choice is decoupled from the Switch statement. We could now
conceivably use Choice anywhere, as long as we passactive,onClick, and label through the props.

Let’s look at how this changes Switch:

advanced-components/components-cookbook/src/components/Switch/steps/Switch6.js

render() {
return (
<div className='switch'>
<Choice
onClick={this.select(CREDITCARD)}
active={this.state.payMethod === CREDITCARD}
label="Pay with Creditcard'’
/>

WOW! eBook
www.wowebook.org

46
47
48
49
50
o1
52
53

Advanced Component Configuration with props, state, and children 177

<Choice
onClick={this.select(BTC)}
active={this.state.payMethod === BTC}
label="Pay with Bitcoin'

/>

Paying with: {this.state.payMethod}

Here we’re using our Choice component and passing the three props (parameters) active, onClick,
and label. What’s neat about this is that we could easily:

1. Change what happens when we click this choice by changing the input to onClick

2. Change the condition by which a particular choice is considered active by changing theactive
prop

3. Change what the label is to any arbitrary string

By creating a stateless component Choice we're able to make Choice reusable and not be tied to any
particular state.

Stateless Encourages Reuse

Stateless components are a great way to create reusable components. Because stateless components
need to have all of their configuration passed from the outside, we can often reuse stateless
components in nearly any project, provided that we supply the right hooks.

Now that we’ve covered both props, context, and state we're going to cover a couple more
advanced features we can use with components.

Our components exist in a hierarchy and sometimes we need to communicate (or manipulate) the
children components. The the next section, we're going to discuss how to do this.

Talking to Children Components with props.children

While we generally specify props ourselves, React provides provides some special props for us. In
our components, we can refer to child components in the tree using this.props.children.

For instance, say we have a Newspaper component that holds an Article:

WOW! eBook
www.wowebook.org

O 00 9 O O b W N =~

Advanced Component Configuration with props, state, and children 178

advanced-components/components-cookbook/src/components/Article/Newspaper.js

const Newspaper = props => {
return (
<Container>
<Article headline="An interesting Article">
Content Here
</Article>

</Container>

The container component above contains a single child, the Article component. How many children
does the Article component contain? It contains a single child, the text Content Here.

In the Container component, say that we want to add markup around whatever the Article
component renders. To do this, we write our JSX in the Container component, and then place
this.props.children:

advanced-components/components-cookbook/src/components/Article/Container.js

class Container extends React.Component {
/)
render() {
return (
<div className='container'>
{this.props.children}
</div>

The Container component above will create a div with class="container' and the children of this
React tree will render within that div.

Generally, React will pass the this. props.children prop as a list of components if there are multiple
children, whereas it will pass a single element if there is only one component.

Now that we know how this.props.children works, we should rewrite the previous Container
component to use propTypes to document the API of our component. We can expect that our
Container is likely to contain multiple Article components, but it might also contain only a single
Article. So let’s specify that the children prop can be either an element or an array.

Q If PropTypes.oneOfType seems unfamiliar, checkout the appendix on PropTypes which
explains how it works

WOW! eBook
www.wowebook.org

o I O O b W N =

SR R s s s
O O b W N -~ O O

0 N O O & W N =~

_ s o
W N~ OO O

Advanced Component Configuration with props, state, and children 179

advanced-components/components-cookbook/src/components/Article/DocumentedContainer.js

class Container extends React.Component {
static propTypes = {
children: PropTypes.oneOf(|
PropTypes.element,
PropTypes.array
D
}
/S
render() {
return (
<div className="container">
{this.props.children}
</div>

It can become cumbersome to check what type our children prop is every time we want to use
children in a component. We can handle this a few different ways:

1. Requirechildren to be a single child every time (e.g., wrap our children in their own element).
2. Use the Children helper provided by React.

The first method of requiring a child to be a single element is straightforward. Rather than defining
the children above as oneOfType(), we can set the children to a be a single element.

advanced-components/components-cookbook/src/components/Article/SingleChildContainer.js

class Container extends React.Component {
static propTypes = {
children: PropTypes.element.isRequired,
}
V7
render() {
return (
<div className="container">
{this.props.children}
</div>

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 180

Inside the Container component we can deal with the children always being able to be rendered as
a single leaf of the hierarchy.

The second method of is to use the React.Children utility helper for dealing with the child
components. There are a number of helper methods for handling children, let’s look at them now.

React.Children.map() & React.Children. forEach()

The most common operation we’ll use on children is mapping over the list of them. We’ll often use
amap to call React.cloneElement() or React.createElement() along the children.

0 map() and forEach()

Both the map() and forEach() function execute a provided function once per each element
in an iterable (either an object or array).

[1, 2, 38].forEach(function(n) {
console.log("The number is: " + n);

return n; // we won't see this

)
[1, 2, 3].map(function(n) {
console.log("The number is: " + n);

return n; // we will get these

D)

The difference between map() and forEach() is that the return value of map() is an array
of the result of the callback function, whereas forEach() does not collect results.

So in this case, while both map() and forEach() will print the console.log statements,
map() will return the array [1, 2, 3] whereas forEach() will not.

Let’s rewrite the previous Container to allow a configurable wrapper component for each child.
The idea here is that this component takes:

1. A prop component which is going to wrap each child
2. A prop children which is the list of children we’re going to wrap

To do this, we call React .createElement() to generate a new ReactElement for each child:

WOW! eBook
www.wowebook.org

Advanced Component Configuration with props, state, and children 181

advanced-components/components-cookbook/src/components/Article/MultiChildContainer.js

class Container extends React.Component {
static propTypes = {
component: PropTypes.element.isRequired,
children: PropTypes.element.isRequired
}
/S
renderChild = (childData, index) => {
return React.createElement(
this.props.component,
{}, // <~ child props
childData // <~ child's children

}
V7
render() {
return (
<div className='container'>
{React.Children.map(
this.props.children,
this.renderChild
)}

</div>

Again, the difference between React.Children.map() and React.Children. forEach() is that the
former creates an array and returns the result of each function and the latter does not. We’ll mostly
use .map() when we render a child collection.

React.Children.toArray()

props.children returns a data structure that can be tricky to work with. Often when dealing with
children, we’ll want to convert our props.children object into a regular array, for instance when
we want to re-sort the ordering of the children elements. React.Children.toArray() converts the
props.children data structure into an array of the children.

WOW! eBook
www.wowebook.org

0 I O O b W N =~

SO =Y
N O O b WD =r OO O

Advanced Component Configuration with props, state, and children 182

advanced-components/components-cookbook/src/components/Article/ArrayContainer.js

class Container extends React.Component {

static propTypes = {
component: PropTypes.element.isRequired,
children: PropTypes.element.isRequired

}

/S

render() {
const arr =

React.Children.toArray(this.props.children);

return (
<div className="container">
{arr.sort((a, b) => a.id < b.id)}
</div>

Summary

By using props and context we get data in to our components and by using PropTypes we can
specify clear expectations about what we require that data to be.

By using state we hold on to component-local data, and we tell our components to re-render
whenever that state changes. However state can be tricky! One technique to minimize stateful
components is to use stateless, functional components.

Using these tools we can create powerful interactive components. However there is one important
set of configurations that we did not cover here: lifecycle methods.

Lifecycle methods like componentDidMount and componentWillUpdate provide us with powerful
hooks into the application process. In the next chapter, we're going to dig deep into component
lifecycle and show how we can use those hooks to validate forms, hook in to external APIs, and
build sophisticated components.

References

« React Top-Level API Docs™
« React Component API Docs

54https://facebook.github.io/ react/docs/top-level-api.html
55https://facebook.github.io/react/docs/component- api.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/top-level-api.html
https://facebook.github.io/react/docs/component-api.html
https://facebook.github.io/react/docs/top-level-api.html
https://facebook.github.io/react/docs/component-api.html

Forms

Forms 101

Forms are one of the most crucial parts of our application. While we get some interaction through
clicks and mouse moves, it’s really through forms where we’ll get the majority of our rich input
from our users.

In a sense, it’s where the rubber meets the road. It’s through a form that a user can add their payment
info, search for results, edit their profile, upload a photo, or send a message. Forms transform your
web site into a web app.

Forms can be deceptively simple. All you really need are some input tags and a submit tag wrapped
up in a form tag. However, creating a rich, interactive, easy to use form can often involve a significant
amount of programming:

+ Form inputs modify data, both on the page and the server.

+ Changes often have to be kept in sync with data elsewhere on the page.

« Users can enter unpredictable values, some that we’ll want to modify or reject outright.

 The Ul needs to clearly state expectations and errors in the case of validation failures.

« Fields can depend on each other and have complex logic.

« Data collected in forms is often sent asynchronously to a back-end server, and we need to
keep the user informed of what’s happening.

« We want to be able to test our forms.

If this sounds daunting, don’t worry! This is exactly why React was created: to handle the
complicated forms that needed to be built at Facebook.

We're going to explore how to handle these challenges with React by building a sign up app. We’ll
start simple and add more functionality in each step.

Preparation
Inside the code download that came with this book, navigate to forms:
$ cd forms

This folder contains all the code examples for this chapter. To view them in your browser install the
dependencies by running npm install (or npm i for short):

WOW! eBook
www.wowebook.org

Forms 184

$ npm i

Once that’s finished, you can start the app with npm start:
$ npm start

You should expect to see the following in your terminal:

$ npm start
Compiled successfully!
The app is running at:

http://localhost: 3000/
You should now be able to see the app in your browser if you go to http://localhost : 3000.

0 This app is powered by Create React App, which we cover in the next chapter.

The Basic Button

At their core, forms are a conversation with the user. Fields are the app’s questions, and the values
that the user inputs are the answers.

Let’s ask the user what they think of React.

We could present the user with a text box, but we’ll start even simpler. In this example, we’ll constrain
the response to just one of two possible answers. We want to know whether the user thinks React is
either “great” or “amazing”, and the simplest way to do that is to give them two buttons to choose
from.

Here’s what the first example looks like:

What do you think of React?

Great Amazing

Basic Buttons

To get our app to this stage we create a component with a render () method that returns a div with
three child elements: an h1 with the question, and two button elements for the answers. This will

look like the following:

WOW! eBook
www.wowebook.org

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Forms 185

forms/src/01-basic-button.js

render() {
return (
<div>
<h1>What do you think of React?</h1>

<button
name="'button-1"
value='great'
onClick={this.onGreatClick}

Great
</button>

<button
name="button-2"'
value='amazing'

onClick={this.onAmazingClick}

Amazing
</button>
</div>

);

So far this looks a lot like how you’d handle a form with vanilla HTML. The important part to pay
attention to is the onClick prop of the button elements. When a button is clicked, if it has a function
set as its onClick prop, that function will be called. We’ll use this behavior to know what our user’s
answer is.

To know what our user’s answer is, we pass a different function to each button. Specifically,
we’ll create function onGreatClick() and provide it to the “Great” button and create function
onAmazingClick() and provide it to the “Amazing” button.

Here’s what those functions look like:

WOW! eBook
www.wowebook.org

9
10
11
12
13
14
15

Forms 186

forms/src/01-basic-button.js

onGreatClick = (evt) => {
console.log('The user clicked button-1: great', evt);

};

onAmazingClick = (evt) => {
console.log('The user clicked button-2: amazing', evt);

b

When the user clicks on the “Amazing” button, the associated onC1ick function will run (onAmazingClick()

in this case). If, instead, the user clicked the “Great” button, onGreatClick() would be run instead.

ﬂ Notice that in the onClick handler we pass this.onGreatClick and not
this.onGreatClick().

What’s the difference?

In the first case (without parens), we’re passing the function onGreatClick, whereas in the
second case we're passing the result of calling the function onGreatClick (which isn’t what
we want right now).

This becomes the foundation of our app’s ability to respond to a user’s input. Our app can do different
things depending on the user’s response. In this case, we log different messages to the console.

Events and Event Handlers

Note that our onClick functions (onAmazingClick() and onGreatClick()) accept an argument, evt.
This is because these functions are event handlers.

Handling events is central to working with forms in React. When we provide a function to an
element’s onClick prop, that function becomes an event handler. The function will be called when
that event occurs, and it will receive an event object as its argument.

In the above example, when the button element is clicked, the corresponding event handler function
is called (onAmazingClick() or onGreatClick()) and it is provided with a mouse click event object
(evt in this case). This object is a SyntheticMouseEvent. This SyntheticMouseEvent is just a cross-
browser wrapper around the browser’s native MouseEvent, and you’ll be able to use it the same way
you would a native DOM event. In addition, if you need the original native event you can access it
via the nativeEvent attribute (e.g. evt.nativeEvent).

Event objects contain lots of useful information about the action that occurred. A MouseEvent for
example, will let you see the x and y coordinates of the mouse at the time of the click, whether or
not the shift key was pressed, and (most useful for this example) a reference to the element that was
clicked. We'll use this information to simplify things in the next section.

WOW! eBook
www.wowebook.org

10
11
12

Forms 187

0 Instead, if we were interested in mouse movement, we could have created an event
handler and provided it to the onMouseMove prop. In fact, there are many such element
props that you can provide mouse event handlers to: onClick, onContextMenu,
onDoubleClick, onDrag, onDragEnd, onDragEnter, onDragExit, onDraglLeave, onDragOver,
onDragStart, onDrop, onMouseDown, onMouseEnter, onMouseleave, onMouseMove,
onMouseOut, onMouseOver, and onMouseUp.

And those are only the mouse events. There are also clipboard, composition, keyboard,
focus, form, selection, touch, ui, wheel, media, image, animation, and transition event
groups. Each group has its own types of events, and not all events are appropriate for
all elements. For example, here we will mainly work with the form events, onChange and
onSubmit, which are related to form and input elements.

For more information on events in React, see React’s documentation on the Event System®®.

Back to the Button

In the previous section, we were able to perform different actions (log different messages) depending
on the action of the user. However, the way that we set it up, we’d need to create a separate function
for each action. Instead, it would be much cleaner if we provided the same event handler to both
buttons, and used information from the event itself to determine our response.

To do this, we replace the two event handlers onGreatClick() and onAmazingClick() with a new
single event handler, onButtonClick().

forms/src/02-basic-button.js

onButtonClick = (evt) => {
const btn = evt.target;
console.log(The user clicked ${btn.name}: ${btn.value});

};

Our click handler function receives an event object, evt. evt has an attribute target that is a
reference to the button that the user clicked. This way we can access the button that the user clicked
without creating a function for each button. We can then log out different messages for different
user behavior.

Next we update our render () function so that our button elements both use the same event handler,
our new onButtonClick() function.

56https:/ /facebook.github.io/react/docs/events.html

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/events.html
https://facebook.github.io/react/docs/events.html

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Forms

forms/src/02-basic-button.js

188

render() {
return (
<div>
<h1>What do you think of React?</h1>

<button
name="'button-1"
value='"great'
onClick={this.onButtonClick}

Great
</button>

<button
name="'button-2'
value="amazing'
onClick={this.onButtonClick}

Amazing
</button>
</div>
);

000 /Mo Y | Fulstack React |
€ - C | [1192.168.2.18:9966/#/2
What do you think of
React?

sssss [Amazing |

One Event Handler for Both Buttons

WOW! eBook
www.wowebook.org

Forms 189

By taking advantage of the event object and using a shared event handler, we could add 100 new
buttons, and we wouldn’t have to make any other changes to our app.

Text Input

In the previous example, we constrained our user’s response to only one of two possibilities. Now
that we know how to take advantage of event objects and handlers in React, we’re going to accept
a much wider range of responses and move on to a more typical use of forms: text input.

To showcase text input we’ll create a “sign-up sheet” app. The purpose of this app is to allow a user
to record a list of names of people who want to sign up for an event.

The app presents the user a text field where they can input a name and hit “Submit”. When they
enter a name, it is added to a list, that list is displayed, and the text box is cleared so they can enter
a new name.

Here’s what it will look like:

Sign Up Sheet

David Guttman| Suomit

Names

+ Nate Murray
+ Ari Lemner

Sign-Up Adding to a List

Accessing User Input With refs

We want to be able to read the contents of the text field when the user submits the form. A simple
way to do this is to wait until the user submits the form, find the text field in the DOM, and finally
grab its value.

To begin we’ll start by creating a form element with two child elements: a text input field and a
submit button:

WOW! eBook
www.wowebook.org

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Forms 190

forms/src/03-basic-input.js

render() {
return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>
<input
placeholder="Name'
ref="name'
/>

<input type='submit' />
</form>
</div>

)

This is very similar to the previous example, but instead of two button elements, we now have a
form element with two child elements: a text field and a submit button.

There are two things to notice. First, we’ve added an onSubmit event handler to the form element.
Second, we’ve given the text field a ref prop of 'name’.

By using an onSubmit event handler on the form element this example will behave a little differently
than before. One change is that the handler will be called either by clicking the “Submit” button, or
by pressing “enter”/’return” while the form has focus. This is more user-friendly than forcing the
user to click the “Submit” button.

However, because our event handler is tied to the form, the event object argument to the handler is
less useful than it was in the previous example. Before, we were able to use the target prop of the
event to reference the button and get its value. This time, we’re interested in the text field’s value.
One option would be to use the event’s target to reference the form and from there we could find
the child input we’re interested in, but there’s a simpler way.

In React, if we want to easily access a DOM element in a component we can use refs (references).
Above, we gave our text field a ref property of 'name'. Later when the onSubmit handler is called,
we have the ability to access this.refs.name to get a reference to that text field. Here’s what that
looks like in our onFormSubmit() event handler:

WOW! eBook
www.wowebook.org

Forms 191

forms/src/03-basic-input.js

9 onFormSubmit = (evt) => {

10 evt.preventDefault();
11 console.log(this.refs.name.value);
12 };

Use preventDefault() with the onSubmit handler to prevent the browser’s default action
of submitting the form.

As you can see, by using this.refs.name we gain a reference to our text field element and we can
access its value property. That value property contains the text that was entered into the field.

® 0@ Moo x Fulistack React

€ > C [)192.168.2.18:9966/#/3 w| =
x

% () | Elements Console Sources Network Timeline Profiles >

Sign Up Sheet o ¥ v Obresenvelog

David Guttman

<TOC>

Logging The Name

With just the two functions render () and onFormSubmit (), we should now be able to see the value
of the text field in our console when we click “Submit”. In the next step we’ll take that value and
display it on the page.

Using User Input

Now that we’ve shown that we can get user submitted names, we can begin to use this information
to change the app’s state and UlI.

The goal of this example is to show a list with all of the names that the user has entered. React makes
this easy. We will have an array in our state to hold the names, and in render() we will use that
array to populate a list.

WOW! eBook
www.wowebook.org

18
19
20
21
22
23
24
25
26
27
28
29
30
31

Forms 192

When our app loads, the array will be empty, and each time the user submits a new name, we will
add it to the array. To do this, we’ll make a few additions to our component.

First, we'll create a names array in our state. In React, when we’re using ES6 component classes we
can set the initial value of our state object by defining a property of state.

Here’s what that looks like:

forms/src/04-basic-input.js

module.exports = class extends React.Component {
static displayName = "0@4-basic-input";
state = { names: [] }; // <-- initial state

Q static belongs to the class

Notice in this component we have the line:
1 static displayName = "0@4-basic-input";

This means that this component class has a static property displayName. When a property
is static, that means it is a class property (instead of an instance property). In this case, we’re
going to use this displayName when we show the list of examples on the demo listing page.

Next, we’ll modify render () to show this list. Below our form element, we’ll create a new div. This
new container div will hold a heading, h3, and our names list, a ul parent with a 1i child for each
name. Here’s our updated render () method:

forms/src/04-basic-input.js

render() {
return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>
<input
placeholder="'Name'
ref="name'

/>

<input type='submit' />
</form>

WOW! eBook
www.wowebook.org

32
33
34
35
36
37
38
39
40

Forms 193

<div>
<h3>Names</h3>

{ this.state.names.map((nhame, i) => <1i key={i}>{name}</1i>) }

</div>
</div>

);

ES2015 gives us a compact way to insert 1i children. Since this.state.names is an array, we can
take advantage of its map() method to return a 1i child element for each name in the array. Also,
by using “arrow” syntax, for our iterator function in map(), the 1i element is returned without us
explicitly using return.

0 One other thing to note here is that we provide a key prop to the 1i element. React will
complain when we have children in an array or iterator (like we do here) and they don’t
have a key prop. React wants this information to keep track of the child and make sure that

it can be reused between render passes.

We won’t be removing or reordering the list here, so it is sufficient to identify each child
by its index. If we wanted to optimize rendering for a more complex use-case, we could
assign an immutable id to each name that was not tied to its value or order in the array.
This would allow React to reuse the element even if its position or value was changed.

See React’s documentation on Multiple Components and Dynamic Children®’ for more
information.

Now that render () is updated, the onFormSubmit () method needs to update the state with the new
name. To add a name to the names array in our state we might be tempted to try to do something
like this.state.names.push(name). However, React relies onthis.setState() to mutate our state
object, which will then trigger a new call to render ().

The way to do this properly is to:

1. create a new variable that copies our current names
2. add our new name to that array, and finally
3. use that variable in a call to this.setState().

We also want to clear the text field so that it’s ready to accept additional user input. It would not
be very user friendly to require the user to delete their input before adding a new name. Since we
already have access to the text field via refs, we can set its value to an empty string to clear it.

This is what onFormSubmit() should look like now:

57https://facebook.github.io/react/docs/multiple- components.html#dynamic-children

WOW! eBook
www.wowebook.org

https://facebook.github.io/react/docs/multiple-components.html#dynamic-children
https://facebook.github.io/react/docs/multiple-components.html#dynamic-children

10
11
12
13
14
15
16

Forms 194

forms/src/04-basic-input.js

(evt) => {
const name = this.refs.name.value;

onFormSubmit

const names = [...this.state.names, name];
this.setState({ names: names });
this.refs.name.value = "';
evt.preventDefault();

1

At this point, our sign-up app is functional. Here’s a rundown of the application flow:

User enters a name and clicks “Submit”.

onFormSubmit is called.

this.refs.name is used to access the value of the text field (a name).
The name is added to our names list in the state.

The text field is cleared so that it is ready for more input.

AL SIS A

render is called and displays the updated list of names.

So far so good! In the next sections we’ll improve it further.

Uncontrolled vs. Controlled Components

In the previous sections we took advantage of refs to access the user’s input. When we created our
render () method we added an input field with a ref attribute. We later used that attribute to get a
reference to the rendered input so that we could access and modify its value.

We covered using refs with forms because it is conceptually similar to how one might deal with
forms without React. However, by using refs this way, we opt out of a primary advantage of using
React.

In the previous example we access the DOM directly to retrieve the name from the text field, as well
as manipulate the DOM directly by resetting the field after a name has been submitted.

With React we shouldn’t have to worry about modifying the DOM to match application state. We
should concentrate only on altering state and rely on React’s ability to efficiently manipulate the
DOM to match. This provides us with the certainty that for any given value of state, we can predict
what render () will return and therefore know what our app will look like.

In the previous example, our text field is what we would call an “uncontrolled component”. This is
another way of saying that React does not “control” how it is rendered — specifically its value. In
other words, React is hands-off, and allows it to be freely influenced by user interaction. This means
that knowing the application state is not enough to predict what the page (and specifically the input

WOW! eBook
www.wowebook.org

24
25
26
27
28
29
30
31
32
33
34
35
36

Forms 195

field) looks like. Because the user could have typed (or not typed) input into the field, the only way
to know what the input field looks like is to access it via refs and check its value.

There is another way. By converting this field to a “controlled component”, we give React control
over it. It’s value will always be specified by render () and our application state. When we do this,
we can predict how our application will look by examining our state object.

By directly tying our view to our application state we get certain features for very little work. For
example, imagine a long form where the user must answer many questions by filling out lots of
input fields. If the user is halfway through and accidentally reloads the page that would ordinarily
clear out all the fields. If these were controlled components and our application state was persisted to
localStorage, we would be able to come back exactly where they left off. Later, we’ll get to another
important feature that controlled components pave the way for: validation.

Accessing User Input With state

Converting an uncontrolled input component to a controlled one requires three things. First, we
need a place in state to store its value. Second, we provide that location in state as its value prop.
Finally, we add an onChange handler that will update its value in state. The flow for a controlled
component looks like this:

. The user enters/changes the input.
. The onChange handler is called with the “change” event.
. Using event . target.value we update the input element’s value in state.

=W N

render () is called and the input is updated with the new value in state.

Here’s what our render () looks like after converting the input to a controlled component:

forms/src/05-state-input.js

render() {
return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>
<input
placeholder="'Name'
value={this.state.name}
onChange={this.onNameChange}

/>

<input type='submit' />

WOW! eBook
www.wowebook.org

37
38
39
40
41
42
43
44
45
46
47

10
11
12

Forms 196

</form>

<div>
<h3>Names</h3>

{ this.state.names.map((name, i) => <li key={i}>{name}</1i>) }

</div>
</div>
);

The only difference in our input is that we’ve removed the ref prop and replaced it with both a
value and an onChange prop.

Now that the input is “controlled”, its value will always be set equal to a property of our state. In
this case, that property is name, so the value of the input is this.state.name.

While not strictly necessary, it’s a good habit to provide sane defaults for any properties of state
that will be used in our component. Because we now use state.name for the value of our input,
we’ll want to choose what value it will have before the user has had a chance to provide one. In our
case, we want the field to be empty, so the default value will be an empty string, ' ':

forms/src/05-state-input.js

state = {
name: "',
names: [],

b

If we had just stopped there, the input would effectively be disabled. No matter what the user types
into it, its value wouldn’t change. In fact, if we left it like this, React would give us a warning in our
console.

To make our input operational, we’ll need to listen to its onChange events and use those to update
the state. To achieve this, we've created an event handler for onChange. This handler is responsible
for updating our state so that state.name will always be updated with what the user has typed
into the field. We’ve created the method onNameChange() for that purpose.

Here’s what onNameChange() looks like now:

WOW! eBook
www.wowebook.org

20
21
22

14
15
16
17
18

Forms 197

forms/src/05-state-input.js

onNameChange = (evt) => {
this.setState({ name: evt.target.value });

};

onNameChange() is a very simple function. Like we did in a previous section, we use the event passed
to the handler to reference the field and get its value. We then update state.name with that value.

Now the controlled component cycle is complete. The user interacts with the field. This triggers an
onChange event which calls our onNameChange () handler. Our onNameChange () handler updates the
state, and this in turn triggers render () to update the field with the new value.

Our app still needs one more change, however. When the user submits the form, onFormSubmit ()
is called, and we need that method to add the entered name (state.name) to the names list
(state.names). When we last saw onFormSubmit () it did this using this.refs. Since we’re no longer
using refs, we’ve updated it to the following:

forms/src/05-state-input.js

onFormSubmit = (evt) => {
const names = [...this.state.names, this.state.name];
this.setState({ names: names, name: '' });
evt.preventDefault();

};

Notice that to get the current entered name, we simply access this.state.name because it will
be continually updated by our onNameChange() handler. We then append that to our names list,
this.state.names and update the state. We also clear this.state.name so that the field is empty
and ready for a new name.

While our app didn’t gain any new features in this section, we’ve both paved the way for better
functionality (like validation and persistence) while also taking greater advantage of the React
paradigm.

Multiple Fields

Our sign-up sheet is looking good, but what would happen if we wanted to add more fields? If our
sign-up sheet is like most projects, it’s only a matter of time before we want to add to it. With forms,
we’ll often want to add inputs.

If we continue our current approach and create more controlled components, each with a corre-
sponding state property and an onChange handler, our component will become quite verbose. Having
a one-to-one-to-one relationship between our inputs, state, and handlers is not ideal.

WOW! eBook
www.wowebook.org

9
10
11
12
13
14
15

Forms 198

Let’s explore how we can modify our app to allow for additional inputs in a clean, maintainable
way. To illustrate this, let’s add email address to our sign-up sheet.

In the previous section our input field has a dedicated property on the root of our state object. If
we were to do that here, we would add another property, email. To avoid adding a property for each
input on state, let’s instead add a fields object to store the values for all of our fields in one place.
Here’s our new initial state:

forms/src/06-state-input-multi.js

state = {
fields: {

[}

name:

email: "'
},
people: [],

b

This fields object can store state for as many inputs as we’d like. Here we’ve specified that we
want to store fields for name and email. Now, we will find those values at state. fields.name and
state.fields.email instead of state.name and state.email.

00 /Moo x Fullstack React

€« € [1192.168.2.18:9966/#/6

Sign Up Sheet

david@tulstack.io

People

« Nate (nate@fullstack io)
 Ari (ari @fullstack.io)

<TOC>

Name and Email Fields

Of course, those values will need to be updated by an event handler. We could create an event
handler for each field we have in the form, but that would involve a lot of copy/paste and needlessly
bloat our component. Also it would make maintainability more difficult, as any change to a form
would need to be made in multiple places.

Instead of creating an onChange handler for each input, we can create a single method that accepts
change events from all of our inputs. The trick is to write this method in such a way that it updates

WOW! eBook
www.wowebook.org

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71

Forms 199

the correct property in state depending on the input field that triggered the event. To pull this
off, the method uses the event argument to determine which input was changed and update our
state. fields object accordingly. For example, if we have an input field and we were to give it a
name prop of "email", when that field triggers an event, we would be able to know that it was email
field, because event . target.name would be "email".

To see what this looks like in practice, here’s the updated render():

forms/src/06-state-input-multi.js

render() {
return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>
<input
placeholder="'Name'
name="'name'
value={this.state.fields.name}
onChange={this.onInputChange}
/>

<input
placeholder="Email"
name='email'
value={this.state.fields.email}
onChange={this.onInputChange}
/>

<input type='submit' />
</form>

<div>
<h3>People</h3>

{ this.state.people.map(({ name, email }, i) =>
<li key={i}>{name} ({ email })
)}

</div>
</div>

)

WOW! eBook
www.wowebook.org

32
33
34
35
36

Forms 200

There are a several things to note: first, we've added a second input to handle email addresses.

Second, we’'ve changed the value prop of the input fields so that they don’t access attributes on the
root of the state object. Instead they access the attributes of state. fields. Looking at the code
above, the input for name now has its value set to this.state. fields.name.

Third, both input fields have their onChange prop set to the same event handler, onInputChange().
We'll see below how we modified onNameChange() to be a more general event handler that can
accept events from any field, not just “name”.

Fourth, our input fields now have a name prop. This is related to the last point. To allow our general
event handler, onInputChange(), to be able to tell where the change event came from and where we
should store it in our state (e.g. if the change comes from the “email” input the new value should be
stored at state. fields.email), we provide that name prop so that it can be pulled off of the event
via its target attribute.

Finally, we modify how our people list is rendered. Because it’s no longer just a list of names, we
modify our 1i element to display both the previous name attribute as well as the new email data we
plan to have.

To make sure that all the data winds up in the right place, we’ll need to make sure that our event
handlers are properly modified. Here’s what the onInputChange() event handler (that gets called
when any field’s input changes) should look like:

forms/src/06-state-input-multi.js

onlnputChange = (evt) => {
const fields = this.state.fields;
fields[evt.target.name] = evt.target.value;
this.setState({ fields });

b

At its core this is similar to what we did before in onNameChange() in the last section. The two key
differences are that:

1. we are updating a value nested in the state (e.g. updating state.fields.email instead of
state.email), and
2. we're usingevt . target.name to inform which attribute of state. fields needs to be updated.

To properly update our state, we first grab a local reference to state.fields. Then, we use
information from the event (evt . target.name and evt. target.value) to update the local reference.
Lastly, we setState() with the modified local reference.

To get concrete, let’s go through what would happen if the user enters “someone@somewhere.com”
into the “email” field.

WOW! eBook
www.wowebook.org

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Forms 201

First,onInputChange() would be called with the evt object as an argument. evt . target . name would
be "email" (because "email" is set as its name prop in render()) and evt.target.value would be
"someone@somewhere.com" (because that’s what they entered into the field).

Next, onInputChange() would grab a local reference to state. fields. If this is the first time there
was input, state. fields and our local reference will be the default fields in state, { name: '',
email: '' }. Then, the local reference would be modified so that it becomes { name: '', email:
"someone@somewhere.com" }.

And finally, setState() is called with that change.

At this point, this.state. fields will always be in sync with any text in the input fields. However,
onFormSubmit() will need to be changed to get that information into the list of people who have
signed up. Here’s what the updated onFormSubmit () looks like:

forms/src/06-state-input-multi.js

onFormSubmit = (evt) => {

const people = |
...this.state.people,
this.state.fields,

1;

this.setState({
people,
fields: {

name : ,

email:

}

1)
evt.preventDefault();

b

In onFormSubmit() we first obtain a local reference to the list of people who have signed up,
this.state.people. Then, we add our this.state. fields object (an object representing the name
and email currently entered into the fields) onto the people list. Finally, we use this.setState()
to simultaneously update our list with the new information and clear all the fields by returning
state. fields to the empty defaults, { name: '', email: '' }.

The great thing about this is that we can easily add as many input fields as we want with very
minimal changes. In fact, only the render () method would need to change. For each new field, all
we would have to do is add another input field and change how the list is rendered to display the
new field.

For example, if we wanted to add a field for phone number, we would add a new input with appro-
priate name and value props: name would be phone and value would be this.state. fields.phone.
onChange, like the others, would be our existing onInputChange() handler.

WOW! eBook
www.wowebook.org

Forms 202

After doing that our state will automatically keep track of the phone field and will add it to the
state.people array and we could change how the view (e.g. the 1i) displays the information.

At this point we have a functional app that’s well situated to be extended and modified as
requirements evolve. However, it is missing one crucial aspect that almost all forms need: validation.

On Validation

Validation is so central to building forms that it’s rare to have a form without it. Validation can be
both on the level of the individual field and on the form as a whole.

When you validate on an individual field, you’re making sure that the user has entered data that
conforms to your application’s expectations and constraints as it relates to that piece of data.

For example, if we want a user to enter an email address, we expect their input to look like a valid
email address. If the input does not look like an email address, they might have made a mistake and
we're likely to run into trouble down the line (e.g. they won’t be able to activate their account). Other
common examples are making sure that a zip code has exactly five (or nine) numerical characters
and enforcing a password length of at least some minimum length.

Validation on the form as a whole is slightly different. Here is where you’ll make sure that all
required fields have been entered. This is also a good place to check for internal consistency. For
example you might have an order form where specific options are required for specific products.

Additionally, there are trade-offs for “how” and “when” we validate. On some fields we might want
to give validation feedback in real-time. For example, we might want to show password strength
(by looking at length and characters used) while the user is typing. However, if we want to validate
the availability of a username, we might want to wait until the user has finished typing before we
make a request to the server/database to find out.

We also have options for how we display validation errors. We might style the field differently (e.g.
a red outline), show text near the field (e.g. “Please enter a valid email.”), and/or disable the form’s
submit button to prevent the user from progressing with invalid information.

As for our app, we can begin with validation of the form as a whole and

1. make sure that we have both a name and email and
2. make sure that the email is a valid address.

Adding Validation to Our App
To add validation to our sign-up app we've made some changes. At a high level these changes are
1. add a place in state to store validation errors if they exist,

2. change our render () method will show validation error messages (if they exist) with red text
next to each field,

WOW! eBook
www.wowebook.org

10
11
12
13
14
15
16
17

o1
52
53
54
95
56
o7
o8
59
60
61
62
63
64
65
66
67
68

Forms 203

3. add a new validate() method that takes our fields object as an argument and returns a
fieldErrors object, and

4. onFormSubmit () will call the new validate() method to get the fieldErrors object, and if
there are errors it will add them to the state (so that they can be shown in render()) and
return early without adding the “person” to the list, state.people.

First, we've changed our initial state:

forms/src/07-basic-validation.js

state = {
fields: {

[}

name .

!

[}

email: ,
1
fieldErrors: {},
people: [],
3

The only change here is that we’ve created a default value for the fieldErrors property. This is
where we’ll store errors for each of the field if they exist.

Next, here’s what the updated render () method looks like:

forms/src/07-basic-validation.js

render() {
return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>

<input
placeholder="'Name'
name="'name'
value={this.state.fields.name}
onChange={this.onInputChange}
/>

{ this.state.fieldErrors.name }

WOW! eBook
www.wowebook.org

69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Forms 204

<input
placeholder="Email"
name='email'
value={this.state.fields.email}
onChange={this.onInputChange}
/>

{ this.state.fieldErrors.email }

<input type='submit' />
</form>

<div>
<h3>People</h3>

{ this.state.people.map(({ name, email }, i) =>
<li key={i}>{name} ({ email })</1li>
)}

</div>
</div>

);

The only differences here are two new span elements, one for each field. Each span will look in the
appropriate place in state. fieldErrors for an error message. If one is found it will be displayed in
red next to the field. Next up, we’ll see how those error messages can get into the state.

It is after the user submits the form that we will check the validity of their input. So the appropriate
place to begin validation is in the onFormSubmit() method. However, we’ll want to create a
standalone function for that method to call. We’ve created the pure function, validate() method
for this:

WOW! eBook
www.wowebook.org

43
44
45
46
47
48
49

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Forms 205

forms/src/07-basic-validation.js

validate = (person) => {
const errors = {};

if (!person.name) errors.name = 'Name Required';
if (!person.email) errors.email = 'Email Required';
if (person.email && !isEmail(person.email)) errors.email = 'Invalid Email';

return errors;

b

Our validate() method is pretty simple and has two goals. First, we want to make sure that both
name and email are present. By checking their truthiness we can know that they are defined and
not empty strings. Second, we want to know that the provided email address looks valid. This is
actually a bit of a thorny issue, so we rely on validator®® to let us know. If any of these conditions
are not met, we add a corresponding key to our errors object and set an error message as the value.

Afterwards, we've updated our onFormSubmit() to use this new validate() method and act on the
returned error object:

forms/src/07-basic-validation.js

onFormSubmit = (evt) => {

const people = [...this.state.people];

const person = this.state.fields;

const fieldErrors = this.validate(person);
this.setState({ fieldErrors });
evt.preventDefault();

if (Object.keys(fieldErrors).length) return;

this.setState({
people: people.concat(person),
fields: {

name: ,
email: '',
3,
1

b

To use the validate() method, we get the current values of our fields from this.state. fields and
provide it as the argument. validate() will either return an empty object if there are no issues, or

58http://npm.im/validator

WOW! eBook
www.wowebook.org

http://npm.im/validator
http://npm.im/validator

Forms 206

if there are issues, it will return an object with keys corresponding to each field name and values
corresponding to each error message. In either case, we want to update our state.fieldErrors
object so that render () can display or hide the messages as necessary.

If the validation errors object has any keys (Object.keys(fieldErrors).length > @) we know
there are issues. If there are no validation issues, the logic is the same as in previous sections -
we add the new information and clear the fields. However, if there are any errors, we return early.
This prevents the new information from being added to the list.

Sign Up Sheet

Mate
Email Required

Submit

People

Email Required

Sign Up Sheet

Mate
@£d3 Invalid Email

Submit

People

Email Invalid

At this point we’ve covered the fundamentals of creating a form with validation in React. In the
next section we’ll take things a bit further and show how we can validate in real-time at the field
level and we’ll create a Field component to improve the maintainability when an app has multiple
tields with different validation requirements.

Creating the Field Component

In the last section we added validation to our form. However, our form component is responsible
for running the validations on the form as a whole as well as the individual validation rules for

each field.

It would be ideal if each field was responsible for identifying validation errors on its own input,
and the parent form was only responsible for identifying issues at the form-level. This comes with
several advantages:

1. an email field created in this way could check the format of its input while the user types in
real-time.

WOW! eBook
www.wowebook.org

Forms 207

2. the field could incorporate its validation error message, freeing the parent form from having
to keep track of it.

To do this we’re first going to create a new separate Field component, and we will use it instead of
input elements in the form. This will let us combine a normal input with both validation logic and
error messaging.

Before we get into the creation of this new component, it will be useful to think of it at a high
level in terms of inputs and outputs. In other words, “what information do we need to provide this
component?”, and “what kinds of things would we expect in return?”

These inputs are going to become this component’s props and the output will be used by any event
handlers we pass into it.

Because our Field component will contain a child input, we’ll need to provide the same baseline
information so that it can be passed on. For example, if we want a Field component rendered with
a specific placeholder prop on its child input, we’ll have to provide it as a prop when we create
the Field component in our form’s render () method.

Two other props we’ll want to provide are name, and value. name will allow us to share an event
handler between components like we’ve done before, and value allows the parent form to pre-
populate Field as well as keep it updated.

Additionally, this new Field component is responsible for its own validation. Therefore we’ll need
to provide it rules specific to data it contains. For example, if this is the “email” Field, we’ll provide
it a function as its validate prop. Internally it will run this function to determine if its input is a
valid email address.

Lastly, we’ll provide an event handler for onChange events. The function we provide as the onChange
prop will be called every time the input in the Field changes, and it will be called with an event
argument that we get to define. This event argument should have three properties that we’re
interested in: (1) the name of the Field, (2) the current value of the input, and (3) the current
validation error (if present).

To quickly review, for the new Field component to do its job it will need the following:

+ placeholder: This will be passed straight through to the input child element. Similar to a
label, this tells the user what data to the Field expects.

+ name: We want this for the same reason we provide name to input elements: we’ll use this in
the event handler decide where to store input data and validation errors.

« value: This is how our parent form can initialize the Field with a value, or it can use this to
update the Field with a new value. This is similar to how the value prop is used on an input.

« validate: A function that returns validation errors (if any) when run.

+ onChange: An event handler to be run when the Field changes. This function will accept an
event object as an argument.

Following this, we’re able to set up propTypes on our new Field component:

WOW! eBook
www.wowebook.org

13
14
15
16

18
19
20

Forms 208

forms/src/08-field-component-field.js

static propTypes = {
placeholder: PropTypes.string,
name: PropTypes.string.isRequired,
value: PropTypes.string,
validate: PropTypes. func,
onChange: PropTypes. func.isRequired,

b

Next, we can think about the state that Field will need to keep track of. There are only two pieces
of data that Field will need, the current value and error. Like in previous sections where our form
component needed that data for its render () method, so too does our Field component. Here’s how
we’ll set up our initial state:

forms/src/08-field-component-field.js

state = {
value: this.props.value,
error: false,

b

One key difference is that our Field has a parent, and sometimes this parent will want to
update the value prop of our Field. To allow this, we’ll need to create a new lifecycle method,
componentWillReceiveProps() to accept the new value and update the state. Here’s what that
looks like:

forms/src/08-field-component-field.js

componentWillReceiveProps(update) ({
this.setState({ value: update.value });

The render () method of Field should be pretty simple. It’s just the input and the corresponding
span that will hold the error message:

WOW! eBook
www.wowebook.org

32
33
34
35
36
37
38
39
40
41
42
43

O© 00 9 O O b W N =

Forms 209

forms/src/08-field-component-field.js

render() {
return (
<div>
<input
placeholder={this.props.placeholder}
value={this.state.value}
onChange={this.onChange}
/>
{ this.state.error }
</div>
);

For the input element, the placeholder will be passed in from the parent and is available from
this.props.placeholder. As mentioned above, the value of the input and the error message in the
span will both be stored in the state. value comes from this.state.value and the error message
is at this.state.error. And lastly, we’ll set an onChange event handler that will be responsible for
accepting user input, validating, updating state, and calling the parent’s event handler as well. The
method that will take care of that is this.onChange:

onChange (evt) {
const name = this.props.name;
const value = evt.target.value;
const error = this.props.validate ? this.props.validate(value) : false;

this.setState({value, error});

this.props.onChange({name, value, error});

this.onChange is a pretty efficient function. It handles four different responsibilities in as many
lines. As in previous sections, the event object gives us the current text in the input via its
target.value property. Once we have that, we see if it passes validation. If Field was given a
function for its validate prop, we use it here. If one was not given, we don’t have to validate the
input and error sets to false. Once we have both the value and error we can update our state
so that they both appear in render (). However, it’s not just the Field component that needs to be
updated with this information.

When Field is used by a parent component, it passes in its own event handler in as the onChange
prop. We call this function so that we can pass information up the parent. Here in this.onChange(),

WOW! eBook
www.wowebook.org

60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4

Forms 210

it is available as this.props.onChange(), and we call it with three pieces of information: the name,
value, and error of the Field.

This might be a little confusing since “onChange” appears in multiple places. You can think of it as
carrying information in a chain of event handlers. The form contains the Field which contains an
input. Events occur on the input and the information passes first to the Field and finally to the
form.

At this point our Field component is ready to go, and can be used in place of the input and error
message combos in our app.

Using our new Field Component

Now that we’re ready to use our brand new Field component, we can make some changes to our
app. The most obvious change is that Field will take the place of both the input and error message
span elements in our render () method. This is great because Field can take care of validation at
the field level. But what about at the form level?

If you remember, we can employ two different levels of validation, one at the field level, and one at
the form level. Our new Field component will let us validate the format of each field in real-time.
What they won’t do, however, is validate the entire form to make sure we have all the data we need.
For that, we also want form-level validation.

Another nice feature we’ll add here is disabling/enabling the form submit button in real-time as the
form passes/fails validation. This is a nice bit of feedback that can improve a form’s UX and make
it feel more responsive.

Here’s how our update render () looks:

forms/src/08-field-component-form.js

render() {
return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>

<Field
placeholder="'Name'
name="name'
value={this.state.fields.name}
onChange={this.onInputChange}
validate={(val) => (val ? false : 'Name Required')}

/>

WOW! eBook
www.wowebook.org

75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100

Forms 211

<Field
placeholder="Email'
name="'email'
value={this.state.fields.email}
onChange={this.onInputChange}
validate={(val) => (isEmail(val) ? false : 'Invalid Email')}

/>

<input type='submit' disabled={this.validate()} />
</form>

<div>
<h3>People</h3>

{ this.state.people.map(({ name, email }, i) =>
<li key={i}>{name} ({email})
)}

</div>
</div>

);

You can see that Field is a drop-in replacement for input. All the props are the same as they were
on input, except we have one additional prop this time: validate.

Above in the Field component’s onChange () method, we make a call to the this.props.validate()
function. What we provide as the validate prop to Field, will be that function. Its goal is to take
user provided input as its argument and give a return value that corresponds to the validity of that
input. If the input is not valid, validate should return an error message. Otherwise, it should return
false.

For the “name” Field the validate prop is pretty simple. We're just checking for a truthy value.
As long as there are characters in the box, validation will pass, otherwise we return the 'Name
Required' error message.

For the “email” Field, we're going to use the isEmail() function that we imported from the
validator module. If that function returns true, we know it’s a valid-looking email and validation
passes. If not, we return the 'Invalid Email' message.

WOW! eBook
www.wowebook.org

38
39
40
41
42
43
44
45
46

Forms 212

Notice that we left their onChange prop alone, it is still set to this.onInputChange. However, since
Field uses the function differently than input, we must update onInputChange().

Before we move on, notice the only other change that we've made to render(): we conditionally
disable the submit button. To do this, we set the value of the disabled prop to the return value of
this.validate(). Because this.validate() will have a truthy return value if there are validation
errors, the button will be disabled if the form is not valid. We’ll show what the this.validate()
function looks like in a bit.

Sign Up Sheet

Mate
hello Invalid Email
Submit

People

Disabled Submit Button

As mentioned, both Field components have their onChange props set to this.onInputChange. We've
had to make some changes to match the difference between input and our Field. Here’s the updated
version:

forms/src/08-field-component-form.js

onInputChange = ({ name, value, error }) => {
const fields = this.state.fields;
const fieldErrors = this.state.fieldErrors;

fields[name] = value;
fieldErrors[name] = error;

this.setState({ fields, fieldErrors });
3

Previously, the job of onInputChange() was to update this.state. fields with the current user
input values. In other words, when an a text field was edited, onInputChange() would be called
with an event object. That event object had a target property that referenced the input element.
Using that reference, we could get the name and value of the input, and with those, we would update
state. fields.

This time around onInputChange() has the same responsibility, but it is our Field component
that calls this function, not input. In the previous section, we show the onChange() method of

WOW! eBook
www.wowebook.org

21
22
23
24
25
26
27
28
29
30
31
32
33
34

Forms 213

Field, and that’s where this.props.onChange() is called. When it is called, it’s called like this: °
this.props.onChange({name, value, error})".

This means that instead of using evt.target.name or evt.target.value as we did before, we get
name and value directly from the argument object. In addition, we also get the validation error for
each field. This is necessary — for our form component to prevent submission, it will need to know
about field-level validation errors.

Once we have the name, value, and error, we can update two objects in our state, thestate. fields

object we used before, and a new object, state. fieldErrors. Soon, we will show how state. fieldErrors

will be used to either prevent or allow the form submit depending on the presence or absence of
field-level validation errors.

With both render () and onInputChange() updated, we again have a nice feedback loop set up for
our Field components:

« First, the user types into the Field.

« Then, the event handler of the Field is called, onInputChange().

« Next, onInputChange() updates the state.

« After, the form is rendered again, and the Field passed an updated value prop.

o Then, componentWillReceiveProps() is called in Field with the new value, and its state is
updated.

« Finally,Field.render() is called again, and the text field shows the appropriate input and (if
applicable) validation error.

At this point, our form’s state and appearance are in sync. Next, we need to change how we handle
the submit event. Here’s the updated event handler for the form, onFormSubmit():

forms/src/08-field-component-form.js

onFormSubmit = (evt) => {
const people = this.state.people;
const person = this.state.fields;

evt.preventDefault();

if (this.validate()) return;

this.setState({
people: people.concat(person),
fields: {

[
7

name:
email: "'

3,

7

WOW! eBook
www.wowebook.org

35
36

O 00 9 O O b W N =~

NN
= o

Forms 214

});
};

The objective of onFormSubmit() hasn’t changed. It is still responsible for either adding a person to
the list, or preventing that behavior if there are validation issues. To check for validation errors, we
call this.validate(), and if there are any, we return early before adding the new person to the list.

Here’s what the current version of validate() looks like:

validate () {
const person = this.state.fields;
const fieldErrors = this.state.fieldErrors;
const errMessages = Object.keys(fieldErrors).filter((k) => fieldErrors[k])

if (!person.name) return true;
if (!person.email) return true;
if (errMessages.length) return true;

return false

}/

Put simply, validate() is checking to make sure the data is valid at the form level. For the form to
pass validation at this level it must satisfy two requirements: (1) neither field may be empty and (2)
there must not be any field-level validation errors.

To satisfy the first requirement, we access this.state. fields and ensure that bothstate. fields.name

and state. fields.email are truthy. These are kept up to date by onInputChange(), so it will always
match what is in the text fields. If either name or email are missing, we return true, signaling that
there is a validation error.

For the second requirement, we look at this.state. fieldErrors. onInputChange() will set any
field-level validation error messages on this object. We use Object.keys and Array. filter to get
an array of all present error messages. If there are any field-level validation issues, there will be
corresponding error messages in the array, and its length will be non-zero and truthy. If that’s the
case, we also return true to signal the existence of a validation error.

validate() is a simple method that can be called at any time to check if the data is valid at the form-
level. We use it both in onFormSubmit() to prevent adding invalid data to the list and in render()
to disable the submit button, providing nice feedback in the UL

And that’s it. We’re now using our custom Field component to do field-level validation on the fly,
and we also use form-level validation to toggle the submit button in real-time.

WOW! eBook
www.wowebook.org

Forms 215

Remote Data

Our form app is coming along. A user can sign up with their name and email, and we validate their
information before accepting the input. But now we’re going to kick it up a notch. We're going to
explore how to allow a user to select from hierarchical, asynchronous options.

The most common example is to allow the user to select a car by year, make, and model. First the
user selects a year, then the manufacturer, then the model. After choosing an option in one select,
the next one becomes available. There are two interesting facets to building a component like this.

First, not all combinations make sense. There’s no reason to allow your user to choose a 1965 Tesla
Model T. Each option list (beyond the first) depends on a previously selected value.

Second, we don’t want to send the entire database of valid choices to the browser. Instead, the
browser only knows the top level of choices (e.g. years in a specific range). When the user makes a
selection, we provide the selected value to the server and ask for next level (e.g. manufacturers
available for a given year). Because the next level of options come from the server, this is an
asynchronous.

Our app won’t be interested in the user’s car, but we will want to know what they’re signing up for.
Let’s make this an app for users to learn more JavaScript by choosing a NodeSchool®” workshop to
attend.

A NodeSchool workshop can be either “core” or “elective”. We can think of these as “departments” of
NodeSchool. Therefore, depending on which department the user is interested in, we can allow them
to choose a corresponding workshop. This is similar to the above example where a user chooses a
car’s year before its manufacturer.

If a user chooses the core department, we would enable them to choose from a list of core workshops
like 1earnyounode and stream-adventure. If instead, they choose the elective department, we would
allow them to pick workshops like Functional JavaScript or Shader School. Similar to the car
example, the course list is provided asynchronously and depends on which department was selected.

The simplest way to achieve this is with two select elements, one for choosing the department and
the other for choosing the course. However, we will hide the second select until: (1) the user has
selected a department, and (2) we’ve received the appropriate course list from the server.

Instead of building this functionality directly into our form. We'll create a custom component to
handle both the hierarchical and asynchronous nature of these fields. By using a custom component,
our form will barely have to change. Any logic specific to the workshop selection will be hidden in
the component.

Building the Custom Component

The purpose of this component is to allow the user to select a NodeSchool course. From now on
we’ll refer to it as our CourseSelect component.

http://nodeschool.io

WOW! eBook
www.wowebook.org

http://nodeschool.io/
http://nodeschool.io/

13
14
15
16
17

Forms 216

However, before starting on our new CourseSelect component, we should think about how we want
it to communicate with its form parent. This will determine the component’s props.

The most obvious prop is onChange(). The purpose of this component is to help the user make a
department/course selection and to make that data available to the form. Additionally, we’ll want to
be sure that onChange() to be called with the same arguments we’re expecting from the other field
components. That way we don’t have to create any special handling for this component.

We also want the form to be able to set this component’s state if need be. This is particularly useful
when we want to clear the selections after the user has submitted their info. For this we’ll accept
two props. One for department and one for course.

And that’s all we need. This component will accept three props. Here’s how they’ll look in our new
CourseSelect component:

forms/src/09-course-select.js

static propTypes = {
department: PropTypes.string,
course: PropTypes.string,
onChange: PropTypes. func.isRequired,

b

Next, we can think about the state that CourseSelect will need to keep track of. The two most
obvious pieces of state are department and course. Those will change when the user makes
selections, and when the form parent clears them on a submit.

CourseSelect will also need to keep track of available courses for a given department. When a user
selects a department, we’ll asynchronously fetch the corresponding course list. Once we have that
list we’ll want to store it in our state as courses.

Lastly, when dealing with asynchronous fetching, it’s nice to inform the user that data is loading
behind the scenes. We will also keep track of whether or not data is “loading” in our state as
_loading.

The underscore prefix of _loading is just a convention to highlight that it is purely
presentational. Presentational state is only used for UI effects. In this case it will be used
to hide/show the loading indicator image.

Here’s what our initial state looks like:

WOW! eBook
www.wowebook.org

19
20
21
22
23
24

26
27
28
29
30
31

103
104
105
106
107
108
109
110
111

Forms 217

forms/src/09-course-select.js

state = {
department: null,
course: null,
courses: [],
_loading: false,

};

As mentioned above, this component’s form parent will want to update the department and course
props. Our componentWillReceiveProps() method will use the update to appropriately modify the
state:

forms/src/09-course-select.js

componentWillReceiveProps(update) {
this.setState({
department: update.department,
course: update.course,

});

Now that we have a good idea of what our data looks like, we can get into how the component
is rendered. This component is a little more complicated than our previous examples, so we take
advantage of composition to keep things tidy. You will notice that our render () method is mainly
composed of two functions, renderDepartmentSelect() and renderCourseSelect():

forms/src/09-course-select.js

render() {
return (
<div>
{ this.renderDepartmentSelect() }

{ this.renderCourseSelect() }
</div>
)i

Aside from those two functions, render() doesn’t have much. But this nicely illustrates the two
“halves” of our component: the “department” half and the “course” half. Let’s first take a look at the
“department” half. Starting with renderDepartmentSelect():

WOW! eBook
www.wowebook.org

106

33
34
35
36
37
38
39
40
41

Forms 218

forms/src/09-course-select.js

{ this.renderDepartmentSelect() }

This method returns a select element that displays one of three options. The currently displayed
option depends on the value prop of the select. The option whose value matches the select will
be shown. The options are:

« “Which department?” (value: empty string)
« “NodeSchool: Core” (value: "core"
« “NodeSchool: Electives” (value: "electives")

The value of select is this.state.department || ''.In other words, if this.state.department
is falsy (it is by default), the value will be an empty string and will match “Which department?”.
Otherwise, if this.state.department is either "core" or "electives", it will display one of the
other options.

Because this.onSelectDepartment is set as the onChange prop of the select, when the user changes
the option, onSelectDepartment() is called with the change event. Here’s what that looks like:

forms/src/09-course-select.js

onSelectDepartment = (evt) => {
const department = evt.target.value;
const course = null;
this.setState({ department, course });
this.props.onChange({ name: 'department', value: department });
this.props.onChange({ name: 'course', value: course });

if (department) this.fetch(department);
}

When the department is changed, we want three things to happen. First, we want to update state to
match the selected department option. Second, we want to propagate the change via the onChange
handler provided in the props of CourseSelect. Third, we want to fetch the available courses for
the department.

When we update the state, we update it to the value of the event’s target, the select. The value of
the select is the value of the chosen option, either ' ', "core", or "electives". After the state is set
with a new value, render () and renderDepartmentSelect() are run and a new option is displayed.

Notice that we also reset the course. Each course is only valid for its department. If the department
changes, it will no longer be a valid choice. Therefore, we set it back to its initial value, null.

WOW! eBook
www.wowebook.org

49
50
o1
52
53
54

103
104
105
106
107
108
109
110
111

Forms 219

After updating state, we propagate the change to the component’s change handler, this . props.onChange.
Because we use the arguments as we have previously, this component can be used just like Field

and can be given the same handler function. The only trick is that we need to call it twice, once for

each input.

Finally, if a department was selected, we fetch the course list for it. Here’s the method it calls,
fetch():

forms/src/09-course-select.js

fetch = (department) => {
this.setState({ _loading: true, courses: [] });
apiClient(department).then((courses) => {
this.setState({ _loading: false, courses: courses });
1
1

The responsibility of this method is to take a department string, use it to asynchronously get the
corresponding course list, courses, and update the state with it. However, we also want to be sure
to affect the state for a better user experience.

We do this by updating the state before the apiClient call. We know that we’ll be waiting for the
response with the new course list, and in that time we should show the user a loading indicator.
To do that, we need our state to reflect our fetch status. Right before the apiClient call, we set
the state of _loading to true. Once the operation completes, we set _loading back to false and
update our course list.

Previously, we mentioned that this component had two “halves” illustrated by our render () method:

forms/src/09-course-select.js

render() {
return (
<div>
{ this.renderDepartmentSelect() }

{ this.renderCourseSelect() }
</div>

);

We've already covered the “department” half. Let’s now take a look at the “course” half starting with
renderCourseSelect():

WOW! eBook
www.wowebook.org

108

Forms 220

forms/src/09-course-select.js

{ this.renderCourseSelect() }

The first thing that you’ll notice is that renderCourseSelect() returns a different root element
depending on particular conditions.

If state._loading is true, renderCourseSelect() only returns a single img: a loading indica-
tor. Alternatively, if we’re not loading, but a department has not been selected (and therefore
state.department is falsy), an empty span is returned — effectively hiding this half of the
component.

However, if we’re not loading, and the user has selected a department, renderCourseSelect()
returns a select similar to renderDepartmentSelect().

The biggest difference between renderCourseSelect() and renderDepartmentSelect() is that
renderCourseSelect() dynamically populates the option children of the select.

The first option in this select is “Which course?” which has an empty string as its value. If the user
has not yet selected a course, this is what they should see (just like “Which department?” in the
other select). The options that follow the first come from the course list stored in state.courses.

To provide all the child option elements to the select at once, the select is given a single array
as its child. The first item in the array is an element for our “Which course?” option. Then, we use
the spread operator combined with map() so that from the second item on, the array contains the
course options from state.

Each item in the array is an option element. Like before, each element has text that it displays
(like “Which course?”) as well as a value prop. If the value of the select matches the value of the
option, that option will be displayed. By default, the value of the select will be an empty string,
so it will match the “Which course?” option. Once the user chooses a course and we are able to
update state.course, the corresponding course will be shown.

This is a dynamic collection, we must also provide a key prop to each option to avoid
warnings from React.

Lastly, we provide a change handler function, onSelectCourse() to the select prop onChange.
When the user chooses a course, that function will be called with a related event object. We will
then use information from that event to update the state and notify the parent.

Here’s onSelectCourse():

WOW! eBook
www.wowebook.org

43
44
45
46
4’7

Forms 221

forms/src/09-course-select.js

(evt) = {

const course = evt.target.value;

this.setState({ course });

this.props.onChange({ name: 'course', value: course });

b

onSelectCourse

Like we've done before, we get the value of the target element from the event. This value is the
value of whichever option the user picked in the courses select. Once we update state.course
with this value, the select will display the appropriate option.

After the state is updated, we call the change handler provided by the component’s parent. Same
as with the department selection, we provide this.props.onChange() an object argument with the
name/value structure the handler expects.

And that’s it for our CourseSelect component! As we’ll see in next part, integration with the form
requires very minimal changes.

Adding CourseSelect

Now that our new CourseSelect component is ready, we can add it to our form. Only three small
changes are necessary:

1. We add the CourseSelect component to render().
2. We update our “People” list in render () to show the new fields (department and course).

3. Since department and course are required fields, we modify our validate() method to ensure
their presence.

Because we were careful to call the change handler from within CourseSelect (this.props.onChange)
with a {name, value} object the way that onInputChange() expects, we're able to reuse that
handler. When onInputChange() is called by CourseSelect, it can appropriately update state with
the new department and course information — just like it does with calls from the Field components.

Here’s the updated render():

WOW! eBook
www.wowebook.org

67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107

Forms

forms/src/09-async-fetch.js

222

render() {
return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>

<Field
placeholder="'Name'
name="'name'
value={this.state.fields.name}
onChange={this.onInputChange}
validate={(val) => (val ? false : 'Name Required')}

/>

<Field
placeholder="Email'
name='email'
value={this.state.fields.email}
onChange={this.onInputChange}
validate={(val) => (isEmail(val) ? false : 'Invalid Email')}

/>

<CourseSelect
department={this.state.fields.department}
course={this.state.fields.course}
onChange={this.onInputChange}

/>

<input type='submit' disabled={this.validate()} />
</form>

<div>
<h3>People</h3>

WOW! eBook
www.wowebook.org

108
109
110
111
112
113
114
115

O O b W N =~

Forms 223

{ this.state.people.map(({ name, email, department, course }, i) =>
<li key={i}>{[name, email, department, course].join(' - ')}
)}

</div>
</div>
)

When adding CourseSelect we provide three props:

1. The current department from state (if one is present)
2. The current course from state (if one is present)
3. The onInputChange() handler (same function used by Field)

Here it is by itself:

<CourseSelect
department={this.state.fields.department}
course={this.state.fields.course}
onChange={this.onInputChange} />

The other change we make in render() is we add the new department and course fields to the
“People” list. Once a user submits sign-up information, they appear on this list. To show the
department and course information, we need to get that data from state and display it:

<h3>People</h3>

{ this.state.people.map(({name, email, department, course}, i) =>
<li key={i}>{[name, email, department, course].join(' - ')}</1i>
)}

This is as simple as pulling more properties from each item in the state.people array.

The only thing left to do is add these fields to our form-level validation. Our CourseSelect controls
the UI to ensure that we won’t get invalid data, so we don’t need to worry about field-level errors.
However, department and course are required fields, we should make sure that they are present
before allowing the user to submit. We do this by updating our validate() method to include them:

WOW! eBook
www.wowebook.org

53
o4
95
56
o7
58
59
60
61
62
63
64
65

Forms 224

forms/src/09-async-fetch.js

validate = () => {
const person = this.state.fields;
const fieldErrors = this.state.fieldErrors;
const errMessages = Object.keys(fieldErrors).filter((k) => fieldErrors[k]);

if (!person.name) return true;

if (!person.email) return true;

if (!person.course) return true;

if (!person.department) return true;
if (errMessages.length) return true;

return false;

b

Once validate() is updated, our app will keep the submit button disabled until we have both
department and course selected (in addition to our other validation requirements).

Thanks to the power of React and composition our form was able to take on complicated
functionality while keeping high maintainability.

Separation of View and State

Once we’ve received information from the user and we’ve decided that it’s valid, we then need to
convert the information to JavaScript objects. Depending on the form, this could involve casting
input values from strings to numbers, dates, or booleans, or it could be more involved if you need
to impose a hierarchy by corralling the values into arrays or nested objects.

After we have the information as JavaScript objects, we then have to decide how to use them. The
objects might be sent to a server as JSON to be stored in a database, encoded in a url to be used as
a search query, or maybe only used to configure how the UI looks.

The information in those objects will almost always affect the Ul and in many cases will also affect
your application’s behavior. It’s up to us to determine how to store that info in our app.

Async Persistence

At this point our app is pretty useful. You could imagine having the app open on a kiosk where people
can come up to it and sign up for things. However, there’s one big shortcoming: if the browser is
closed or reloaded, all data is lost.

WOW! eBook
www.wowebook.org

16
17
18
19
20
21
22
23
24
25
26
27

Forms 225

In most web apps, when a user inputs data, that data should be sent to a server for safe keeping in
a database. When the user returns to the app, the data can be fetched, and the app can pick back up
right where it left off.

In this example, we’ll cover three aspects of persistence: saving, loading, and handling errors.
While we won’t be sending the data to a remote server or storing it in a database (we’ll be using
localStorage instead), we’ll treat it as an asynchronous operation to illustrate how almost any
persistence strategy could be used.

To persist the sign up list (state . people), we'll only need to make a few changes to our parent form
component. At a high level they are:

1. Modify state to keep track of persistence status. Basically, we’ll want to know if the app is
currently loading, is currently saving, or encountered an error during either operation.

2. Make a request using our API client to get any previously persisted data and load it into our
state.

3. Update our onFormSubmit() event handler to trigger a save.

4. Change our render () method so that the “submit” button both reflects the current save status
and prevents the user from performing an unwanted action like a double-save.

First, we’ll want to modify our state keep track of our “loading” and “saving” status. This is useful
to both accurately communicate the status of persistence and to prevent unwanted user actions. For
example, if we know that the app is in the process of “saving”, we can disable the submit button.
Here’s the updated state method with the two new properties:

forms/src/10-remote-persist.js

state = {
fields: {

(]

name:
email: '"',
course: null,

department: null

1
fieldErrors: {},
people: [],

_loading: false,
_saveStatus: 'READY',
};

The two new properties are _loading and _saveStatus. As before, we use the underscore prefix
convention to signal that they are private to this component. There’s no reason for a parent or child
component to ever know their values.

WOW! eBook
www.wowebook.org

29
30
31
32
33
34

Forms 226

_saveStatus is initialized with the value "READY", but we will have four possible values: "READY",
"SAVING", "SUCCESS", and "ERROR". If the _saveStatus is either "SAVING" or "SUCCESS", we’ll want
to prevent the user from making an additional save.

Next, when the component has been successfully loaded and is about to be added to the DOM,
we’'ll want to request any previously saved data. To do this we’ll add the lifecycle method
componentWillMount() which is automatically called by React at the appropriate time. Here’s what
that looks like:

forms/src/10-remote-persist.js

componentWillMount() {
this.setState({ _loading: true });
apiClient.loadPeople().then((people) => {
this.setState({ _loading: false, people: people });

});

Before we start the fetch with apiClient, we set state._loading to true. We’ll use this in render ()
to show a loading indicator. Once the fetch returns, we update our state.people list with the
previously persisted list and set _saveStatus back to false.

Q apiClient is a simple object we created to simulate asynchronous loading and saving. If

you look at the code for this chapter, you’ll see that the “save” and “load” methods are

thin async wrappers around localStorage. In your own apps you could create our own
apiClient with similar methods to perform network requests.

Unfortunately, our app doesn’t yet have a way to persist data. At this point there won’t be any data
to load. However, we can fix that by updating onFormSubmit().

As in the previous sections, we’ll want our user to be able to fill out each field and hit “submit” to
add a person to the list. When they do that, onFormSubmit() is called. We’ll make a change so that
we not only perform the previous behavior (validation, updating state. people), but we also persist
that list using apiClient.savePeople():

WOW! eBook
www.wowebook.org

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
952
53
54
55
56
o7
o8
959
60
61
62
63

Forms 227

forms/src/10-remote-persist.js

onFormSubmit = (evt) => {

const person = this.state.fields;

evt.preventDefault();

if (this.validate()) return;

const people = [...this.state.people, person];

this.setState({ _saveStatus: 'SAVING' });
apiClient.savePeople(people)
.then(() => {
this.setState({
people: people,
fields: {

(]

name :
email: '',
course: null,
department: null
3
_saveStatus: 'SUCCESS',
1)
)
.catch((err) => {
console.error(err);
this.setState({ _saveStatus: 'ERROR' });

1),
b

In the previous sections, if the data passed validation, we would just update our state.people list
to include it. This time we’ll also add the person to the people list, but we only want to update our
state if apiClient can successfully persist. The order of operations looks like this:

1. Create a new array, people with both the contents of state.people and the new person
object.

2. Update state._saveStatus to "SAVING"

3. Use apiClient to begin persisting the new people array from #1.

4. If apiClient is successful, update state with our new people array, an empty fields object,
and _saveStatus: "SUCCESS".If apiClient is not successful, leave everything as is, but set
state._saveStatus to "ERROR".

WOW! eBook
www.wowebook.org

89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109

Forms 228

Put simply, we set the _saveStatus to "SAVING" while the apiClient request is “in-flight”. If the
request is successful, we set the _saveStatus to "SUCCESS" and perform the same actions as before.
If not, the only update is to set _saveStatus to "ERROR". This way, our local state does not get out of
sync with our persisted copy. Also, since we don’t clear the fields, we give the user an opportunity
to try again without having to re-input their information.

Q For this example we are being conservative with our Ul updates. We only add the new

person to the list ifapiClient is successful. This is in contrast to an optimistic update, where

we would add the person to the list locally first, and later make adjustments if there was a

failure. To do an optimistic update we could keep track of which person objects were added

before which apiClient calls. Then if an apiClient call fails, we could selectively remove

the particular person object associated with that call. We would also want to display a
message to the user explaining the issue.

Our last change is to modify our render () method so that the UI accurately reflects our status with
respect to loading and saving. As mentioned, we’ll want the user to know if we’re in the middle of
a load or a save, or if there was a problem saving. We can also control the UI to prevent them from
performing unwanted actions such as a double save.

Here’s the updated render () method:

forms/src/10-remote-persist.js

render() {
if (this.state._loading) {
return ;

return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>

<Field
placeholder="'Name'
name="'name'
value={this.state.fields.name}
onChange={this.onInputChange}
validate={(val) => (val ? false : 'Name Required')}
/>

WOW! eBook
www.wowebook.org

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

Forms

<Field
placeholder="Email"
name='email'
value={this.state.fields.email}
onChange={this.onInputChange}

validate={(val) => (isEmail(val) ? false : 'Invalid Email')}

/>

<CourseSelect
department={this.state.fields.department}
course={this.state.fields.course}
onChange={this.onInputChange}

/>

{{
SAVING: <input value='Saving...

ERROR: <input
value='Save Failed - Retry?'
type="submit'
disabled={this.validate()}
/>,
READY: <input
value="'Submit'
type="submit'
disabled={this.validate()}
/>,
}[this.state._saveStatus]}

</form>
<div>

<h3>People</h3>

{ this.state.people.map(({ name, email, department, course }, i) =>
<li key={i}>{[name, email, department, course].join("'

)}

WOW! eBook
www.wowebook.org

type='submit' disabled />,
SUCCESS: <input value='Saved!' type='submit' disabled />,

229

152
153
154
155

<N O O & W N =

Forms 230

</div>
</div>

First, we want to show the user a loading indicator while we are loading previously persisted data.
Like the previous section, this is done on the first line of render() with a conditional and an early
return. While we are loading (state. _loading is truthy), we won’t render the form, only the loading
indicator:

if (this.state._loading) return

Next, we want the submit button to communicate the current save status. If no save request is in-
flight, we want the button to be enabled if the field data is valid. If we are in the process of saving,
we want the button to read “Saving..” to be disabled. The user will know that the app is busy, and
since the button is disabled, they won’t be able to submit duplicate save requests. If the save request
resulted in an error, we use the button text to communicate that and indicate that they can try
again. The button will be enabled if the input data is still valid. Finally, if the save request completed
successfully, we use the button text to communicate that. Here’s how we render the button:

{{

SAVING: <input value='Saving...' type='submit' disabled />,

SUCCESS: <input value='Saved!' type='submit' disabled/>,

ERROR: <input value='Save Failed - Retry?' type='submit' disabled={this.valida\
te()}/>,

READY: <input value='Submit' type='submit' disabled={this.validate()}/>
}[this.state._saveStatus]}

What we have here are four different buttons — one for each possible state._saveStatus. Each
button is the value of an object keyed by its corresponding status. By accessing the key of the current
save status, this expression will evaluate to the appropriate button.

The last thing that we have to do is related to the "SUCCESS" case. We want to show the user that
the addition was a success, and we do that by changing the text of the button. However, “Saved!” is
not a call to action. If the user enters another person’s information and wants to add it to the list,
our button would still say “Saved!”. It should say “Submit” to more accurately reflect its purpose.

The easy fix for this is to change our state._saveStatus back to "READY" as soon as they start
entering information again. To do this, we update our onInputChange() handler:

WOW! eBook
www.wowebook.org

65
66
67
68
69
70
71
T2
73

Forms 231

forms/src/10-remote-persist.js

onInputChange = ({ name, value, error }) => {
const fields = this.state.fields;
const fieldErrors = this.state.fieldErrors;

fields[name] = value;
fieldErrors[name] = error;

this.setState({ fields, fieldErrors, _saveStatus: 'READY' });
1

Now instead of just updating state. fields and state. fieldErrors, we also set state._saveSta-
tus to 'READY'. This way after the user acknowledges their previous submit was a success and starts
to interact with the app again, the button reverts to its “ready” state and invites the user to submit
again.

At this point our sign-up app is a nice illustration of the features and issues that you’ll want to cover
in your own forms using React.

Redux

In this section we’ll show how you we can modify the form app we’ve built up so that it can work
within a larger app using Redux.

Chronologically we haven’t talked about Redux in this book. The next two chapters are
all about Redux in depth. If you’re unfamiliar with Redux, hop over to those chapters and
come back here when you need to deal with forms in Redux.

Our form, which used to be our entire app, will now become a component. In addition, we’ll adapt
it to fit within the Redux paradigm. At a high level, this involves moving state and functionality
from our form component to Redux reducers and actions. For example, we will no longer call API
functions from within the form component — we use Redux async actions for that instead. Similarly,
data that used to be held as state in our form will become read-only props — it will now be held in
the Redux store.

When building with Redux, it is very helpful to start by thinking about the “shape” your state will
take. In our case, we have a pretty good idea already since our functionality has been built. When
using Redux, you’ll want to centralize state as much as possible — this will be the store, accessible
by all components in the app. Here’s what our initialState should look like:

WOW! eBook
www.wowebook.org

© 0o N O

10
11

13
14
15
16

© 00 N O U b W N =

Y
(]

Forms 232

forms/src/11-redux-reducer.js

const initialState = {
people: [],
isLoading: false,
saveStatus: 'READY',
person: {

(]

name: ,
email: '',
course: null,

department: null

}/
};

No surprises here. Our app cares about the list of people who have signed up, the current person
being typed in the form, whether or not we’re loading, and the status of our save attempt.

Now that we know the shape of our state, we can think of different actions that would mutate it. For
example, since we’re keeping track of the list of people, we can imagine one action to retrieve the list
from the server when the app starts. This action would affect multiple properties of our state. When
the request to the server returns with the list, we’ll want to update our state with it, and we’ll also
want to update isLoading. In fact, we’ll want to set isLoading to true when we start the request,
and we’ll want to set it to false when the request finishes. With Redux, it’s important to realize
that we can often split one objective into multiple actions.

For our Redux app, we’ll have five action types. The first two are related to the objective just
mentioned, they are FETCH_PEOPLE _REQUEST and FETCH_PEOPLE_SUCCESS. Here are those action types
with their corresponding action creator functions:

forms/src/11-redux-actions.js

/* eslint-disable no-use-before-define */
export const FETCH_PEOPLE_REQUEST = 'FETCH_PEOPLE_REQUEST';
function fetchPeopleRequest () {

return {type: FETCH_PEOPLE_REQUEST};

export const FETCH_PEOPLE_SUCCESS = 'FETCH_PEOPLE_SUCCESS';
function fetchPeopleSuccess (people) {
return {type: FETCH_PEOPLE_SUCCESS, people};

When we start the request we don’t need to provide any information beyond the action type to the
reducer. The reducer will know that the request started just from the type and can update isLoading

WOW! eBook
www.wowebook.org

27
28
29
30
31
32
33
34

11
12
13
14
15
16
17
18
19

Forms 233

to true. When the request is successful, the reducer will know to set it to false, but we’ll need to
provide the people list for that update. This is why people is on the second action, FETCH_PEOPLE _-
SUCCESS.

Qt We skip FETCH_PEOPLE_FAILURE only for expediency, but you’ll want to handle fetch
failures in your own app. See below for how to do that for saving the list.

We can now imagine dispatching these actions and having our state updated appropriately. To get
the people list from the server we would dispatch the FETCH_PEOPLE_REQUEST action, use our API
client to get the list, and finally dispatch the FETCH_PEOPLE_SUCCESS action (with the people list on
it). With Redux, we’ll use an asynchronous action creator, fetchPeople() to perform those actions:

forms/src/11-redux-actions.js

export function fetchPeople () {
return function (dispatch) {
dispatch(fetchPeopleRequest())
apiClient.loadPeople().then((people) => {
dispatch(fetchPeopleSuccess(people))

D)

Instead of returning an action object, asynchronous action creators return functions that dispatch
actions.

Asynchronous action creators are not supported by default with Redux. To be able to

dispatch functions instead of action objects, we’ll need to use the redux-thunk middleware
when we create our store.

We’ll also want to create actions for saving our list to the server. Here’s what they look like:

forms/src/11-redux-actions.js

export const SAVE_PEOPLE_REQUEST = 'SAVE_PEOPLE_REQUEST';
function savePeopleRequest () {
return {type: SAVE_PEOPLE_REQUEST};

export const SAVE_PEOPLE_FAILURE = 'SAVE_PEOPLE_FAILURE";
function savePeopleFailure (error) {
return {type: SAVE_PEOPLE_FAILURE, error};

WOW! eBook
www.wowebook.org

20
21
22
23

36
37
38
39
40
41
42
43

45
46
47
48
49
50
o1
952
53
54
55
56
o

Forms 234

export const SAVE_PEOPLE_SUCCESS = 'SAVE_PEOPLE_SUCCESS';
function savePeopleSuccess (people) {
return {type: SAVE_PEOPLE_SUCCESS, people};

Just like the fetch we have SAVE_PEOPLE_REQUEST and SAVE_PEOPLE_SUCCESS, but we also have
SAVE_PEOPLE_FAILURE. The SAVE_PEOPLE_REQUEST action happens when we start the request, and
like before we don’t need to provide any data besides the action type. The reducer will see this
type and know to update saveStatus to 'SAVING'. Once the request resolves, we can trigger either
SAVE_PEOPLE_SUCCESS or SAVE_PEOPLE_FAILURE depending on the outcome. We will want to pass
additional data with these though — people on a successful save and error on a failure.

Here’s how we use those together within an asynchronous action creator, savePeople():

forms/src/11-redux-actions.js

export function savePeople (people) {
return function (dispatch) {
dispatch(savePeopleRequest())
apiClient.savePeople(people)
.then((resp) => { dispatch(savePeopleSuccess(people)) })
.catch((err) => { dispatch(savePeopleFailure(err)) })

Notice that this action creator delegates the ‘work’ of making the API request to our API client. We
can define our API client like this:

forms/src/11-redux-actions.js

const apiClient = {
loadPeople: function () {
return {
then: function (cb) {
setTimeout(() => {
cb(JSON. parse(localStorage.people || "[]'))
}, 1000);

}
}/

savePeople: function (people) {
const success = !!(this.count++ % 2);

WOW! eBook
www.wowebook.org

o8
59
60
61
62
63
64
65
66
67
68
69
70

o I O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Forms 235

return new Promise(function (resolve, reject) {
setTimeout(() => {
if (!success) return reject({success});

localStorage.people = JSON.stringify(people);
resolve({success});
}, 1000);
)
}

count: 1

Now that we’'ve defined all of our action creators, we have everything we need for our reducer. By
using the two asynchronous action creators above, the reducer can make all the updates to our state
that our app will need. Here’s what our reducer looks like:

forms/src/11-redux-reducer.js

const initialState = {
people: [],
islLoading: false,
saveStatus: 'READY',
person: {

(]
!

name :

[}
!

email:
course: null,
department: null
}
3

export function reducer (state = initialState, action) {
switch (action.type) {
case FETCH_PEOPLE_REQUEST:
return Object.assign({}, state, {
islLoading: true
1
case FETCH_PEOPLE_SUCCESS:
return Object.assign({}, state, {
people: action.people,
isLoading: false

});

WOW! eBook
www.wowebook.org

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Forms 236

case SAVE_PEOPLE_REQUEST:
return Object.assign({}, state, {
saveStatus: 'SAVING'
1)
case SAVE_PEOPLE_FAILURE:
return Object.assign({}, state, {
saveStatus: 'ERROR'
});
case SAVE_PEOPLE_SUCCESS:
return Object.assign({}, state, {
people: action.people,
person: {

name : ,
email: '"',
course: null,
department: null
},
saveStatus: 'SUCCESS'
1)
default:

return state;

By just looking at the actions and the reducer you should be able to see all the ways our state can be
updated. This is one of the great things about Redux. Because everything is so explicit, state becomes
very easy to reason about and test.

Now that we’ve established the shape of our state and how it can change, we’ll create a store. Then
we’ll want to make some changes so that our form can connect to it properly.

Form Component

Now that we’ve created the foundation of our app’s data architecture with Redux, we can adapt our
form component to fit in. In broad strokes, we need to remove any interaction with the API client
(our asynchronous action creators handle this now) and shift dependence from component-level
state to props (Redux state will be passed in as props).

The first thing we need to do is set up propTypes that will align with the data we expect to get from
Redux:

WOW! eBook
www.wowebook.org

11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27

29
30
31
32
33

Forms 237

forms/src/11-redux-form.js

static propTypes = {
people: PropTypes.array.isRequired,
isloading: PropTypes.bool.isRequired,
saveStatus: PropTypes.string.isRequired,
fields: PropTypes.object,
onSubmit: PropTypes. func.isRequired,

b

We will require one additional prop that is not related to data in our Redux store, onSubmit().
When the user submits a new person, instead of using the API client, our form component will call
this function instead. Later we’ll show how we hook this up to our asynchronous action creator
savePeople().

Next, we limit the amount of data that we’ll keep in state. We keep fields and fieldErrors, but
we remove people, _loading, and _saveStatus — those will come in on props. Here’s the updated
state

forms/src/11-redux-form.js

state = {
fields: this.props.fields || {

[}

name:
email: '',
course: null,
department: null

}I

fieldErrors: {},

};

state. fields will be initialized to props. fields (or the default fields, if not provided). Additionally,
if a new fields object comes in on props, we will update our state:

forms/src/11-redux-form.js

componentWillReceiveProps(update) ({
console.log('this.props.fields', this.props.fields, update);

this.setState({ fields: update.fields });

WOW! eBook
www.wowebook.org

35
36
37
38
39
40
41
42
43

69
70
71
T2
73
T4
)
6
T
78
79
80
81
82
83
84
85
86

Forms 238

Now that our props and state are in order, we can remove any usage of apiClient since that will
be handled by our asynchronous action creators. The two places that we used the API client were
in componentWillMount() and onFormSubmit().

Since the only purpose of componentWillMount() was to use the API client, we have removed it
entirely. In onFormSubmit(), we remove the block related to the API and replace it with a call to
props.onSubmit():

forms/src/11-redux-form.js

onFormSubmit = (evt) => {
const person = this.state.fields;

evt.preventDefault();

if (this.validate()) return;

this.props.onSubmit([...this.props.people, person]);
¥

With all of that out of the way, we can make a few minor updates to render(). In fact, the only
modifications we have to make to render () are to replace references to state._loading, state._-
saveStatus, and state.people with their counterparts on props.

forms/src/11-redux-form.js

render() {
if (this.props.isLoading) {
return ;

const dirty = Object.keys(this.state.fields).length;
let status = this.props.saveStatus;
if (status === 'SUCCESS' && dirty) status = 'READY';

return (
<div>
<h1>Sign Up Sheet</h1>

<form onSubmit={this.onFormSubmit}>
<Field

placeholder="Name'

name="'name'

WOW! eBook
www.wowebook.org

87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

Forms

value={this.state.fields.name}
onChange={this.onInputChange}
validate={(val) => (val ? false : 'Name Required')}

/>

<Field
placeholder="Email'
name='email'
value={this.state.fields.email}
onChange={this.onInputChange}
validate={(val) => (isEmail(val) ? false : 'Invalid Email')}
/>

<CourseSelect
department={this.state.fields.department}
course={this.state.fields.course}
onChange={this.onInputChange}

/>

{{
SAVING: <input value='Saving...' type='submit' disabled />,
SUCCESS: <input value='Saved!' type='submit' disabled />,
ERROR: <input
value='Save Failed - Retry?'
type="submit'
disabled={this.validate()}
/>,
READY: <input
value="'Submit'
type="submit'
disabled={this.validate()}
/>,
} [status]}

</form>

WOW! eBook
www.wowebook.org

239

129
130
131
132
133
134
135
136
137
138
139

10

Forms 240

<div>
<h3>People</h3>

{this.props.people.map(({ name, email, department, course }, i) =>
<li key={i}>{[name, email, department, course].join(' - ')}
)}

</div>
</div>
)i

Q You may notice that we handle saveStatus a bit differently. In the previous iteration, our
form component was able to control state._saveStatus and could set it to 'READY' on
a field change. In this version, we get that information from props.saveStatus and it is
read-only. The solution is to check if state. fields has any keys — if it does, we know the

user has entered data and we can set the button back to the “ready” state.

Connect the Store

At this point we have our actions, our reducer, and our streamlined form component. All that’s left
is to connect them together.

First, we will use Redux’s createStore() method to create a store from our reducer. Because we
want to be able to dispatch asynchronous actions, we will also use thunkMiddleware from the redux-
thunk module. To use middleware in our store, we’ll use Redux’s applyMiddleware() method.
Here’s what that looks like:

forms/src/11-redux-app.js

const store = createStore(reducer, applyMiddleware(thunkMiddleware));

Next, we will use the connect () method from react-redux to optimize our form component for use
with Redux. We do this by providing it two methods: mapStateToProps and mapDispatchToProps.

When using Redux, we want our components to subscribe to the store. However, with react-
redux it will do that for us. All we need to do is provide a mapStateToProps function that defines
the mapping between data in the store and props for the component. In our app, they line up neatly:

WOW! eBook
www.wowebook.org

30
31
32
33
34
35
36
37

39
40
41
42
43
44
45

12

Forms 241

forms/src/11-redux-app.js

function mapStateToProps(state) {
return {
islLoading: state.islLoading,
fields: state.person,
people: state.people,
saveStatus: state.saveStatus,

b

From within our form component, we call props.onSubmit () when the user submits and validation
passes. We want this behavior to dispatch our savePeople() asynchronous action creator. To do
this, we provide mapDispatchToProps() to define the connection between the props.onSubmit()
function and the dispatch of our action creator:

forms/src/11-redux-app.js

function mapDispatchToProps(dispatch) {
return
onSubmit: (people) => {
dispatch(savePeople(people));
},
}

With both of those functions created, we use the connect() method from react-redux to give us
an optimized ReduxForm component:

forms/src/11-redux-app.js

const ReduxForm = connect(mapStateToProps, mapDispatchToProps)(Form);

The final step is to incorporate the store and the ReduxForm into our app. At this point our app is a
very simple component with only two methods, componentWillMount() and render().

In componentWillMount() we dispatch our fetchPeople() asynchronous action to load the people
list from the server:

WOW! eBook
www.wowebook.org

17
18
19

21
22
23
24
25
26
27

Forms 242

forms/src/11-redux-app.js

componentWillMount() {
store.dispatch(fetchPeople());
}

In render() we use a helpful component Provider that we get from react-redux. Provider will
make the store available to all of its child components. We simply place ReduxForm as a child of
Provider and our app is good to go:

forms/src/11-redux-app.js

render() {
return (
<Provider store={store}>
<ReduxForm />

</Provider>

);

And that’s it! Our form now fits neatly inside a Redux-based data architecture.

After reading this chapter, you should have a good handle on the fundamentals of forms in React.
That said, if you’d like to outsource some portion of your form handling to an external module, there
are several available. Read on for a list of some of the more popular options.

Form Modules

formsy-react

https://github.com/christianalfoni/formsy-react®

formsy-react tries to strike a balance between flexibility and reusability. This is a worthwhile goal
as the author of this module acknowledges that forms, inputs, and validation are handled quite
differently across projects.

The general pattern is that you use the Formsy . Form component as your form element, and provide
your own input components as children (using the Formsy.Mixin). The Formsy.Form component has
handlers like onvalidSubmit() and onInvalid() that you can use to alter state on the form’s parent,
and the mixin provides some validation and other general purpose helpers.

react-input-enhancements

http://alexkuz.github.io/react-input-enhancements®'

0 https://github.com/christianalfoni/formsy-react
61http:/ /alexkuz.github.io/react-input-enhancements

WOW! eBook
www.wowebook.org

https://github.com/christianalfoni/formsy-react
http://alexkuz.github.io/react-input-enhancements
https://github.com/christianalfoni/formsy-react
http://alexkuz.github.io/react-input-enhancements

Forms 243

react-input-enhancements is a collection of five rich components that you can use to augment
forms. This module has a nice demo to showcase how you can use the Autosize, Autocomplete,
Dropdown, Mask, and DatePicker components. The author does make a note that they aren’t quite
ready for production and are more conceptual. That said, they might be useful if you’re looking for
a drop-in datepicker or autocomplete element.

tcomb-form

http://gcanti.github.io/tcomb-form®

tcomb- form is meant to be used with tcomb models (https://github.com/gcanti/tcomb®) which center
around Domain Driven Design. The idea is that once you create a model, the corresponding form
can be automatically generated. In theory, the benefits are that you don’t have to write as much
markup, you get usability and accessibility for free (e.g. automatic labels and inline validation), and
your forms will automatically stay in sync with changes to your model. If tcomb models seem to be
a good fit for your app, this tcomb- form is worth considering.

winterfell

https://github.com/andrewhathaway/winterfell**

If the idea of defining your forms and fields entirely with JSON, winter fell might be for you. With
winterfell, you sketch out your entire form in a JSON schema. This schema is a large object where
you can define things like CSS class names, section headers, labels, validation requirements, field
types, and conditional branching. winterfell is organized into “form panels”, “question panels”,
and “question sets”. Each panel has an ID and that ID is used to assign sets to it. One benefit of
this approach is that if you find yourself creating/modifying lots of forms, you could create a UI to
create/modify these schema objects and persist them to a database.

react-redux-form

https://github.com/davidkpiano/react-redux-form®

If Redux is more your style react-redux- form is a “collection of action creators and reducer creators”
to simplify “building complex and custom forms with React and Redux”. In practice, this module
provides a mode1Reducer and a formReducer helper to use when creating your Redux store. Then
within your form you can use the provided Form, Field, and Error components to help connect
your label and input elements to the appropriate reducers, set validation requirements, and display
appropriate errors. In short, this is a nice thin wrapper to help you build forms using Redux.

62http://gcanti.github‘io/tcomb—form

63https:// github.com/gcanti/tcomb

64https:/ /github.com/andrewhathaway/winterfell
65https:/ /github.com/davidkpiano/react-redux-form

WOW! eBook
www.wowebook.org

http://gcanti.github.io/tcomb-form
https://github.com/gcanti/tcomb
https://github.com/andrewhathaway/winterfell
https://github.com/davidkpiano/react-redux-form
http://gcanti.github.io/tcomb-form
https://github.com/gcanti/tcomb
https://github.com/andrewhathaway/winterfell
https://github.com/davidkpiano/react-redux-form

Using Webpack with Create React App

In most of our earlier projects, we loaded React with script tags in our apps’ index.html files:

<script src='vendor/react. js'></script>
<script src='vendor/react-dom. js'></script>

Because we've been using ES6, we've also been loading the Babel library with script tags:
<script src='vendor/babel-standalone. js'></script>

With this setup we’ve been able to load in any ES6 JavaScript file we wanted in index.html,
specifying that its type is text/babel:

<script type='text/babel' src='./client.js'></script>

Babel would handle the loading of the file, transpiling our ES6 JavaScript to browser-ready ES5
JavaScript.

0 If you need a refresher on our setup strategy so far, we detail it in Chapter 1.

We began with this setup strategy because it’s the simplest. You can begin writing React components
in ES6 with little setup.

However, this approach has limitations. For our purposes, the most pressing limitation is the lack of
support for JavaScript modules.

JavaScript modules

We saw modules in earlier apps. For instance, the time tracking app had a Client module. That
module’s file defined a few functions, like getTimers(). It then set window.client to an object that
“exposed” each function as a property. That object looked like this:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 245

// “window.client™ was set to this object
// Each property is a function
{

getTimers,

createTimer,

updateTimer,

startTimer,

stopTimer,

deleteTimer,

b

This Client module only exposed these functions. These are the Client module’s public methods.
The file public/js/client. js also contained other function definitions, like checkStatus(), which
verifies that the server returned a 2xx response code. While each of the public methods uses
checkStatus() internally, checkStatus() is kept private. It is only accessible from within the
module.

That’s the idea behind a module in software. You have some self-contained component of a software
system that is responsible for some discrete functionality. The module exposes a limited interface to
the rest of the system, ideally the minimum viable interface the rest of the system needs to effectively
use the module.

In React, we can think of each of our individual components as their own modules. Each
component is responsible for some discrete part of our interface. React components might contain
their own state or perform complex operations, but the interface for all of them is the same: they
accept inputs (props) and output their DOM representation (render). Users of a React component
need not know any of the internal details.

In order for our React components to be truly modular, we’d ideally have them live in their own
files. In the upper scope of that file, the component might define a styles object or helper functions
that only the component uses. But we want our component-module to only expose the component
itself.

Until ES6, modules were not natively supported in JavaScript. Developers would use a variety of
different techniques to make modular JavaScript. Some solutions only work in the browser, relying
on the browser environment (like the presence of window). Others only work in Node.js.

Browsers don’t yet support ES6 modules. But ES6 modules are the future. The syntax is intuitive, we
avoid bizarre tactics employed in ES5, and they work both in and outside of the browser. Because
of this, the React community has quickly adopted ES6 modules.

0 If youlook at time_tracking_app/public/js/client. js, you’ll get an idea of how strange
the techniques for creating ES5 JavaScript modules are.

However, due to the complexity of module systems, we can’t simply use ES6’s import/export syntax
and expect it to “just work” in the browser, even with Babel. More tooling is needed.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 246

For this reason and more, the JavaScript community has widely adopted JavaScript bundlers. As
we’ll see, JavaScript bundlers allow us to write modular ES6 JavaScript that works seamlessly in
the browser. But that’s not all. Bundlers pack numerous advantages. Bundlers provide a strategy
for both organizing and distributing web apps. They have powerful toolchains for both iterating in
development and producing production-optimized builds.

While there are several options for JavaScript bundlers, the React community’s favorite is Webpack.

However, bundlers like Webpack come with a significant trade-off: They add complexity to the setup
of your web application. Initial configuration can be difficult and you ultimately end up with an app
that has more moving pieces.

In response to setup and configuration woes, the community has created loads of boilerplates and
libraries developers can use to get started with more advanced React apps. But the React core team
recognized that as long as there wasn’t a core team sanctioned solution, the community was likely
to remain splintered. The first steps for a bundler-powered React setup can be confusing for novice
and experienced developers alike.

The React core team responded by producing the Create React App project.

Create React App

The create-react-app® library provides a command you can use to initiate a new Webpack-powered
React app:

$ create-react-app my-app-name

The library will configure a “black box” Webpack setup for you. It provides you with the benefits of
a Webpack setup while abstracting away the configuration details.

Create React App is a great way to get started with a Webpack-React app using standard conventions.
Therefore, we’ll use it in all of our forthcoming Webpack-React apps.

In this chapter, we’ll:

+ See what a React component looks like when represented as an ES6 module
« Examine the setup of an app managed by Create React App
« Take a close look at how Webpack works

« Explore some of the numerous advantages that Webpack provides for both development and
production use

+ Peek under the hood of Create React App
« Figure out how to get a Webpack-React app to work alongside an API

66https:// github.com/facebookincubator/create-react-app

WOW! eBook
www.wowebook.org

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app

Using Webpack with Create React App 247

The idea of a “black box” controlling the inner-workings of your app might be scary. This
is a valid concern. Later in the chapter, we’ll explore a feature of Create React App, e ject,
which should hopefully assuage some of this fear.

Exploring Create React App

Let’s install Create React App and then use it to initialize a Webpack-React app. We can install it
globally from the command line using the -g flag. You can run this command anywhere on your
system:

$ npm i -g create-react-app@9.5.0

ﬁ The @2.5.0 above is used to specify a version number and is important.

create-react-app is a very new project. It is moving quickly in its early stages. To avoid
possible discrepancies, be sure to use the same version we have specified here.

Now, anywhere on your system, you can run the create-react-app command to initiate the setup
for a new Webpack-powered React app.

Let’s create a new app. We’ll do this inside of the code download that came with the book. From the
root of the code folder, change into the directory for this chapter:

$ cd webpack

That directory already has three folders:
$ 1s

es6-modules/

food-1lookup/

heart-webpack-complete/

The completed version of the code for this next section is available in heart-webpack-complete.

Run the following command to initiate a new React app in a folder called heart-webpack:
$ create-react-app heart-webpack

This will create the boilerplate for the new app and install the app’s dependencies. This might take
a while.

When Create React App is finished, cd into the new directory:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 248

$ cd heart-webpack

Before exploring, we want to ensure your react-scripts version is the same as the one we’re using
here in the book. We'll see what the react-scripts package is in a moment. Run this command
inside heart-webpack to lock in version ©.7.0:

npm install --save-dev --save-exact react-scripts@0.7.0
Now let’s take a look at what’s inside:

$ 1s
README . md
node_modules/
package. json
public/

src/

Inside src/ is a sample React app that Create React App has provided for demonstration purposes.
Inside of public/ is an index.html, which we’ll look at first.

public/index.html

Opening public/index.html in a text editor:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">
<l--
. comment omitted
>
<title>React App</title>
</head>
<body>
<div id="root"></div>
<l --
. comment omitted
-
</body>
</html>

The stark difference from the index.html we’'ve used in previous apps: there are no script tags
here. That means this file is not loading any external JavaScript files. We’ll see why this is soon.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 249

package. json

Looking inside of the project’s package . json, we see a few dependencies and some script definitions:

webpack/heart-webpack-complete/package.json

{
"name": "heart-webpack",
"version": "0.1.0",
"private": true,
"devDependencies": {
"react-scripts": "©0.9.5"
1,
"dependencies": {
"react": "15.5.4",
"react-dom": "15.5.4"
},
"scripts": {
"start": "react-scripts start”,
"build": "react-scripts build",
"test": "react-scripts test --env=jsdom",
"eject": "react-scripts eject"
}
}

Let’s break it down.

react-scripts
package. json specifies a single development dependency, react-scripts:

webpack/heart-webpack-complete/package.json

"devDependencies": {
"react-scripts": "0.9.5"

3

Create React App is just a boilerplate generator. That command produced the folder structure of
our new React app, inserted a sample app, and specified our package. json. It’s actually the react-
scripts package that makes everything work.

react-scripts specifies all of our app’s development dependencies, like Webpack and Babel.
Furthermore, it contains scripts that “glue” all of these dependencies together in a conventional
manner.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 250

Create React App is just a boilerplate generator. The react-scripts package, specified in
package. json, is the engine that will make everything work.

Even though react-scripts is the engine, throughout the chapter we’ll continue to refer
to the overall project as Create React App.

react and react-dom
Under dependencies, we see react and react-dom listed:

webpack/heart-webpack-complete/package.json

"dependencies": {
"react": "15.5.4",
"react-dom": "15.5.4"

}I

In our first two projects, we loaded in react and react-dom via script tags in index.html. As we
saw, those libraries were not specified in this project’s index.html.

Webpack gives us the ability to use npm packages in the browser. We can specify external
libraries that we’d like to use in package. json. This is incredibly helpful. Not only do we now have
easy access to a vast library of packages. We also get to use npm to manage all the libraries that our
app uses. We’ll see in a bit how this all works.

Scripts

package. json specifies four commands under scripts. Each executes a command with react-

scripts. Over this chapter and the next we’ll cover each of these commands in depth, but at a
high-level:

+ start: Boots the Webpack development HTTP server. This server will handle requests from
our web browser.

« build: For use in production, this command creates an optimized, static bundle of all our
assets.

« test: Executes the app’s test suite, if present.

+ eject: Moves the innards of react-scripts into your project’s directory. This enables you to
abandon the configuration that react-scripts provides, tweaking the configuration to your
liking.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 251

For those weary of the black box that react-scripts provides, that last command is comforting.
You have an escape hatch should your project “outgrow” react-scripts or should you need some
special configuration.

9 In a package. json, you can specify which packages are necessary in which environment.
Note that react-scripts is specified under devDependencies.

When you run npm i, npm will check the environment variable NODE_ENV to see if it’s
installing packages in a production environment. In production, npm only installs packages
listed under dependencies (in our case, react and react-dom). In development, npm
installs all packages. This speeds the process in production, foregoing the installation of
unneeded packages like linters or testing libraries.

Given this, you might wonder: Why isreact-scripts listed as a development dependency?
How will the app work in a production environment without it? We’ll see why this is after
taking a look at how Webpack prepares production builds.

src/

Inside of src/, we see some JavaScript files:

$ 1s src
App.css
App. js
App.test. js
index.css
index. js
logo.svg

Create React App has created a boilerplate React app to demonstrate how files can be organized.
This app has a single component, App, which lives inside App. js.

App. js

Looking inside src/App. js:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 252

webpack/heart-webpack-complete/src/App.js

import React, { Component } from 'react’;

import logo from './logo.svg';

import './App.css’;

class App extends Component {
render() {
return (
<div className="App">
<div className="App-header">

<h2>Welcome to React</h2>
</div>
<p className="App-intro">
To get started, edit <code>src/App.js</code> and save to reload.
</p>
</div>

);

export default App;

There are a few noteworthy features here.
The import statements

We import React and Component at the top of the file:

webpack/heart-webpack-complete/src/App.js

import React, { Component } from 'react’;

This is the ES6 module import syntax. Webpack will infer that by 'react' we are referring to the
npm package specified in our package. json.

O If ES6 modules are new to you, check out the entry in Appendix B

The next two imports may have surprised you:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 253

webpack/heart-webpack-complete/src/App.js

import logo from './logo.svg';

import './App.css';

We’re using import on files that aren’t JavaScript! Webpack has you specify all your dependencies
using this syntax. We'll see later how this comes into play. Because the paths are relative (they are
preceded with . /), Webpack knows we’re referring to local files and not npm packages.

App is an ES6 module

The App component itself is simple and does not employ state or props. Its return method is just
markup, which we’ll see rendered in a moment.

What's special about the App component is that it’s an ES6 module. Our App component lives inside
its own dedicated App. js. At the top of this file, it specifies its dependencies and at the bottom it
specifies its export:

webpack/heart-webpack-complete/src/App.js

export default App;

Our React component is entirely self-contained in this module. Any additional libraries, styles,
and images could be specified at the top. Any developer could open this file and quickly reason
what dependencies this component has. We could define helper functions that are private to the
component, inaccessible to the outside.

Furthermore, recall that there is another file in src/ related to App besides App.css: App.test. js.
So, we have three files corresponding to our component: The component itself (an ES6 module), a
dedicated stylesheet, and a dedicated test file.

Create React App has suggested a powerful organization paradigm for our React app. While perhaps
not obvious in our single-component app, you can imagine how this modular component model is
intended to scale well as the number of components grows to the hundreds or thousands.

We know where our modular component is defined. But we’re missing a critical piece: Where is the
component written to the DOM?

The answer lies inside src/index. js.

index. js

Open src/index. js now:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 254

webpack/heart-webpack-complete/src/index.js

import React from 'react’;

import ReactDOM from 'react-dom';
import App from './App';

import './index.css';

ReactDOM.render (

<App /7,

document .getElementById('root')
);

Stepping through this file, we first import both react and react-dom. Because we specified App as
the default export from App. js, we can import it here. Note again that the relative path (. /App)
signals to Webpack that we’re referring to a local file, not an npm package.

At this point, we can use our App component just as we have in the past. We make a call to
ReactDOM.render (), rendering the component to the DOM on the root div. This div tag is the
one and only div present in index.html.

This layout is certainly more complicated than the one we used in our first couple of projects. Instead
of just rendering App right below where we define it, we have another file that we’re importing App
into and making the ReactDOM.render() call in. Again, this setup is intended to keep our code
modular. App. js is restricted to only defining a React component. It does not carry the additional
responsibility of rendering that component. Following from this pattern, we could comfortably
import and render this component anywhere in our app.

We now know where the ReactDOM.render () call is located. But the way this new setup works is
still opaque. index.html does not appear to load in any JavaScript. How do our JavaScript modules
make it to the browser?

Let’s boot the app and then explore how everything fits together.

9 Why do we import React at the top of the file? It doesn’t apparently get referenced
anywhere.

React actually is referenced later in the file, we just can’t see it because of a layer of
indirection. We're referencing App using JSX. So this line in JSX:
<App />

Is actually this underneath the JSX abstraction:

React.createElement(App, null);

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 255

Booting the app

From the root of heart-webpack, run the start command:

$ npm start

This boots the Webpack development server. We dig into the details of this server momentarily.
Visiting http://localhost:3000/, we see the interface for the sample app that Create React App

has provided:

® © ® E react Ao % React

& C' | ® localhost:3000 | 3

Welcome to React

To get started, edit sre/App. js and save to reload.

The sample app

The App component is clearly present on the page. We see both the logo and text that the component
specifies. How did it get there?

Let’s view the source code behind this page. In both Chrome and Firefox, you can type view-
source:http://localhost: 3000/ into the address bar to do so:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 256

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="shortcut icon" href="/favicon.ico">
<I--
comment omitted ...
-
<title>React App</title>
</head>
<body>
<div id="root"></div>
<l--
comment omitted ...
N
<script type="text/javascript" src="/static/js/bundle. js"></secript></body>
</html>

This index.html looks the same as the one we looked at earlier, save for one key difference: There
is a script tag appended to the bottom of the body. This script tag references a bundle. js. As
we’ll see, the App component from App. js and the ReactDOM.render () call from index. js both live
inside of that file.

The Webpack development server inserted this line into our index.html. To understand what
bundle. js is, let’s dig into how Webpack works.

9 This script defaults the server’s port to 3000. However, if it detects that 3000 is occupied,
it will choose another. The script will tell you where the server is running, so check the
console if it appears that it is not on http://localhost : 3000/ .

0 If you’re running OS X, this script will automatically open a browser window pointing to
http://localhost:3000/.

Webpack basics

In our first app (the voting app), we used the library http-server to serve our static assets, like
index.html, our JavaScript files, and our images.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 257

In the second app (the timers app), we used a small Node server to serve our static assets. We defined a
server in server . js which both provided a set of API endpoints and served all assets under public/.
Our API server and our static asset server were one in the same.

With Create React App, our static assets are served by the Webpack development server that is
booted when we run npm start. At the moment, we’re not working with an APL

As we saw, the original index.html did not contain any references to the React app. Webpack
inserted a reference to bundle. js in index.html before serving it to our browser. If you look around
on disk, bundle. js doesn’t exist anywhere. The Webpack development server produces this file
on the fly and keeps it in memory. When our browser makes a request to localhost:3000/,
Webpack is serving its modified version of index.html and bundle. js from memory.

From the page view-source:http://localhost: 3000/, you can click on /static/js/bundle. js to
open that file in your browser. It will probably take a few seconds to open. It’s a gigantic file.

bundle. js contains all the JavaScript code that our app needs to run. Not only does it contain the
entire source for App. js — it contains the entire source for the React library!

You can search for the string . /src/App. js in this file. Webpack demarcates each separate file it has
included with a special comment. What you’ll find is quite messy:

e0e B view-source:localhost:3000 x / [localhost:3000/static/js/bunc | X React
C | @ localhost:3000/staticfjs/bundle.js r

frksf), .,fsrc,-'ﬁpp.is| Al e

f* 258 */

PR T T AN

1*x% | farc/App.js =**!

WohkEkh ko Eh ok kE ko hkEdhh [

fe+%/ function(module, exports, _ webpack_require_) {
eval("'use strict’;\n\nObject.defineProperty({exports, \"_ esModule\", {\n

value: truei\n});'\nvar _jsxFileMame = '/Users/acco/OneDrive/work/book-scratch/heart-
webpack/sre/App.js';\n\nvar _createClass = function () { funection
defineProperties(target, props) { for (wvar i = 0; i < props.length; i++) { wvar
descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false;
descriptor.configurable = true; if (%"value\” in descriptor) descriptor.writable = true;
Object.defineProperty(target, descriptor.key, descriptor); } } return function
(Constructor, protocProps, staticProps) { if (protoProps)
defineProperties(Conastructor.prototype, protoProps); if (staticProps)
defineProperties(Constructor, staticProps); return Constructor; }; }();\n\nvar _react =

_ webpack_require (/%! react */ B7);\n\nvar _reactl =
_interopRequireDefault(_react);‘\n\nvar _logoc = _ webpack require (/*! ./logo.svg */
259);vn\nvar _logo2 = _interopRequireDefault(_logo);\n\n_ webpack require_ (/*!

/hpp.css */ 260);\n\nfunction _interopRegquireDefault({obj) { return cbj &&

If you do a little hunting, you can see recognizable bits and pieces of App. js amidst the chaos. This
is indeed our component. But it looks nothing like it.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 258

Webpack has performed some transformation on all the included JavaScript. Notably, it used Babel
to transpile our ES6 code to an ES5-compatible format.

If you look at the comment header for App. js, it has a number. In the screenshot above, that number
was 258:

/* 258 */
K [HAF A A A AAAAAAK | K\

I kKK /SIC/A,D,DJS kokok |

********************/

0 Your module IDs might be different than the ones here in the text.

The module itself is encapsulated inside of a function that looks like this:

function(module, exports, __webpack_require_) {
// The chaotic “App.js code here

Each module of our web app is encapsulated inside of a function with this signature. Webpack has
given each of our app’s modules this function container as well as a module ID (in the case of App. js,
258).

But “module” here is not limited to JavaScript modules.

Remember how we imported the logo in App. js, like this:

webpack/heart-webpack-complete/src/App.js

import logo from './logo.svg';

And then in the component’s markup it was used to set the src on an img tag:

webpack/heart-webpack-complete/src/App.js

Here’s what the variable declaration of logo looks like inside the chaos of the App.js Webpack
module:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 259

var _logo = __webpack_require_ (/*! ./logo.svg */ 259);

This looks quite strange, mostly due to the in-line comment that Webpack provides for debugging
purposes. Removing that comment:

var _logo = __webpack_require__(259);

Instead of an import statement, we have plain old ES5 code. What is this doing though?

To find the answer, search for . /src/logo. svg in this file. (It should appear directly below App. js).
The SVG is represented inside bundle. js, too!

0@ [view-source:localhest:3000 x / [localhost:3000/static/js/bunc x || React
C | @ localhost:3000/static/js/bundle.js i

get started, edit ',.\n _reactZ.default.c: r

{\n __source: {\n £i1(|./srcflogo.svgl | vt

lineNumber: 1l4\n },hn _ self: this\n PR

"sro/App.js'\n }oho ' and save to reload.'‘n yhn Jihn

}wn }1);i\ni\n return App;i\n}(_react.Component);\n\nexports.default =
App:i\nin/¥**kdkikhhdckhhdxln ** WEBPACKE FOOTERY\n ** ,/src/App.js\n ** module id = 25B\n
** module chunks = 0\n **/\n//# sourceURL=webpack:///./arc/hpp.js?");

FEewf o},
f* 259 */

lf*liii—i**ii*i*ii—***ii—ii**!*\

1v+% fareflogo.avg **+!
i‘*******i‘****i‘*i**f

Jeewf function(module, exports, _ webpack regquire) {

eval("module.exports = _ webpack require_ .p +
\'static/media/logo.53d5d%eef.svgh " ;\n\n/F*skdckkhdwkkhkar\n *+ WEBPACK FOOTER\n #**
.J/sreflogo.svg\n ** module id = 259\n ** module chunks = 0\n **/\n//#
sourceURL=webpack:///./sre/logo.svg?");

fhwr f }.

f* 260 */ o
I

Looking at the header for this module:

/* 259 */

K | AR AAAA A AAFAAFAAFAA | K\
I*%* _ /src/logo.svg ***]|
\kAFRAFASAAAAFA A AN)

Note that its module ID is 259, the same integer passed to __webpack_require__() above.

Webpack treats everything as a module, including image assets like 1ogo.svg. We can get an idea
of what’s going on by picking out a path in the mess of the 1ogo.svg module. Your path might be
different, but it will look like this:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 260

static/media/logo.5d5d9%eef. svg
If you open a new browser tab and plug in this address:
http://localhost:3000/static/media/logo.5d5d9eef. svg

You should get the React logo:

® © ® /B view-source:localhos: x ' [localhost:3000/static’ x / [localhost:3000/static x | | Readt

<« C | @ localhost:3000/static/media/logo.5d5d9eef.svg e

So Webpack created a Webpack module for 1ogo.svg by defining a function. While the imple-
mentation details of this function are opaque, we know it refers to the path to the SVG on the
Webpack development server. Because of this modular paradigm, it was able to intelligently compile
a statement like this:

import logo from './logo.svg';

Into this ES5 statement:
var _logo = __webpack_require__(259);
__webpack_require__() is Webpack’s special module loader. This call refers to the Webpack module

corresponding to logo.svg, number 259. That module returns the string path to the logo’s location
on the Webpack development server, static/media/logo.5d5d9eef . svg:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 261

var _logo = __webpack_require__(259);
console.log(_logo);
// -> "static/media/logo.5d5d%eef.svg"

What about our CSS assets? Yep, everything is a module in Webpack. Search for the string
./src/App.css:

0@ &) view-source:localhost:3000 x / [localhost:3000/static/js/bunc x React
C | @ localhost:3000/static/js/bundle.js i

[exx/ 1, Asrc/App.c A v x

f* 260 */ / /AP SSI .

fhlhdaddhdadhhddhhbddhdd | &)

I*xx | farc/hpp.cas ¥ |
i—**i****i—****i***;

fe¥%f function(module, exports, _ webpack reguire) {

eval("// style-loader: Adds some css to the DOM by adding a <style> taginin//
load the styles‘\nvar content = _ webpack require (/*! !./../~/react-seripta/~/css-
loader!./../~/react-scripts/~/postecas-loader!./App.css */ 261);:\nif(typeocf content ===
"string') content = [[module.id, content, ''l];n// add the styles to the DOM\nvar
update = _ webpack_ require_ (/%! ./../~/react-scripts/~/style-loader/addStyles.js */
263) (content, {});'nif{content.locals) module.exports = content.locals;\n// Hot Module
Replacementi\nif(true) {\n\t// When the styles change, update the <style>
tags\nhtif(!content.locals) {‘n'\t\tmodule.hot.accept(/*! !./../~/react-scripts/~/css-
loader!./../~/react-scripts/~/postecas-loader!./App.css */ 261, function() {‘n\t\tltvar
newContent = _ webpack_reguire_ (/*! !./../~/react-scripts/~/css-loader!./../~/react-
scripts/~/postess=loader!. /App.css */ 26l);\n\tht\tif(typeof newContent === "string')
newContent = [[module.id, newContent,
"'11iMvnMEvENtupdate (newContent) s vnhkhE}) s vah\t}vni\t// When the module iz disposed, remove

the <style> tags‘\n'tmodule.hot.dispose(function{) { update():;
TR . . cx RRRACK _TOOTER ; 2 \ o s 20 g

Webpack’s index.html didn’t include any references to CSS. That’s because Webpack is including
our CSS here viabundle. js. When our app loads, this cryptic Webpack module function dumps the
contents of App.css into style tags on the page.

So we know what is happening: Webpack has rolled up every conceivable “module” for our app into
bundle. js. You might be asking: Why?

The first motivation is universal to JavaScript bundlers. Webpack has converted all our ES6 modules
into its own bespoke ES5-compatible module syntax.

Furthermore, Webpack, like other bundlers, consolidated all our JavaScript modules into a single file.
While it could keep JavaScript modules in separate files, having a single file maximizes performance.
The initiation and conclusion of each file transfer over HTTP adds overhead. Bundling up hundreds
or thousands of smaller files into one bigger one produces a notable speed-up.

Webpack takes this module paradigm further than other bundlers, however. As we saw, it applies
the same modular treatment to image assets, CSS, and npm packages (like React and ReactDOM).

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 262

This modular paradigm unleashes a lot of power. We touch on aspects of that power throughout the
rest of this chapter.

With our nascent understanding of how Webpack works, let’s turn our attention back to the sample
app. We’'ll make some modifications and see first-hand how the Webpack development process
works.

Making modifications to the sample app

We’ve been checking out the bundle. js produced by the Webpack development server in our
browser. Recall that to boot this server, we ran the following command:

$ npm start
As we saw, this command was defined in package. json:
"start": "react-scripts start”,

What exactly is going on here?

The react-scripts package defines a start script. Think of this start script as a special interface to
Webpack that contains some features and conventions provided by Create React App. At a high-
level, the start script:

« Sets up the Webpack configuration
« Provides some nice formatting and coloring for Webpack’s console output
« Launches a web browser if you’re on OS X

Let’s take a look at what the development cycle of our Webpack-powered React app looks like.
Hot reloading

If the server is not already running, go ahead and run the start command to boot it:

$ npm start

Again, our app launches at http://localhost:3000/. The Webpack development server is listening
on this port and serves the development bundle when our server makes a request.

One compelling development feature Webpack gives us is hot reloading. Hot reloading enables
certain files in a web app to be hot-swapped on the fly whenever changes are detected without
requiring a full page reload.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 263

At the moment, Create React App only sets up hot reloading for CSS. This is because the React-
specific hot reloader is not considered stable enough for the default setup.

Hot reloading for CSS is wonderful. With your browser window open, make an edit to App . css and
witness as the app updates without a refresh.

For example, you can change the speed at which the logo spins. Here, we changed it from 20s to 1s:

.App-logo {
animation: App-logo-spin infinite 1s linear;
height: 80px;

}

Or you can change the color of the header’s text. Here, we changed it from white to purple:

.App-header
background-color: #222;
height: 150px;
padding: 20px;
color: purple;

How hot reloading works

Webpack includes client-side code to perform hot reloading inside bundle. js. The Webpack client
maintains an open socket with the server. Whenever the bundle is modified, the client is notified
via this websocket. The client then makes a request to the server, asking for a patch to the bundle.
Instead of fetching the whole bundle, the server will just send the client the code that client needs
to execute to “hot swap” the asset.

Webpack’s modular paradigm makes hot reloading of assets possible. Recall that Webpack inserts
CSS into the DOM inside style tags. To swap out a modified CSS asset, the client removes the
previous style tags and inserts the new one. The browser renders the modification for the user, all
without a page reload.

Auto-reloading

Even though hot reloading is not supported for our JavaScript files, Webpack will still auto-reload
the page whenever it detects changes.

With our browser window still open, let’s make a minor edit to src/App. js. We'll change the text
in the p tag:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 264

<p className="App-intro">
I just made a change to <code>src/App. js</code>!
</p>

Save the file. You’ll note the page refreshes shortly after you save and your change is reflected.

Because Webpack is at heart a platform for JavaScript development and deployment, there is an
ever-growing ecosystem of plug-ins and tools for Webpack-powered apps.

For development, hot- and auto-reloading are two of the most compelling plug-ins that come
configured with Create React App. In the later section on eject (“Ejecting”), we'll point to the
Create React App configuration file that sets up Webpack for development so that you can see the
rest.

For deployment, Create React App has configured Webpack with a variety of plug-ins that produce
a production-level optimized build. We'll take a look at the production build process next.

Creating a production build

So far, we’ve been using the Webpack development server. In our investigation, we saw that this
server produces a modified index.html which loads a bundle. js. Webpack produces and serves
this file from memory — nothing is written to disk.

For production, we want Webpack to write a bundle to disk. We’ll end up with a production-
optimized build of our HTML, CSS, and JavaScript. We could then serve these assets using whatever
HTTP server we wanted. To share our app with the world, we’d just need to upload this build to an
asset host, like Amazon’s S3.

Let’s take a look at what a production build looks like.

Quit the server if it’s running with CTRL+C. From the command line, run the build command that
we saw in package. json earlier:

$ npm run build

When this finishes, you’ll note a new folder is created in the project’s root: build. cd into that
directory and see what’s inside:

$ cd build
$ 1s
favicon.ico
index.html
static/

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 265

If you look at this index.html, you’ll note that Webpack has performed some additional processing
that it did not perform in development. Most notably: there are no newlines. The entire file is on a
single line. Newlines are not necessary in HTML and are just extra bytes. We don’t need them in
production.

Here’s what that exact file looks like in a human readable format:

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta content="width=device-width,initial-scale=1" name="viewport">
<link href="/favicon.ico?fd73abeb" rel="shortcut icon">
<title>React App</title>
<link href="/static/css/main.%alfed4f1.css" rel="stylesheet">
</head>
<body>
<div id="root"></div>
<script src="/static/js/main.590bf8bb. js" type="text/javascript">
</script>
</body>
</html>

Instead of referencing a bundle. js, this index.html references a file in static/ which we’ll look
at momentarily. What’s more, this production index.html now has a 1ink tag to a CSS bundle. As
we saw, in development Webpack inserts CSS via bundle. js. This feature enables hot reloading. In
production, hot reloading capability is irrelevant. Therefore, Webpack deploys CSS normally.

0 Webpack versions assets. We can see above that our JavaScript bundle has a different name
and is versioned (main. <version>. js).

Asset versioning is useful when dealing with browser caches in production. If a file is
changed, the version of that file will be changed as well. Client browsers will be forced to
fetch the latest version.

Note that your versions (or digests) for the files above may be different.

The static/ folder is organized as follows:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 266

$ 1s static
css/

Js/

media/

Checking out the folders individually:

$ 1ls static/css
main.9a0fe4f1.css
main.9a0fe4f1.css.map

$ 1s static/js
main. f7b2704e. js
main. f7b2704e. js.map

$ 1s static/media
logo.5d5d9%eef . svg

Feel free to open up both the .css file and the . js file in your text editor. We refrain from printing
them here in the book due to their size.

ﬂ Be careful about opening these files — you might crash your editor due to their size!

If you open the CSS file, you’ll see it’s just two lines: The first line is all of our app’s CSS, stripped
of all superfluous whitespace. We could have hundreds of different CSS files in our app and they
would end up on this single line. The second line is a special comment declaring the location of the
map file.

The JavaScript file is even more packed. In development, bundle. js has some structure. You can
pick apart where the individual modules live. The production build does not have this structure.
What’s more, our code has been both minified and uglified. If you’re unfamiliar with minification
or uglification, see the aside “Minification, uglification, and source maps.”

Last, the media folder will contain all of our app’s other static files, like images and videos. This app
only has one image, the React logo SVG file.

Again, this bundle is entirely self-contained and ready to go. If we wanted to, we could install the
same http-server package that we used in the first application and use it to serve this folder, like
this:

http-server ./build -p 3000

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 267

Without the Webpack development server, you can imagine the development cycle would be a bit
painful:

1. Modify the app
2. Run npm run build to generate the Webpack bundle
3. Boot/restart the HTTP server

This is why there is no way to “build” anything other than a bundle intended for production. The
Webpack server services our needs for development.

Minification, uglification, and source maps

For production environments, we can significantly reduce the size of JavaScript files by converting
them from a human-readable format to a more compact one that behaves exactly the same. The
basic strategy is stripping all excess characters, like spaces. This process is called minification.

Uglification (or obfuscation) is the process of deliberately modifying JavaScript files so that they
are harder for humans to read. Again, the actual behavior of the app is unchanged. Ideally, this
process slows down the ability for outside developers to understand your codebase.

Both the .css and . js files are accompanied by a companion file ending in .map. The .map file
is a source map that provides debugging assistance for production builds. Because they’ve been
minified and uglified, the CSS and JavaScript for a production app are difficult to work with. If you
encounter a JavaScript bug on production, for example, your browser will direct you to a cryptic
line of this obscure code.

Through a source map, you can map this puzzling area of the codebase back to its original, un-

built form. For more info on source maps and how to use them, see the blog post “Introduction to
a»

JavaScript Source Maps®.

http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

Ejecting

When first introducing Create React App at the beginning of this chapter, we noted that the project
provided a mechanism for “ejecting” your app.

This is comforting. You might find yourself in a position in the future where you would like
further control over your React-Webpack setup. An eject will copy all the scripts and configuration
encapsulated in react-scripts into your project’s directory. It opens up the “black box,” handing
full control of your app back over to you.

Performing an eject is also a nice way to strip some of the “magic” from Create React App. We’ll
perform an eject in this section and take a quick look around.

WOW! eBook
www.wowebook.org

http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

Using Webpack with Create React App

A

There is no backing out from an eject. Be careful when using this command. Should you
decide to eject in the future, make sure your app is checked in to source control.

If you’ve been adding to the app inside heart-webpack, you might consider duplicating
that directory before proceeding. For example, you can do this:

cp -r heart-webpack heart-webpack-ejected

The node_modules folder does not behave well when it’s moved wholesale like this, so
you’ll need to remove node_modules and re-install:

cd heart-webpack-ejected
rm -rf node_modules
npm i

You can then perform the steps in this section inside of heart-webpack-ejected and
preserve heart-webpack.

Buckle up

From the root of heart-webpack, run the eject command:

$ npm run eject

Confirm you’d like to eject by typing y and hitting enter.

268

After all the files are copied from react-scripts into your directory, npm install will run. This
is because, as we’ll see, all the dependencies for react-scripts have been dumped into our
package. json.

When the npm install is finished, take a look at our project’s directory:

$ 1s

README . md

build/
config/

node_modules/

package. json

public/
scripts/
src/

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 269

We have two new folders: config/ and scripts/. If you looked inside src/ you’d note that, as
expected, it is unchanged.

Take a look at package. json. There are loads of dependencies. Some of these dependencies are
necessary, like Babel and React. Others — like es1int and whatwg- fetch — are more “nice-to-haves.”
This reflects the ethos of the Create React App project: an opinionated starter kit for the React
developer.

Check out scripts/ next:

$ 1s scripts
build. js
start. js
test. js

When we ran npm start and npm run build earlier, we were executing the scripts start. js and
build. js, respectively. We won’t look at these files here in the book, but feel free to peruse them.
While complicated, they are well-annotated with comments. Simply reading through the comments

can give you a good idea of what each of these scripts are doing (and what they are giving you “for
free”).

Finally, check out config/ next:

$ 1s config

env. js

jest/

paths. js

polyfills. js
webpack.config.dev. js
webpack.config.prod. js

react-scripts provided sensible defaults for the tools that it provides. In package . json, it specifies
configuration for Babel. Here, it specifies configuration for Webpack and Jest (the testing library we
use in the next chapter).

Of particular noteworthiness are the configuration files for Webpack. Again, we won'’t dive into
those here. But these files are well-commented. Reading through the comments can give you a good
idea of what the Webpack development and production pipelines look like and what plug-ins are
used. In the future, if you’re ever curious about how react-scripts has configured Webpack in
development or production, you can refer to the comments inside these files.

Hopefully seeing the “guts” of react-scripts reduces a bit of its mysticism. Testing out eject as we
have here gives you an idea of what the process looks like to abandon react-scripts should you
need to in the future.

So far in this chapter, we've covered the fundamentals of Webpack and Create React App’s interface
to it. Specifically, we've seen:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 270

How the interface for Create React App works

The general layout for a Webpack-powered React app
« How Webpack works (and some of the power it provides)
How Create React App and Webpack help us generate production-optimized builds

« What an ejected Create React App project looks like

There’s one essential element our demo Webpack-React app is missing, however.

In our second project (the timers app) we had a React app that interfaced with an API. The node
server both served our static assets (HTML/CSS/JS) and provided a set of API endpoints that we
used to persist data about our running timers.

As we’ve seen in this chapter, when using Webpack via Create React App we boot a Webpack
development server. This server is responsible for serving our static assets.

What if we wanted our React app to interface with an API? We’d still want the Webpack
development server to serve our static assets. Therefore, we can imagine we’d boot our API and
Webpack servers separately. Our challenge then is getting the two to cooperate.

Using Create React App with an API server

In this section, we’ll investigate a strategy for running a Webpack development server alongside an
API server. Before digging into this strategy, let’s take a look at the app we’ll be working with.

The completed app

food-lookup-complete is in the root of the book’s code download. Getting there from heart-
webpack:

$cd../..
$ cd food-lookup-complete

Take a look at the folder’s structure:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 271

$ 1s

README . md
client/

db/
node_modules/
package. json
server. js
start-client. js
start-server. js

In the root of the project is where the server lives. There’s a package. json here along with a
server. js file. Inside of client/ is where the React app lives. The client/ folder was generated
with Create React App.

Look inside of client/ now:

If you’re on macOS or Linux run:
$ 1s -a client

Windows users can run:

$ 1s client

And you’ll see:

.babelrc
.gitignore
node_modules/
package. json
public/

src/

tests/

o In OSX and Unix, the -a flag for the 1s command displays all files, including “hidden” files
that are preceded by a . like .babelrc. Windows displays hidden files by default.

So, we have two package. json files. One sits in the root and specifies the packages that the server
needs. And the other lives in client/ and specifies the packages that the React app needs. While
co-existing in this folder, we have two entirely independent apps.

.babelrc

A noteworthy file inside cilent/ is .babelrc. The contents of that file:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 272

// client/.babelrc
{

"plugins": ["transform-class-properties"]

As you may recall, this plugin gives us the property initializer syntax which we used at the end of the
first chapter. In that project, we specified we wanted to use this plugin by setting the data-plugins
attribute on the script tag for app. js, like this:

<script
type="text/babel"
data-plugins="transform-class-properties"”
src="./js/app.js"

></script>

Now, for this project, Babel is being included and managed by react-scripts. To specify plugins
we’d like Babel to use for our Create React App projects, we must first include the plugin in our
package. json. It’s already included:

food-lookup-complete/client/package.json

"babel-plugin-transform-class-properties": "6.22.0",

We then just have to specify we’d like Babel to use the plugin in our .babelrc.

Running the app

In order to boot our app, we need to install the packages for both the server and client. We’ll run
npm i inside both directories:

npm i
cd client
npm i
cd ..

“H B BH H

With the packages for both the server and client installed, we can run the app. Be sure to do this
from the top-level directory of the project (where the server lives):

$ npm start

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 273

As things are booting, you’ll see some console output from both the server and the client. Once the
app is booted, you can visit localhost: 3000 to see the app:

® 00 /B rcactim x React

& C | @ localhost:3000 ol

Selected foods

Description Keal Protein(g) Fat(g) Carbs(g)

Total 0.00 000 000 0.00
Q

Description Kcal Protein(g) Fat(g) Carbs(g)

The app provides a search field for looking up nutritional info in a food database. Typing a value
into the search field performs a live search. You can click on food items to add them to the top table

of totals:

® 0 /@ reactapp x \ L ReectJ
& C | @ localhost:3000 R4
Selected foods
Description e adl BB gy
(g) (g)
Pork, cured, bacon, unprep 417 1262 3719 1.28
Lettuce, grn leaf, raw 15 1.36 0.11 2.87
Tomatoes, red, ripe, ckd 18 0.95 0.07 401
Total 450.00 1300 37.00 7.00
Q
Description Kecal Protein(g) Fat(g) Carbs(g)

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 274

The app’s components

The app consists of three components:

App
Selected foods
Proteil Fat
Description Kcal rotein a Carbs (g)
(g) (g)
Pork, cured, bacon, unprep 417 1262 37.19 128
Lettuce, grn leaf, raw 15 1.36 0.11 287
Tomatoes, red, ripe, ckd 18 0.95 0.07 4.01
Total 450.00 1300 37.00 7.00
FoodSearch
mustard,| Q %
Description Kcal Protein(g) Fat(g) Carbs(g)
Mustard, prepared, yellow 60 3.74 3.16 583
Salad drsng, honey mustard, reg 464 0.87 39.30 23.33
Dressing, honey mustard, fat-free 169 1.07 1.35 3843

« App (blue): The parent container for the application.

+ SelectedFoods (yellow): A table that lists selected foods. Clicking on a food item removes it.

« FoodSearch (purple): Table that provides a live search field. Clicking on a food item in the
table adds it to the total (SelectedFoods).

In this chapter, we won'’t dig into the details of any of these components. Instead, we’re just going
to focus on how we got this existing Webpack-React app to cooperate with a Node server.

How the app is organized

Now that we’ve seen the completed app, let’s see how we got this to work.

Kill the app if it’s running then change to the food-1lookup directory (the non-complete version)
inside webpack. Getting there from food-1lookup-complete:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 275
cd webpack/food-1lookup

Again, we have to install the npm packages for both server and client:

npm i

cd client

npm i
cd ..

@ B H &H

The server

Let’s boot just the server and see how that works. In the completed version, we used npm start to
start both the server and the client. If you check package. json in this directory, you’ll see that this
command is not yet defined. We can boot just the server with this:

$ npm run server

This server provides a single API endpoint, /api/food. It expects a single parameter, g, the food we
are searching for.

You can give it a whirl yourself. You can use your browser to perform a search or use curl:

$ curl localhost:3001/api/food?g=hash+browns

"description": "Fast foods, potatoes, hash browns, rnd pieces or patty",
"kcal": 272,

"protein_g": 2.58,

"carbohydrate_g": 28.88,

"sugar_g": ©.56

"description": "Chick-fil-a, hash browns",
"kcal": 301,

"protein_g": 3,

"carbohydrate_g": 30.51,

"sugar_g": 0.54

"description": "Denny's, hash browns",
"kcal": 197

7

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 276

"protein_g": 2.49,
"carbohydrate_g": 26.59,
"sugar_g": 1.38

},
{
"description": "Restaurant, family style, hash browns",
"kcal": 197,
"protein_g": 2.49,
"carbohydrate_g": 26.59,
"sugar_g": 1.38
}

]

Now that we understand how this endpoint works, let’s take a look at the one area it is called in the
client. Kill the server with CTRL+C.

Client

The FoodSearch component makes the call to /api/foods. It performs a request every time the user
changes the search field. It uses a library, Client, to make the request.

The Client module is defined in client/src/Client. js. It exports an object with one method,
search(). Looking just at the search() function:

webpack/food-lookup/client/src/Client.js

function search(query, cb) {
return fetch(http://localhost:3001/api/food?q=${query}", {
accept: 'application/json',
}).then(checkStatus)
.then(parseJSON)
.then(cb);

The search() function is the one touch point between the client and the server. search() makes a
call to localhost :3001, the default location of the server.

So, we have two different servers we need to have running in order for our app to work. We
need the API server running (at localhost:3001) and the Webpack development server running (at
localhost:3000). If we have both servers running, they should presumably be able to communicate.

We could use two terminal windows, but there’s a better solution.

0 If you need a review on the Fetch API, we use it in Chapter 3: Components and Servers.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 277

Concurrently

Concurrently is a utility for running multiple processes. We’ll see how it works by implementing
it.
Concurrently is already included in the server’s package. json:

webpack/food-lookup/package.json

3

"devDependencies": {
"concurrently": "3.1.0"

We want concurrently to execute two commands, one to boot the API server and one to boot the
Webpack development server. You boot multiple commands by passing them to concurrently in
quotes like this:

EFxample of using “concurrently’
$ concurrently "commandi" "command2"

If you were writing your app to just work on Mac or Unix machines, you could do something like
this:

non

$ concurrently "npm run server cd client & & npm start”

Note the second command for booting the client changes into the client directory and then runs
npm start.

However, the && operator is not cross-platform and won’t work on Windows. As such, we’ve
included astart-client. js script with the project. This script will boot the client from the top-level
directory.

Given this start script, you can boot the client app from the top-level directory like this:
$ babel-node start-client.js

We'll add a client command to our package. json. That way, the method for booting the server
and the client will look the same:

67 https://github.com/kimmobrunfeldt/concurrently

WOW! eBook
www.wowebook.org

https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently

Using Webpack with Create React App 278

Boot the server
$ npm run server
Boot the client

$ npm run client

Therefore, using concurrently will look like this:

non

$ concurrently "npm run server npm run client"”

Let’s add the start and client commands to our package. json now:

food-lookup-complete/package.json

"scripts": {

"start": "concurrently \"npm run server\" \"npm run client\"",
"server": "babel-node start-server. js",
"client": "babel-node start-client. js"

}/

For start, we execute both commands, escaping the quotes because we’re in a JSON file.

Save and close package. json. Now we can boot both servers by running npm start. Go ahead and
do this now:

$ npm start

You'll see output for both the server and the client logged to the console. Concurrently has executed
both run commands simultaneously.

When it appears everything has booted, visit localhost:3000. And then start typing some stuff in.
Strangely, nothing appears to happen:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 279

000 (Wrecm X\ Reac
C | @ localhost:3000 W i
Selected foods
Description Kcal Protein(g) Fat(g) Carbs(g)
Total 0.00 0.00 0.00 0.00
| chicken Q %
Description Kecal Protein(g) Fat(g) Carbs(g)

Popping open the developer console, we see that it is littered with errors:

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 280

® 0 ® @ reactapp x React

C | @ localhost:3000 ¥

Selected foods

Description Kcal Protein(g) Fat(g) Carbs(g)
Total 0.00 0.00 0.00 0.00
[] FEemenis Conscle Sources Network Timelne Profies Application Securty Audits o : x

Q@ Viop v Preserve log
7 for CORS request.

© Uncaught (in promise) TypeError: Failed to fetch(..) Client.js:14

© > Fetch APT cannot load localhost:3@1/api/food?q=chi. URL scheme must be "http" or "https" Client.js:1a
for CORS request.

© Uncaught (in promise) TypeError: Failed to fetch(..) Client.js:14

© P Fetch API cannot load localhost:3@1/api/food?q=chic. URL scheme must be "http" or "https” Client.js:14

for CORS regue
© Uncaught (in promise) TypeError: Failed to fetch(..) Client.js:14

@ P Fetch APT cannot load localhost:3881/api/food?g=chick. URL scheme must be "http" er "https" Client.js:14
for CORS request.

© Uncaught (in promise) TypeError: Failed to fetch(..) Client.js:14

© » Fetch APT cannot load localhost:3@1/api/food?q=chicke. URL scheme must be "http" or Client.js:1a
“https" for CORS request.

© Uncaught (in promise) TypeError: Failed to fetch(..) Client.js:14

© P Fetch AP cannot Lload localhost:3@01/apiffood?q=chicken. URL scheme must be "http" or Client.js:14
“https” for CORS request.

© Uncaught (in promise) TypeError: Failed to fetch(.) Client.js:14

Picking out one of them:

Fetch API cannot load http://localhost:3001/api/food?q=c. No 'Access-Control-All\
ow-Origin' header is present on the requested resource. Origin 'http://localhost\
:3000' is therefore not allowed access. If an opaque response serves your needs,\
set the request's mode to 'no-cors' to fetch the resource with CORS disabled.

Our browser prevented our React app (hosted at localhost:3000) from loading a resource from a
different origin (localhost:3001). We attempted to perform Cross-Origin Resource Sharing (or
CORS). The browser prevents these types of requests from scripts for security reasons.

9 Note: If this issue didn’t occur for you, you may want to verify your browser security
settings are sound. Not restricting CORS leaves you open to significant security risk.

This is the primary difficulty with our two-server solution. But the two-server setup is common in
development. Common enough that Create React App has a solution readily available for us to use.

Using the Webpack development proxy

Create React App enables you to setup the Webpack development server to proxy requests to your
API. Instead of making a request to the API server at localhost:3001, our React app can make
requests to localhost:3000. We can then have Webpack proxy those requests to our API server.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 281

So, our original approach was to have the user’s browser interact directly with both servers, like

this:

V\\\\\‘

Webpack dev

server

API server

However, we want the browser to just interact with the Webpack development server at local-
host : 3000. Webpack will forward along requests intended for the API, like this:

Webpack dev

....... SIALU Proxied
request

APl server

This proxy feature allows our React app to interact exclusively with the Webpack development
server, eliminating any issues with CORS.

To do this, let’s first modify client/src/Client. js. Remove the base URL, localhost : 3001:

food-lookup-complete/client/src/Client.js

function search(query, cb) {
return fetch(/api/food?q=${query}", {
accept: 'application/json',
}).then(checkStatus)

Now, search() will make calls to localhost : 3000.

Next, in our client’s package. json, we can set a special property, proxy. Add this property to
client/package. json now:

// Inside client/package. json
"proxy": "http://localhost:3001/",

9 Make sure to add that line to the client’s package . json, not the server’s.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 282

This property is special to Create React App, and instructs Create React App to setup our Webpack
development server to proxy API requests to localhost:3001. The Webpack development server
will infer what traffic to proxy. It will proxy a request to our API if the URL is not recognized or if
the request is not loading static assets (like HTML, CSS, or JavaScript).

Try it out

Use Concurrently to boot both processes:
$ npm start

Visiting localhost : 3000, we see everything working. Because our browser is interfacing with the
API through localhost : 3000, we have no issues with CORS.

Webpack at large

As a platform for JavaScript applications, Webpack packs numerous features. We witnessed some of
these features in this chapter. Webpack’s abilities can be considered more broadly underneath two
categories:

Optimization
Webpack’s optimization toolset for production environments is vast.
One immediate optimization Webpack provides is reducing the number of files the client browser

has to fetch. For large JavaScript apps composed of many different files, serving a handful of bundle
files (like bundle. js) is faster than serving tons of small files.

Code splitting is another optimization which builds off of the concept of a bundle. You can configure
Webpack so that it only serves the JavaScript and CSS assets that are relevant to the page that a user
is viewing. While your multi-page app might have hundreds of React components, you can have
Webpack only serve the necessary components and CSS that the client needs to render whatever
page that they are on.

Tooling
As with optimization, the ecosystem around Webpack’s tooling is vast.

For development, we saw Webpack’s handy hot- and auto-reloading features. In addition, Create
React App configures other niceties in the development pipeline, like auto-linting your JavaScript
code.

For production, we saw how we can configure Webpack to execute plug-ins that optimize our
production build.

WOW! eBook
www.wowebook.org

Using Webpack with Create React App 283

When to use Webpack/Create React App

So, given Webpack’s power, you might ask: Should I just use Webpack/Create React App for all my
future React projects?

It depends.

Loading React and Babel in script tags as we did in the first couple of chapters is still a completely
sane approach. For some projects, the simplicity of this setup might be preferable. Plus, you can
always start simple and then move a project to the more complex Webpack setup in the future.

What’s more, if you’re looking to roll React out inside an existing application this simple approach
is your best bet. You don’t have to adopt an entirely new build or deployment pipeline for your app.
Instead, you can roll React components out one-by-one, all by simply ensuring that the React library
is included in your app.

But, for many developers and many types of projects, Webpack is a compelling option with features
that are too good to miss. If you’re planning on writing a sizeable React application with many
different components, Webpack’s support for ES6 modules will help keep your codebase sensible.
Support for npm packages is great. And thanks to Create React App, you get tons of tooling for
development and production for free.

There is one additional deal breaker in favor of Webpack: testing. In the next chapter, we learn how
to write tests for our React apps. As we’ll see, Webpack provides a platform for easily executing our
test suite in the console, outside of a browser.

WOW! eBook
www.wowebook.org

Unit Testing

A robust test suite is a vital constituent of quality software. With a good test suite at his or her
disposal, a developer can more confidently refactor or add features to an application. Test suites are
an upfront investment that pay dividends over the lifetime of a system.

Testing user interfaces is notoriously difficult. Thankfully, testing React components is not. With the
right tools and the right methodology, the interface for your web app can be just as fortified with
tests as every other part of the system.

We’ll begin by writing a small test suite without using any testing libraries. After getting a feel for
a test suite’s essence, we'll introduce the Jest testing framework to alleviate a lot of boilerplate and
easily allow our tests to be much more expressive.

While using Jest, we’ll see how we can organize our test suite in a behavior-driven style. Once
we’re comfortable with the basics, we’ll take a look at how to approach testing React components
in particular. We’ll introduce Enzyme, a library for working with React components in a testing
environment.

Finally, in the last section of this chapter, we work with a more complex React component that sits
inside of a larger app. We use the concept of a mock to isolate the API-driven component we are
testing.

Writing tests without a framework

O If you’re already familiar with JavaScript testing, you can skip ahead to the next section.

However, you might still find this section to be a useful reflection on what testing
frameworks are doing behind the scenes.

The projects for this chapter are located inside of the folder testing that was provided with this
book’s code download.

We’ll start in the basics folder:

$ cd testing/basics

The structure of this project:

WOW! eBook
www.wowebook.org

Unit Testing 285

$ 1s

Modash. js
Modash.test. js
complete/
package. json

0 Inside of complete/ you'll find files corresponding to each iteration of Modash.test. js as
well as the completed version of Modash. js.

We'll be using babel -node to run our test suite from the command-line. babel -node is included in
this folder’s package. json. Go ahead and install the packages in package. json now:

$ npm install

In order to write tests, we need to have a library to test. Let’s write a little utility library that we can
test.

Preparing Modash

We’ll write a small library in Modash. js. Modash will have some methods that might prove useful
when working with JavaScript strings. We’ll write the following three methods. Each returns a string:

truncate(string, length)

Truncates string if it’s longer than the supplied 1ength. If the string is truncated, it will end with

const s = 'All code and no tests makes Jack a precarious boy."';
Modash.truncate(s, 21);

// => 'All code and no tests...'
Modash.truncate(s, 100);

// => 'All code and no tests makes Jack a precarious boy.'

capitalize(string)

Capitalizes the first letter of string and lower cases the rest:

const s = 'stability was practically ASSURED.';
Modash.capitalize(s);
// => 'Stability was practically assured.'

camelCase(string)

Takes a string of words delimited by spaces, dashes, or underscores and returns a camel-cased
representation:

WOW! eBook
www.wowebook.org

Unit Testing 286

let s = 'started at';

Modash.camelCase(s);
// => 'startedAt'

s = 'started_at';

Modash.camelCase(s);
// => 'startedAt'

O The name “Modash” is a play on the popular JavaScript utility library Lodash®®.

We’ll write Modash as an ES6 module. For more details on how this works with Babel, see the aside
ESé6: Import/export with Babel. If you need a refresher on ES6 modules, refer to the previous chapter
“Using Webpack with create-react-app.”.

Open up Modash. js now. We’'ll write our library’s three functions then export our interface at the
bottom of this file.

First, we’ll write the function for truncate(). There are many ways to do this. Here’s one approach:

testing/basics/complete/Modash.js

function truncate(string, length) {
if (string.length > length) {
return string.slice(@, length) + '...';
} else {
return string;

Next, here’s the implementation for capitalize():

testing/basics/complete/Modash.js

function capitalize(string) {
return (
string.charAt(9).toUpperCase() + string.slice(1).tolLowerCase()

)

Finally, we’ll write camelCase(). This one’s slightly trickier. Again, there are multiple ways to
implement this but here’s the strategy that follows:

%8https://lodash.com/

WOW! eBook
www.wowebook.org

https://lodash.com/
https://lodash.com/

Unit Testing 287

1. Use split to get an array of the words in the string. Spaces, dashes, and underscores will be
considered delimiters.

2. Create a new array. The first entry of this array will be the lower-cased version of the first
word. The rest of the entries will be the capitalized version of each subsequent word.
3. Join that array with join.

That looks like this:

testing/basics/complete/Modash.js

function camelCase(string) {
const words = string.split(/[\s|\-|_]+/);
return |
words[0Q] . toLowerCase(),
...words.slice(1).map((w) => capitalize(w)),
I.join("");

0 String’s split() splits a string into an array of strings. It accepts as an argument the
character(s) you would like to split on. The argument can be either a string or a regular
expression. You can read more about split() here®.

Array’s join() combines all the members of an array into a string. You can read more
about join() here’”.

With those three functions defined in Modash. js, we’re ready to export our module.

At the bottom of Modash. js, we first create the object that encapsulates our methods:

testing/basics/complete/Modash.js

const Modash = {
truncate,
capitalize,
camelCase,

};

And then we export it:

69https:/ /developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
70 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join

WOW! eBook
www.wowebook.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join

Unit Testing 288

testing/basics/complete/Modash.js

export default Modash;

We'll write our testing code for this section inside of the file Modash.test. js. Open up that file in
your text editor now.

ES6: Import/export with Babel
Our package. json already includes Babel. In addition, we’re including a Babel plug-in,babel-plugin-transform-class

This package will let us use the ES6 import/export syntax. Importantly, we specify it as a Babel
plugin inside the project’s .babelrc:

// basics/.babelrc
{

"plugins": ["transform-class-properties"]

}

With this plugin in place, we can now export a module from one file and import it into another.

However, note that this solution won’t work in the browser. It works locally in the Node runtime,
which is fine for the purposes of writing tests for our Modash library. But to support this in the
browser requires additional tooling. As we mentioned in the last chapter, ES6 module support in
the browser is one of our primary motivations for using Webpack.

Writing the first spec

Our test suite will import the library we’re writing tests for, Modash. We'll call methods on that
library and make assertions on how the methods should behave.

At the top of Modash.test. js, let’s first import our library:

testing/basics/complete/Modash.test-1.js

import Modash from './Modash';

Our first assertion will be for the method truncate. We're going to assert that when given a string
over the supplied length, truncate returns a truncated string.

First, we setup the test:

WOW! eBook
www.wowebook.org

Unit Testing 289

testing/basics/complete/Modash.test-1.js

const string = 'there was one catch, and that was CATCH-22';
const actual = Modash.truncate(string, 19);

const expected = 'there was one catch...';

We’re declaring our sample test string, string. We then set two variables: actual and expected.
In test suites, actual is what we call the behavior that was observed. In this case, it’s what
Modash.truncate actually returned. expected is the value we are expecting.

Next, we make our test’s assertion. We’ll print a message indicating whether truncate passed or
tailed:

testing/basics/complete/Modash.test-1.js

if (actual !== expected) {
console. log(
“[FAIL] Expected \ truncate()\" to return '${expected}', got '${actual}'"
)i
} else {
console.log('[PASS] “truncate()".");

Try it out

We can run our test suite at this stage in the command line. Save the file Modash.test. js and run
the following from the testing/basics folder:

./node_modules/.bin/babel-node Modash.test. js

Executing this, we see a [PASS] message printed to the console. If you’d like, you can modify the
truncate function in Modash. js to observe this test failing:

WOW! eBook
www.wowebook.org

Unit Testing 290

$./node_modules/.bin/babel-node Modash.test.js
[PASS] ‘truncate()".

in

$

Test passing

$./node_modules/.bin/babel-node Modash.test.js
[FAIL] Expected “truncate()' to return 'there was
one catch...', got 'there ...'

in

$

Example of what it looks like when test fails

The assertEqual() function

Let’s write some tests for the other two methods in Modash.

For all our tests, we’re going to be following a similar pattern. We’re going to have some assertion
that checks if actual equals expected. We’ll print a message to the console that indicates whether
the function under test passed or failed.

To avoid this code duplication, we’ll write a helper function, assertEqual(). assertEqual() will
check equality between both its arguments. The function will then write a console message,
indicating if the spec passed or failed.

At the top of Modash.test. js, below the import statement for Modash, declare assertEqual:

WOW! eBook
www.wowebook.org

Unit Testing 291

testing/basics/complete/Modash.test-2.js

import Modash from './Modash';

function assertEqual(description, actual, expected) {

if (actual === expected) {
console.log(" [PASS] ${description}’);
} else {

console.log(" [FAIL] ${description}’);
console.log(“\tactual: '${actual}l'’);
console.log(\texpected: '${expected}'’);

0 A tab is represented as the \t character in JavaScript.

With assertEqual defined, let’s re-write our first test spec. We’re going to re-use the variables
actual, expected, and string throughout the test suite, so we’ll use the let declaration so that we
can redefine them:

testing/basics/complete/Modash.test-2.js

let actual;
let expected;
let string;

string = 'there was one catch, and that was CATCH-22';
actual = Modash.truncate(string, 19);

expected = 'there was one catch...';

assertEqual (' “truncate()’: truncates a string', actual, expected);

If you were to run Modash.test.js now, you'd note that things are working just as before. The
console output is just slightly different:

WOW! eBook
www.wowebook.org

Unit Testing 292

$./node_modules/.bin/babel-node Modash.test.js
[PASS] “truncate()': truncates a string

in

$

Test passing

With our assert function written, let’s write some more tests.

Let’s write one more assertion for truncate. The function should return a string as-is if it’s less than
the supplied length. We’ll use the same string. Write this assertion below the current one:

testing/basics/complete/Modash.test-2.js

actual = Modash.truncate(string, string.length);
expected = string;

assertEqual(' “truncate() : no-ops if <= length', actual, expected);

Next, let’s write an assertion for capitalize. We can continue to use the same string:

testing/basics/complete/Modash.test-2.js

actual = Modash.capitalize(string);
expected = 'There was one catch, and that was catch-22';

assertEqual(' “capitalize() : capitalizes the string', actual, expected);

Given the example string we’re using, this assertion tests both aspects of capitalize: That it
capitalizes the first letter in the string and that it converts the rest to lowercase.

Last, we’ll write our assertions for camelCase. We'll test this function with two different strings.
One will be delimited by spaces and the other by underscores.

The assertion for spaces:

WOW! eBook
www.wowebook.org

Unit Testing 293

testing/basics/complete/Modash.test-2.js

string = 'customer responded at';

actual = Modash.camelCase(string);
expected = 'customerRespondedAt';

assertEqual(' “camelCase() : string with spaces', actual, expected);

And for underscores:

testing/basics/complete/Modash.test-2.js

string = 'customer_responded_at';

actual = Modash.camelCase(string);

expected = 'customerRespondedAt';

assertEqual(' “camelCase() : string with underscores', actual, expected);

Try it out

Save Modash .test. js. From the console, run the test suite:

./node_modules/.bin/babel-node Modash.test. js

$./node_modules/.bin/babel-node Modash.test.js
[PASS] “truncate()’: truncates a string

[PASS] “truncate()’: no-ops if == length

[PASS] “capitalize()': capitalizes the string

[PASS] “camelCase()': string with spaces
[PASS] “camelCase()*: string with underscores
in

$

Tests passing

Feel free to tweak either the expected values for each assertion or break the library and watch the
tests fail.

Our miniature assertion framework is clear but limited. It’s hard to imagine how it would be both
maintainable and scalable for a more complex app or module. And while assertEqual () works fine

WOW! eBook
www.wowebook.org

Unit Testing 294

for checking the equality of strings, we’ll want to make more complex assertions when working with
objects or arrays. For instance, we might want to check if an object contains a particular property
or an array a particular element.

What is Jest?

JavaScript has a variety of testing libraries that pack a bunch of great features. These libraries help
us organize our test suite in a robust, maintainable manner. Many of these libraries accomplish the
same domain of tasks but with different approaches.

An example of testing libraries you may have heard of or worked with are Mocha, Jasmine,
QUnit, Chai, and Tape.

We like to think of testing libraries as having three major components:

+ The test runner. This is what you execute in the command-line. The test runner is responsible
for finding your tests, running them, and reporting results back to you in the console.

+ A domain-specific language for organizing your tests. As we’ll see, these functions help us
perform common tasks like orchestrating setup and teardown before and after tests run.

« An assertion library. The assert functions provided by these libraries help us easily make
otherwise complex assertions, like checking equality between JavaScript objects or the
presence of certain elements in an array.

React developers have the option to use any JavaScript testing framework they’d like for their tests.
In this book, we’ll focus on one in particular: Jest.

Facebook created and maintains Jest. If you've used other JavaScript testing frameworks or even
testing frameworks in other programming languages, you’ll likely find Jest quite familiar.

For assertions, Jest uses Jasmine’s assertion library. If you’ve used Jasmine before, you’ll be pleased
to know the syntax is exactly the same.

Later in the chapter, we explore what’s arguably Jest’s biggest difference from other
JavaScript testing frameworks: mocking.

Using Jest

Inside of testing/basics/package. json, you’'ll note that Jest is already included.

WOW! eBook
www.wowebook.org

Unit Testing 295

As of Jest 15, Jest will consider any file that ends with *.test. js or *.spec. js a test. Because our

file is named Modash . test. js, we don’t have to do anything special to instruct Jest that this is a test
file.

We'll rewrite the specs for Modash using Jest.

Jest 15

If you’ve used an older version of Jest before, you might be surprised that our tests do not have to be
inside a __tests__/ folder. Furthermore, later in the chapter, you’ll notice that Jest’s auto-mocking
appears to be turned off.

Jest 15 shipped new defaults for Jest. These changes were motivated by a desire to make Jest

easier for new developers to begin using while maintaining Jest’s philosophy to require as little
configuration as necessary.

You can read about all the changes in this blog post®. Relevant to this chapter:

« In addition to looking under __tests__/ for test files Jest also looks for files matching
* . test. js or *.spec. js
«+ Auto-mocking is disabled by default

“https://facebook.github.io/jest/blog/2016/09/01/jest-15.html

expect()

In Jest, we use expect() statements to make assertions. As you’ll see, the syntax is different than
the assert function we wrote before.

0 Because Jest uses the Jasmine assertion library, these matchers are technically a feature
of Jasmine, not Jest. However, to avoid confusion, throughout this chapter we’ll refer to
everything that ships with Jest — including the Jasmine assertion library — as Jest.

Here’s an example of using the expect syntax to assert that true is... true:
expect(true).toBe(true)

toBe is a matcher. Jest ships with a few different matchers. Under the hood, the toBe matcher uses
the === operator to check equality. So these all work as expected:

WOW! eBook
www.wowebook.org

https://facebook.github.io/jest/blog/2016/09/01/jest-15.html
https://facebook.github.io/jest/blog/2016/09/01/jest-15.html

Unit Testing 296

expect(1).toBe(1); // pass
const a = 5;
expect(a).toBe(5); // pass

Because it just uses the === operator, toBe has its limitations. For instance, while we can use toBe
to check if an object is the exact same object:

const a = { espresso: '6@ml' };
const b = a;
expect(a).toBe(b); // pass

What if we wanted to check if two different objects were identical?

const a = { espresso: '6@ml' };
expect(a).toBe({ espresso: '6@ml' }) // fail

Jest has another matcher, toEqual. toEqual is more sophisticated than toBe. For our purposes, it will
allow us to assert that two objects are identical, even if they aren’t the exact same object:

const a = { espresso: '6@ml' };
expect(a).toEqual ({ espresso: '6@0ml' }) // pass

We'll use both toBe and toEqual in this chapter. We tend to use toBe for boolean and numeric
assertions and toEqual for everything else. We could just use toEqual for everything. But we use
toBe in certain situations as we like how it reads in English. It’s a matter of preference. The important
part is that you understand the difference between the two.

With Jest, like in many other test frameworks, we organize our code into describe blocks and it
blocks. To get a feel for this organization, let’s write our first Jasmine test. Replace the contents of
Modash.test. js with the following:

testing/basics/complete/Modash.test-3.js

describe('My test suite', () => {
it('“true® should be “true ', () => {
expect(true).toBe(true);

});

it(' " false® should be “false™', () => {
expect(false).toBe(false);

1)

1)

WOW! eBook
www.wowebook.org

Unit Testing 297

Both describe and it take a string and a function. The string is just a human-friendly description,
which we’ll see printed to the console in a moment.

As we’ll see throughout this chapter, describe is used to organize assertions that all pertain to the
same feature or context. it blocks are our individual assertions or specs.

Jest requires that you always have a top-level describe that encapsulates all your code. Here, our
top-level describe is titled “My test suite” The two it blocks nested inside of this describe are our
specs. This organization is standard: describe blocks don’t contain assertions, it blocks do.

Throughout the rest of this chapter, an “assertion” refers to a call to expect (). A “spec” is
an it block.

Try it out

Inside of package. json, we already have a test script defined. So we can run the following
command to run our test suite:

$ npm test

L

in
$ npm test
IBASS) . /Modash.test.js
My test suite
v “true’ should be “true® (3ms)
» “false® should be “false® (2ms)

Test Summary
> Ran all tests.
» 2 tests passed (2 total in 1 test suite, run time 1.444s)

in
H

Both tests passing

The first Jest test for Modash

Let’s replace this test suite with something useful that tests Modash.

Open Modash.test. js again and clear it out. At the top, import the library:

WOW! eBook
www.wowebook.org

Unit Testing 298

testing/basics/complete/Modash.test-4.js

import Modash from './Modash';

We'll title our describe block 'Modash':

describe('Modash', () => {
// assertions will go here

1)

It’s conventional to title the top-level describe whatever module is currently under test.

Let’s make our first assertion. We’re asserting that truncate() works:

testing/basics/complete/Modash.test-4.js

describe('Modash', () => {
it('“truncate() : truncates a string', () => {

const string = 'there was one catch, and that was CATCH-22';
expect(

Modash.truncate(string, 19)
).toEqual('there was one catch...');

});
});

We organized our assertion differently, but the logic and end result are the same as before. Note how
expect and toEqual provide a human-readable format for expressing what we are testing and how
we expect it to behave.

Try it out

Save Modash.test. js. Run the single-spec test suite:

$ npm test

WOW! eBook
www.wowebook.org

Unit Testing 299

L

in
$ npm test
IBASS) . /Modash.test.js
Modash
v “truncate()': truncates a string (4ms)

Test Summary
> Ran all tests.
» 1 test passed (1 total in 1 test suite, run time 2.099s)

in
H

Test passing

The other truncate() spec

We have a second assertion for truncate(). We assert that truncate() returns the same string if
it’s below the specified length.

Because both of these assertions correspond to the same method on Modash, it makes sense to wrap
them together inside their own describe. Let’s add the next spec, wrapping both our specs inside
of a new describe:

testing/basics/complete/Modash.test-5.js

describe('Modash', () => {
describe(' “truncate() "', () => {
const string = 'there was one catch, and that was CATCH-22';

it('truncates a string', () => {

expect(
Modash.truncate(string, 19)
).toEqual('there was one catch...');
1)

it('no-ops if <= length', () => {
expect(
Modash.truncate(string, string.length)
) .toEqual(string);
1
1)
1)

WOW! eBook
www.wowebook.org

Unit Testing 300

It’s conventional to group tests using describe blocks like this.

Note that we declared the string under test at the top of the truncate() describe block:

testing/basics/complete/Modash.test-5.js

describe('Modash', () => {
describe(' “truncate()™', () = {

const string = 'there was one catch, and that was CATCH-22';

When variables are declared inside describe in this manner, they are in scope for each of the it
blocks.

Furthermore, we slightly changed the title of each spec. We were able to drop the truncate(): at
the beginning. Because these specs are under the describe block titled 'truncate() ', if one of these
specs were to fail Jest would present the failure like this:

- Modash > “truncate()" > no-ops if less than length

This gives us all the context we need.

The rest of the specs

We’ll wrap the specs for our other two methods inside their own describe blocks, like this:

describe('Modash', () => {
describe(' “truncate() "', () => {
// ... “truncate()’ specs
});
describe(' “capitalize() ", () => {
// ... “capitalize()" specs
1
describe(' “camelCase() "', () => {
// ... “camelCase()’ specs
1)
1)

First, our capitalize() spec:

WOW! eBook
www.wowebook.org

Unit Testing 301

testing/basics/complete/Modash.test-6.js

describe('capitalize()', () => {
it('capitalizes first letter, lowercases rest', () => {
const string = 'there was one catch, and that was CATCH-22';
expect(
Modash.capitalize(string)
).toEqual(
'There was one catch, and that was catch-22'
);
1)
1)

Note that the string inside the truncate() describe block is not in scope here, so we declare string
at the top of this spec.

Last, our set of camelCase() specs:

testing/basics/complete/Modash.test-6.js

describe('camelCase()', () => {
it('camelizes string with spaces', () => {
const string = 'customer responded at';
expect(
Modash.camelCase(string)
) .toEqual('customerRespondedAt');

1)

it('camelizes string with underscores', () => {
const string = 'customer_responded_at';
expect(

Modash.camelCase(string)
) .toEqual('customerRespondedAt');
1)
1)

Try it out

Save Modash . test . js. Fire up Jest from the command-line:

$ npm test

WOW! eBook
www.wowebook.org

Unit Testing 302

And you’ll see everything pass:

L

IEASSH . /Modash.test.js
Modash
“truncate()’
v truncates a string (4ms)
v no-ops if less than length (1ms)
capitalize()
+ capitalizes first letter, lowercases rest
camelCase()

+ camelizes string with spaces (1ms)
v camelizes string with underscores

Test Summary
> Ran all tests.
» 5 tests passed (5 total in 1 test suite, run time 2.395s)
in

$

Tests passing

We’ve covered the basics of assertions, organizing code into describe and it blocks, and using the
Jest test runner. Let’s see how these pieces come together for testing React applications. Along the
way, we'll dig even deeper into Jest’s assertion library and best practices for behavior-driven test
suite organization.

Testing strategies for React applications

In software testing, there are two primary categories that tests fall into: integration tests and unit
tests.

Integration vs Unit Testing

Integration tests are tests where multiple modules or parts of a software system are tested together.
For a React app, we can think of each component as an individual module. Therefore, an integration
test would involve testing our app as a whole.

Integration tests might go even further. If our React app was communicating with an API server,
integration tests could involve communicating with that server as well. Developers often like to call
these types of integration tests end-to-end tests.

There are a few ways to drive end-to-end tests. One popular method is to use a driver like Selenium
to programatically load your app in a browser and automatically navigate your app’s interface. You
might have your program click on buttons or fill out forms, asserting what the page looks like after
these interactions. Or you might make assertions on the resulting state of the datastore over on the
server.

WOW! eBook
www.wowebook.org

Unit Testing 303

Integration tests are an important component of a comprehensive test suite for a large software
system. However, in this book, we’ll focus exclusively on unit testing for our React applications.

In a unit test, modules of a software system are tested in isolation.

For React components, we’ll make two kinds of assertions:

1. Given a set of inputs (state & props), assert what a component should output (render).

2. Given a user action, assert how the component behaves. The component might make a state
update or call a prop-function passed to it by a parent.

Shallow rendering

When rendered in the browser, our React components are written to the DOM. While we typically
see a DOM visually in a browser, we could load a “headless” one into our test suite. We could use
the DOM’s API to write and read React components as if we were working directly with a browser.
But there’s an alternative: shallow rendering.

Normally, when a React component renders it first produces its virtual DOM representation. This
virtual DOM representation is then used to make updates to an actual DOM.

When a component is shallow rendered, it does not write to a DOM. Instead, it maintains its virtual
DOM representation. You can then make assertions against this virtual DOM much like you would
an actual one.

Furthermore, your component is rendered only one level deep (hence “shallow”). So if the render
function of your component contains children, those children won’t actually be rendered. Instead,
the virtual DOM representation will just contain references to the un-rendered child components.

React provides a library for shallow rendering React components, react-test-renderer. This
library is useful, but is a bit low-level and can be verbose.

Enzyme is a library that wraps react-test-renderer, providing lots of handy functionality that is
helpful for writing React component tests.

Enzyme

Enzyme was initially developed by Airbnb and is gaining widespread adoption among the React
open-source community. In fact, Facebook recommends the utility in its documentation for react-
test-renderer. Following this trend, we’ll be using Enzyme as opposed to react-test-renderer
throughout this chapter.

Enzyme, through react-test-renderer, allows you to shallow render a component. Instead of using
ReactDOM.render () to render a component to a real DOM, you use Enzyme’s shallow() to shallow
render it:

WOW! eBook
www.wowebook.org

Unit Testing 304

const wrapper = Enzyme.shallow(
<App />
);

As we'll see soon, shallow() returns an EnzymeWrapper object. Nested inside of this object is our
shallow-rendered component in its virtual DOM representation. EnzymeWrapper gives us a bunch of
useful methods for traversing and writing assertions against the component’s virtual DOM.

0 If you ever want to use react-test-renderer directly in the future, you’ll find knowing
Enzyme helps. Because Enzyme is a lightweight wrapper on top of react-test-renderer,
the APIs have a lot in common.

There are a two primary advantages to shallow rendering:
It tests components in isolation

This is preferable for unit tests. When we are writing tests for a parent component, we don’t have to
worry about dependencies on child components. A change made to a child component might break
the child component’s unit tests but it won’t break that of any parents.

It’s faster

Another nice benefit is that your tests will be faster. Rendering to, manipulating, and reading from
an actual DOM adds overhead. With shallow rendering, you avoid the DOM entirely.

As we'll see, Enzyme has an API for simulating DOM events for shallow rendered components.
These allow us to, for example, “click” a component even though no DOM is present.

Testing a basic React component with Enzyme

We'll get familiar with Enzyme by writing tests for a basic React component.

Setup

Inside the folder testing/react-basics is an app created with create-react-app. From the test-
ing/basics folder, cd into that directory:

$ cd ../react-basics

And install the packages:

WOW! eBook
www.wowebook.org

Unit Testing 305

$ npm i

We cover create-react-app in detail in the previous chapter, “Using Webpack with create-
react-app”.

Take a look at the directory:

$ 1s
index.html
node_modules/
package. json
src/

And sre/:

$ 1s src/
App.css
App.js
App.test. js
complete/
index.css
index. js
semantic/

The basic organization of this create-react-app app is the same that we saw in the last chapter. App . js
defines an App component. index. js calls ReactDOM.render (). Semantic Ul is included for styling.

The App component
Before looking at App, let’s see it in the browser. Boot the app:

$ npm start

The app is simple. There is a field coupled with a button that adds items to a list. There is no way to
delete items in the list:

WOW! eBook
www.wowebook.org

Unit Testing 306

® © ® /@ React Ap x Roact |

< C | ® localhost:3000/7 tr| i

ltems

Cilantro

Lime juice
Jalapeiio pepper
Onions

Add item...

The completed list app

Open up App. js. As we see in the initialization of state, App has two state properties:

testing/react-basics/src/App.js

class App extends React.Component {

state = {
items: [],
item: "',
};

items is the list of items. item is the state property that is tied to our controlled input, which we’ll
see in a moment.

Inside of render (), App iterates over this.state.items to render all items in a table:

WOW! eBook
www.wowebook.org

Unit Testing 307

testing/react-basics/src/App.js

<tbody>
{
this.state.items.map((item, idx) => (
<tr
key={idx}

<td>{item}</td>
</tr>
))

}
</tbody>

The controlled input is standard. It resides inside of a form:

testing/react-basics/src/App.js

<form
className="'ui form'
onSubmit={this.addItem}
>
<div className='field'>
<input
className="prompt'
type="'text'
placeholder='Add item...'
value={this.state.item}
onChange={this.onItemChange}

/>

0 For more info on controlled inputs, see the section “Uncontrolled vs. Controlled Compo-
nents” in the Forms chapter.

For the input, onItemChange() sets item in state as expected:

WOW! eBook
www.wowebook.org

Unit Testing 308

testing/react-basics/src/App.js

onltemChange = (e) => {
this.setState({
item: e.target.value,
1)
¥

For the form, onSubmit calls addItem(). This function adds the new item to state and clears item:

testing/react-basics/src/App.js

additem = (e) => {
e.preventDefault();

this.setState({
items: this.state.items.concat(
this.state.item
),
item:
1
¥

[}
!

Finally, the button:

testing/react-basics/src/App.js

<button
className="ui button'
type="'submit'
disabled={submitDisabled}

Add item
</button>

We set the attribute disabled on the button. This variable (submitDisabled) is defined at the top of
render and depends on whether or not the input field is populated:

WOW! eBook
www.wowebook.org

Unit Testing 309

testing/react-basics/src/App.js

render() {
const submitDisabled = !this.state.item;
return(

The first spec for App

In order to write our first spec, we need to have two libraries in place: Jest and Enzyme.

In the last chapter, we noted that create-react-app sets up a few commands in package. json. One
of those was test.

react-scripts already specifies Jest as a dependency. To boot Jest, we just need to run npm test.
Like other commands that create-react-app creates for us, test runs a script in react-scripts. This
script configures and executes Jest.

To see all of the packages that react-scripts includes, see the file ./node_-

modules/react-scripts/package. json.

create-react-app sets up a dummy test for us in App.test.js. Let’s execute Jest from inside
testing/react-basics and see what happens:

$ npm test

Jest runs, emitting a well-formatted report of our test suite’s results:

L]

IBASSH s rc/App.test.js

+ renders without crashing (58ms)

Test Summary
> Ran all tests.
» 1 test passed (1 total in 1 test suite, run time 3.857s)

Watch Usage
> Press p to filter by a filename regex pattern.
> Press q to quit watch mode.
> Press Enter to trigger a test run.

The sample test run

WOW! eBook
www.wowebook.org

Unit Testing 310

react-scripts has provided some additional configuration to Jest. One configuration is booting
Jest in watch mode. In this mode, Jest does not quit after the test suite finishes. Instead, it watches
the whole project for changes. When a change is detected, it re-runs the test suite.

Throughout this chapter, we’ll continue to instruct you to execute the test suite with npm
test. However, you can just keep a console window open with Jest running in watch mode
if you'd like.

react-scripts does not include enzyme. So we’ve included it in our package. json.

enzyme wraps react-test-renderer. As a result, it depends on that package to be installed too.
You'll see that dependency in the package. json as well.

Let’s replace the spec in App . test . js with something more useful.

Open up App.test.js and clear out the file. At the top of that file, we first import the React
component that is under test:

testing/react-basics/src/complete/App.test.complete-1.js

import App from './App';

Next, we’ll import React from react and shallow() from enzyme:

testing/react-basics/src/complete/App.test.complete-1.js

import React from 'react’;
import { shallow } from 'enzyme';

shallow() is the only function we’ll use from Enzyme, so we explicitly specify it in our import. As
you may have guessed, shallow() is the function we’ll use to shallow render components.

If you need a refresher on the ES6 import syntax, refer to the previous chapter “Using
Webpack with create-react-app”

We'll title our describe after the module under test:

describe('App', () => {
// assertions will go here

});

Let’s write our first spec. We'll assert that our table should render with a table header of “Items”:

WOW! eBook
www.wowebook.org

Unit Testing

describe('App', () => {
it('should have the “th> "Items"', () => {
// our assertion will go here

});

// the rest of our assertions will go here

});

In order to write this assertion, we’ll need to:

« Shallow render the component
« Traverse the virtual DOM, picking out the first th element
« Assert that that element encloses a text value of “Ttems”

We first shallow render the component:

testing/react-basics/src/complete/App.test.complete-1.js

311

it('should have the “th™ "Items"',6 () => {
const wrapper = shallow(
<App />
)i

As mentioned earlier, the shallow() function returns what Enzyme calls a “wrapper” object,
ShallowWrapper. This wrapper contains the shallow-rendered component. Remember, there is
no actual DOM here. Instead, the component is kept inside of the wrapper in its virtual DOM

representation.

The wrapper object that Enzyme provides us with has loads of useful methods that we can use to
write our assertions. In general, these helper methods help us traverse and select elements on the

virtual DOM.

Let’s see how this works in practice. One helper method is contains(). We'll use it to assert the

presence of our table header:

WOW! eBook
www.wowebook.org

Unit Testing 312

testing/react-basics/src/complete/App.test.complete-1.js

it('should have the “th> "Items"', () => {
const wrapper = shallow(
<App />
)i
expect(
wrapper.contains(<th>Items</th>)
).toBe(true);
1)

contains() accepts a ReactElement, in this case JSX representing an HTML element. It returns a
boolean, indicating whether or not the rendered component contains that HTML.

Try it out

With our first Enzyme spec written, let’s verify everything works. Save App.test. js and run the
test command from the console:

$ npm test

o0

IBASSH s rc/App.test.js
A

pp
« should have the “th" "Items" (24ms)

Test Summary
> Ran all tests.
» 1 test passed (1 total in 1 test suite, run time 3.597s)

Watch Usage
> Press p to filter by a filename regex pattern.
> Press q to quit watch mode.
> Press Enter to trigger a test run.

Enzyme spec passes

Let’s write some more assertions, exploring the API for Enzyme in the process.

WOW! eBook
www.wowebook.org

Unit Testing 313

9 We import React at the top of our test file. Yet, we don’t reference React anywhere in the
file. Why do we need it?

You can try removing this import statement and see what happens. You’ll get the following
error:

ReferenceError: React is not defined

We can’t readily see the reference to React, but it’s there. We’re using JSX in our test suite.
When we specify a th component with <th>Items</th> this compiles to:

React.createElement('th', null, 'Items');

More assertions for App

Next, let’s assert that the component contains a button element, the button that says “Add item.”
We might expect we could just do something like this:

wrapper .contains(<button>Add Item</button>)

But, contains() matches all the attributes on an element. Our button inside of render() looks like
this:

testing/react-basics/src/App.js

<button
className="'ui button'
type="'submit'
disabled={submitDisabled}

Add item
</button>

We need to pass contains() a ReactElement that has the exact same set of attributes. But usually
this is excessive. For this spec, it’s sufficient to just assert that the button is on the page.

We can use Enzyme’s containsMatchingElement() method. This will check if anything in the
component’s output looks like the expected element. We don’t have to match attribute-for-attribute.

Using containsMatchingElement (), let’s assert that the rendered component also includes a button
element. Write this spec below the last one:

WOW! eBook
www.wowebook.org

Unit Testing 314

testing/react-basics/src/complete/App.test.complete-2.js

it('should have a “button® element', () => {
const wrapper = shallow(
<App />
)i
expect(
wrapper .containsMatchingElement(
<button>Add item</button>

)
).toBe(true);

});

containsMatchingElement () allows us to write a “looser” spec that’s closer to the assertion we want:
that there’s a button on the page. It doesn’t tie our specs to style attributes like className. While
the attributes onClick and disabled are important, we’ll write specs later that cover these.

Let’s write another assertion with containsMatchingElement(). We’ll assert that the input field is
present as well:

testing/react-basics/src/complete/ App.test.complete-2.js

it('should have an “input® element', () => {

const wrapper = shallow(

<App />
)i
expect(

wrapper .containsMatchingElement(

<input />

)

).toBe(true);

});

Our specs at this point assert that certain key elements are present in the component’s output
after the initial render. As we’ll see shortly, we're laying the foundation for the rest of our specs.
Subsequent specs will assert what happens after we make changes to the component, like populating
its input or clicking its button. These fundamental specs assert that the elements we will be
interacting with are present on the page to begin with.

In this initial state, there is one more important assertion we should make: that the button on the
page is disabled. The button should only be enabled if there is text inside the input.

We actually could modify our previous spec to include this particular attribute, like this:

WOW! eBook
www.wowebook.org

Unit Testing 315

expect(
wrapper .containsMatchingElement(
<button disabled={true}>
Add item
</button>

)
) .toBe(true);

This spec would then be making two assertions: (1) That the button is present and (2) that it is
disabled.

This is a perfectly valid approach. However, we like to split these two assertions into two different
specs. When you limit the scope of the assertion in a given spec, test failures are much more
expressive. If this dual-assertion spec were to fail, it would not be obvious why. Is the button missing?
Or is the button not disabled?

0 This discussion on how to limit assertions per spec touches on the art of unit testing.
There are many different strategies and styles for composing unit tests which are highly
dependent on the codebase you're working with. There is usually more than one “right

way” to structure a test suite.

Throughout this chapter, we’ll be exhibiting our particular style. But as you get comfortable
with unit testing, feel free to experiment to find a style that works best for you or your
codebase. Just be sure to aim to keep your style consistent.

Our three specs so far have asserted that elements are present in the output of our component.
This spec is different. We'll first “find” the component and then make an assertion on its disabled
attribute. Let’s take a look at it then break it down:

testing/react-basics/src/complete/ App.test.complete-2.js

it('“button® should be disabled', () => {
const wrapper = shallow(
<App />
)i
const button = wrapper.find('button').first();
expect(
button.props().disabled
).toBe(true);
1)

find() is another EnzymeWrapper method. It expects as an argument an Enzyme selector. The
selector in this case is a CSS selector, 'button'. A CSS selector is just one supported type of Enzyme

WOW! eBook
www.wowebook.org

Unit Testing 316

selector. We’ll only use CSS selectors in this chapter, but Enzyme selectors can also refer directly to
React components. For more info on Enzyme selectors, see the Enzyme docs”'.

find() returns another Enzyme ShallowWrapper. This object contains a list of all matching elements.
The object behaves a bit like an array, with methods like 1ength. The object has a method, first(),
which we use here to return the first matching element. first() returns another ShallowWrapper
object which we set the variable input to.

As you find and select various elements within a shallow rendered component, all of those elements
will be Enzyme ShallowWrapper objects. That means you can expect the same API of methods to be
available to you, whether you’re working with a shallow-rendered React component or a div tag.

To read the disabled attribute on the button, we use props(). props() returns an object that
specifies either the attributes on an HTML element or the props set on a React component.

0 CSS selectors

CSS files use selectors to specify which HTML elements a set of styles refers to. JavaScript
applications also use this syntax to select HTML elements on a page. Check out this MDN
section’ for more info on CSS selectors.

Using beforeEach

At this point, our test suite has some repetitious code. We shallow render the component before each
assertion. This is ripe for refactor.

We could just shallow render the component at the top of our describe block:

describe('the "App" component', () => {
const wrapper = shallow(
<App />
)i
// specs here ...

1))

Due to JavaScript’s scoping rules, wrapper would be available inside of each of our it blocks.

But there are problems that can arise with this approach. For instance, what if one of our specs
modifies the component? We might change the component’s state or simulate an event. This would
cause state to leak between specs. At the start of the next spec, our component’s state would be
unpredictable.

7lhttp://airbnb.io/ enzyme/docs/api/selector.html
"?https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors

WOW! eBook
www.wowebook.org

http://airbnb.io/enzyme/docs/api/selector.html
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors
http://airbnb.io/enzyme/docs/api/selector.html
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors

Unit Testing 317

It would instead be preferable to re-render the component between each spec, ensuring that each
spec is working with the component in a predictable, fresh state.

In all popular JavaScript test frameworks, there’s a function we can use to aid in test setup:
beforeEach. beforeEach is a block of code that will run before each it block. We can use this
function to render our component before each spec.

When writing a test, you’ll often need to perform some setup to get your environment into the
proper context to make an assertion. In addition to shallow rendering a component as we do above,
we’ll soon write tests that will demand even richer context. By setting up the context inside of a
beforeEach, you guarantee that each spec will receive a fresh set of context.

% Setting up fresh context before each spec helps prevent state from leaking between tests.

When writing tests, we strive to keep our individual specs (our it blocks) as terse as possible. We’ll
rely on beforeEach to establish context, like the state or props for a component or even events like
an element being clicked. Our it blocks, then, will almost always contain exclusively assertions.

Let’s use a beforeEach block to render our component. We can then remove the rendering from
each of our assertions:

testing/react-basics/src/complete/App.test.complete-3.js

describe('App', () => {
let wrapper;

beforeEach(() => {
wrapper = shallow(
<App />
);
1)

We had to first declare wrapper using a let declaration at the top of the describe block. This is
because if we had declared wrapper inside of the beforeEach block like this:

WOW! eBook
www.wowebook.org

Unit Testing 318

/)
beforeEach(() => {
const wrapper = shallow(
<App />
)i
D)
V7

wrapper would not have been in scope for our specs. By declaring wrapper at the top of our describe
block, we’ve “hoisted” it up into scope for all of our assertions.

We can now safely remove the declaration of wrapper from each of our assertions:
testing/react-basics/src/complete/App.test.complete-3.js

it('should have the “th™> "Items"', () => {
expect(

wrapper .contains(<th>Items</th>)
).toBe(true);
1);

it('should have a “button™ element', () => {
expect(
wrapper .containsMatchingElement(
<button>Add item</button>
)
).toBe(true);

});

it('should have an “input® element', () => {
expect(
wrapper .containsMatchingElement(
<input />
)
).toBe(true);

});

it('“button® should be disabled', () => {
const button = wrapper.find('button').first();
expect(
button.props().disabled
).toBe(true);
});

Much better. Our it blocks are no longer setting up context and we’ve removed redundant code.

WOW! eBook
www.wowebook.org

Unit Testing 319

Try it out

Save App.test . js. Run the test suite:
$ npm test

All four tests pass:

o0

Test Summary
> Ran all tests.
IBASSH = rc/App.test.js
App
v should have the “th' "Items" (6ms)
« should have a “button” element (6ms)
+ should have an “input® element (3ms)
+ "button” should be disabled (3ms)

Test Summary
> Ran all tests.
» 4 tests passed (4 total in 1 test suite, run time 0.636s)

Watch Usage
> Press p to filter by a filename regex pattern.
> Press q to quit watch mode.
> Press Enter to trigger a test run.

All four passing tests

While limited, these specs set the foundation for our next set of specs. By asserting the presence of
certain elements in the initial render as we have so far, we’re asserting what the user will see on the
page when the app loads. We asserted that there will be a table header, an input, and a button. We
also asserted that the button should be disabled.

For the rest of this chapter, we’re going to use a behavior-driven style to drive the development of
our test suite. With this style, we’ll use be foreEach to set up some context. We’ll simulate interactions
with the component much like we were a user navigating the interface. We’ll then write assertions
on how the component should have behaved.

After loading the app, the first thing we’d envision a user would do is fill in the input. When the
input is filled, they will click the “Add item” button. We would then expect the new item to be in
state and on the page.

We'll step through these behaviors, writing assertions about the component after each user
interaction.

Simulating a change

The first interaction the user can have with our app is filling out the input field for adding a new
item. In addition to shallow rendering our component, we want to simulate this behavior before the

WOW! eBook
www.wowebook.org

Unit Testing 320

next set of specs.

While we could perform this setup inside of the it blocks, as we noted before it’s better if we perform
as much of our setup as possible inside of beforeEach blocks. Not only does this help us organize
our code, this practice makes it easy to have multiple specs that rely on the same setup.

However, we don’t need this particular piece of setup for our other four existing specs. What we
should do is declare another describe block inside of our current one. describe blocks are how we
“group” specs that all require the same context:

describe('App', () => {
// ... the assertions we've written so far

describe('the user populates the input', () => {
beforekach(() => {
// ... setup context

P

// ... assertions
});
1)

The beforeEach that we write for our inner describe will be run after the beforeEach declared
in the outer context. Therefore, the wrapper will already be shallow rendered by the time this
beforeEach runs. As expected, this beforeEach will only be run for it blocks inside our inner
describe block.

Here’s what our inner describe with our beforeEach setup looks like for the next spec group:

testing/react-basics/src/complete/ App.test.complete-4.js

describe('the user populates the input', () => {
const item = 'Vancouver';

beforeEach(() => {
const input = wrapper.find('input').first();
input.simulate('change', {
target: { value: item }
H
});

We first declare item at the top of describe. As we’ll see soon, this will enable us to reference the
variable in our specs.

WOW! eBook
www.wowebook.org

Unit Testing 321

The be foreEach first uses the find() method on EnzymeWrapper to grab the input. Recall that find()
returns another EnzymeWrapper object, in this case a list with a single item, our input. We call first()
to get the EnzymeWrapper object corresponding to the input element.

We then use simulate() on the input. simulate() is how we simulate user interactions on
components. The method accepts two arguments:

1. The event to simulate (like 'change' or 'click'). This determines which event handler to use
(like onChange or onClick).
2. The event object (optional).

Here, we're specifying a 'change' event for the input. We then pass in our desired event object.
Note that this event object looks exactly the same as the event object that React passes an onChange
handler. Here’s the method onItemChange on App again, which expects an object of this shape:

testing/react-basics/src/App.js

onltemChange = (e) => {
this.setState({
item: e.target.value,
1
};

With this setup written, we can now write specs related to the context where the user has just
populated the input field. We’ll write two:

1. That the state property item was updated to match the input field
2. That the button is no longer disabled

Here’s what the describe looks like, in full:

testing/react-basics/src/complete/App.test.complete-4.js

describe('the user populates the input', () => {

const item = 'Vancouver';

beforeEach(() => {
const input = wrapper.find('input').first();
input.simulate('change', {
target: { value: item }
)
1)

WOW! eBook
www.wowebook.org

Unit Testing 322

it('should update the state property “item™', () => {
expect(
wrapper .state().item
) .toEqual(item);
1

it('should enable “button™', () => {
const button = wrapper.find('button').first();
expect(
button.props().disabled
) .toBe(false);
1)
1)

In the first spec, we used wrapper . state() to grab the state object. Note that it is a function and not
a property. Remember, wrapper is an EnzymeWrapper so we’re not interacting with the component
directly. We use the state() method which retrieves the state property from the component.

In the second, we used props() again to read the disabled attribute on the button.

Continuing our behavior-driven approach, we now envision our component in the following state:

oo0e BB React App X React

&« C | @ localhost:3000 | i

Items

Vancouver|

Add item

Imagined state of the component

The user has filled in the input field. There are two actions the user can take from here that we can
write specs for:

1. The user clears the input field

WOW! eBook
www.wowebook.org

Unit Testing 323

2. The user clicks the “Add item” button

Clearing the input field

When the user clears the input field, we expect the button to become disabled again. We can build
on our existing context for the describe “the user populates the input” by nesting our new describe
inside of it:

describe('App', () => {
// ... initial state assertions

describe('the user populates the input', () => {
// ... populated field assertions

describe('and then clears the input', () => {
// ... assert the button is disabled again

});
});
});

We'll use beforeEach to simulate a change event again, this time setting value to a blank string.
We'll write one assertion: that the button is disabled again.

Remember to compose this describe block underneath “the user populates the input” Our “user
clears the input” describe block, in full:

testing/react-basics/src/complete/ App.test.complete-5.js

it('should enable “button™', () => {
const button = wrapper.find('button').first();
expect(
button.props().disabled
).toBe(false);

});

describe('and then clears the input', () => {
beforeEach(() => {
const input = wrapper.find('input').first();
input.simulate('change’', {
target: { value: '' }
H
};

WOW! eBook
www.wowebook.org

Unit Testing 324

it('should disable “button*', () => {
const button = wrapper.find('button').first();
expect(

button.props().disabled

) .toBe(true);

b

s
1)
1)

Notice how we’re building on existing context, getting deeper into a workflow through our app.
We’re three layers deep. The app has rendered, the user filled in the input field, and then the user
cleared the input field.

Now’s a good time to verify all our tests pass.

Try it out

Save App.test. js. Running the test suite:
$ npm test

We see everything passes:

IBASSH = rc/App.test.js
App
should have the ‘th* "Items" (9ms)
should have a "button® element (4ms)
r should have an “input® element (3ms)
r “button” should be disabled (2ms)
the user populates the input
v should update the state property “newItem® (11ms)
+ should enable “button™ (5ms)
and then clears the input
+ should disable “button® (6ms)

Test Summary
» Ran all tests.
» 7 tests passed (7 total in 1 test suite, run time 0.704s)

Watch Usage
> Press p to filter by a filename regex pattern.
> Press q to quit watch mode.
> Press Enter to trigger a test run.

Next, we’ll simulate the user submitting the form. This should cause a few changes to our app which
we’ll write assertions for.

WOW! eBook
www.wowebook.org

Unit Testing 325

Simulating a form submission

After the user has submitted the form, we expect the app to look like this:

® © ® /B React App X React
(3 C | @ localhost:3000 w
ltems
Vancouver

We’ll assert that:

. The new item is in state (items)

. The new item is inside the rendered table
. The input field is empty

. The “Add item” button is disabled

BN W N =

To reach this context, we’ll build on the previous context where th